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PERFORMANCE GUARANTEES FOR APPROXIMATION
ALGORITHMS DEPENDING ON PARAMETRIZED

TRIANGLE INEQUALITIES *

THOMAS ANDREAE AND HANS-JRGEN BANDELT

Abstract. The worst-case analyses of heuristics in combinatorial optimization are often far too
pessimistic when confronted with performance on real-world problems. One approach to partially
overcome this discrepancy is to resort to average-case analyses by stipulating realistic distributions of
input data. Another way is to incorporate a priori information on the potential domain of the input
data, for instance, assuming the triangle inequality for input matrices is in some cases instrumental
for establishing approximation algorithms with fixed performance guarantee. Now, a parametrized
form of the triangle inequality has a considerably larger range of applicability and allows the pre-
diction of the heuristics performance, where otherwise no bound could be provided. For example, it
is interesting to observe that two well-known approximation algorithms for the Traveling Salesman
Problem (TSP), assuming the triangle inequality, behave differently when one relaxes the imposed
triangle inequality. The double-spanning-tree heuristic can be adjusted (by suitably extracting a

Hamilton circuit from a Eulerian walk) to yield an approximation algorithm with performance guar-
antee increasing quadratically with the parameter governing the relaxed triangle inequality. The
Christofides algorithm cannot be modified in this way and hence does not tolerate a relaxation of the
standard triangle inequality without loosing the bound on its relative performance.

Key words, approximation algorithm, performance guarantee, parametrized triangle inequal-
ity, Traveling Salesman Problem, minimum Steiner tree, anticlustering
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Introduction. Hard combinatorial optimization problems are often ap-
proached in practice by heuristic procedures that produce near-optimal solutions,
which for particular data, however, may be far away from optima. It is then in-
teresting from a theoretical point of view to predict the worst-case behavior of such
algorithms. A heuristic qualifies as an approximation algorithm if the returned solu-
tions are within a fixed factor r (performance guarantee) of the optimal value. Even
this relaxation of the problem may be too demanding, viz., leaving it still NP-hard.
One would then resort to a (possibly more consolatory) average-case analysis or re-
strict the range of feasible input data. The Traveling Salesman Problem (TSP) is
quite typical in this respect: there is no hope (unless P NP) for a polynomial
approximation algorithm with performance guarantee, but if the input distance ma-
trix C (ci,j) obeys the triangle inequality, then several approximation algorithms
are available. It is conceivable that slight violations of the triangle inequality should
not be too deleterious with respect to performance guarantees. The deviation from
the triangle inequality is captured by a parameter T in the following relaxation of the
triangle inequality:

(1) c, _< v(c, + c,)

for all choices of three distinct points i, j, k. This parametrized form, suggested by
Bandelt, Crama, and Spieksma (1991), allows us to tailor the worst-case analysis
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more faithfully to the expected instances of a particular real-world problem, as was
demonstrated for several heuristics solving multidimensional assignment problems,
where the performance guarantee was even bounded from above by a factor r linearly
dependent on the parameter -.

A parametrized triangle inequality naturally comes up when the input data are
from a fixed range of values. Assume that all cost matrices C (ci,j) under consid-
eration are bounded by real numbers L and U:

L<_ci,j <_U for alli, j.

If L > 0, then C certainly satisfies the inequality (1) with parameter - U/2L. In
case more a priori information is available, smaller choices of the parameter - may
be possible. For instance, if the median cost of the three edges in each triangle is
bounded below by M, that is,

M _< max{min(ci,j, ci,k), min(ci,j, cj,k), min(ci,k, cj,k) },

then 7 U/(L + M) is a feasible choice. In this case one could even admit negative
costs as long as -L < M.

In this paper we will study the parametrized triangle inequality in more detail.
In the presence of the standard triangle inequality (that is, for - 1) it is straightfor-
ward to estimate the distance between the end points of a path with more than one
interior point: take the sum of distances along the path. When - > 1, however, a cor-
responding factor necessarily grows with the number of interior points. In particular,
we will determine the exact values of the smallest possible factors ’n, given T, in the
inequalities

(1’) Ci,j ’n (Ci,kl - Ck ,k2 - - C 1’ kn - Ckn,j )"

Asymptotically, "rn equals - to the power log2(n + 1). (Any application of this
"iterated parametrized triangle inequality" for large n will thus lead only to poor
estimates of the performance of the approximation algorithm under study.)

Now, what can be said about the performance of some TSP heuristics when
the relaxed triangle inequality is imposed? Two pertinent algorithms depart from a
minimum-cost-spanning tree by expanding it to a Eulerian graph, either by simply
doubling each edge or by adding a minimum-cost matching of the vertices of odd
degree. Extracting a Hamilton circuit from an arbitrary Eulerian walk then results
in an algorithm with performance guarantee 2 or 3/2, respectively, provided the dis-
tances satisfy the triangle inequality. It turns out that the two algorithms perform
differently when applied to distance matrices (ci,j) fulfilling the relaxed form of the
triangle inequality with parameter - > 1. The simple double-spanning-tree heuristic
can be modified (by carefully selecting the Hamilton circuit) in such a way that a
performance guarantee of factor 3-2/2 + -/2 can be achieved. The other algorithm
(due to Christofides) does not profit from such a selection strategy of tours: for - > 1,
the worst-case ratio of heuristic tour length and optimal tour length goes to infinity
when the number n of cities (points) increases.

So far we have regarded the parametrized triangle inequality as a relaxation of the
standard one, i.e., we have assumed - > 1. But when distances satisfy the standard
triangle inequality strictly, we can more precisely describe this by an improved triangle
inequality with parameter - < 1. Evidently, - cannot be smaller than 1/2. This
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scenario applies to the minimum-spanning-tree heuristic for the Steiner tree problem:
when - approaches 1/2, the performance guarantee factor 2 decreases and eventually
reaches 1. As in the multidimensional assignment problem we treat the anticlustering
problem of Feo and Khellaf (1990) for every choice of the parameter - with 1/2 _<
c. Our terminology is fairly standard; cf. Papadimitriou and Steiglitz (1982). Vertex
set and edge set of a (finite, simple, undirected) graph G are denoted by V(G) and
E(G), respectively. For k >_ 1, the kth power Gk of a graph G is the graph with the
same vertex set as G and where two distinct vertices a and b of G form an edge if and
only if there exists an a, b-path in G consisting of at most k edges. A trivial tree is a
tree consisting of just one vertex.

Let X be a set and let c be a mapping that assigns to every two-element subset
{u, v} of X a nonnegative real number c(u, v). Then c is called a cost function on X,
and c(u, v) is the cost of the edge {u, v}. Whenever appropriate, we will also write
instead of c(u, v). In some instances, c is referred to as a distance function. If E is a
finite subset of (x), then we write c(E) for the sum of all c(u, v) for which {u, v} E E.
We call c(E) the cost of E. If E is the edge set of a graph H, then we also write c(H)
instead of c(E); and in case H is complete, that is, E(H) (2A) for A C_ X, the cost
c(H) is written as c(A). We say that a cost function c on X satisfies the --inequality
(for some - with 1/2 _< T < eC) if (1) holds for all choices of three distinct points i, j, k
in X.

1. Iterated parametrized triangle inequalities. Our goal is to determine
the smallest possible factors ’n in the inequalities (1). To this end some technical
prerequisites are necessary. We assume T _> 1 (unless stated otherwise). For each
positive integer n, let us define numbers an and bn as follows" let n 2q + r with
integers q, r such that q >_ 0 and 0 >_ r < 2q; then (for given - >_ 1)

an rTq+l -+- ([n/2J r)Tq,
+

Note that an and bn equal (n/2)7lg.n asymptotically: indeed, the numbers an and
bn are relatively minor deviations from their arithmetic mean

rTq+l q- r Tq

which constitutes the linear interpolation of the convex function

x 1
h(x)-

along the points z 2q for q 0, 1,
In the next lemma we collect some properties of the numbers an and bn that will

be useful in the following sections. The proof of this lemma is left to the reader.
LEMMA 1. The numbers an, bn have the following properties (2.1)-(2.4).
(2.1) Let q [log2 nJ. Then

Tq if n is odd,
bn an 0 otherwise,

Tq+l if n is odd,
an+l an -q+l -q otherwise,, -q+l Tq if n is odd,bn+ bn Tq+ otherwise.
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(2.2) an <_ bn

_
an+l.

(2.3) Let n >_ m. If n- m is even, then

an+ an

_
am+ am,

bn+ bn >_ bm+ bin,

bn an >_ bm am;

if n- m is odd, then
an+ an

_
bm+ bm

bn+ bn

_
am+ am.

(2.4) If n >_ 3 is odd, then

an T(a[n/2] + ar/ and b, T(b[n/2 + );

if n is even, then
an bn 7-(an/2 + bn/2).

For X {0, 1,..., n} with n _> 1, we define a cost function c on X as follows" for
i,k E X with i < k let

(3)
for even and k odd,

ci,k ck,i bk_i for odd and k even,
aa_i(= b_i) otherwise.

LEMMA 2. The cost function c defined on X {0, 1,..., n} by (3) satisfies the
7-inequality.

Proof. Let i, j, k E X, < j < k. Then max{ci,j, Cj,k, ci,k } Ci,k by (3) and (2.2).
Hence, for the proof of the T-inequality, it suffices to show

(4) ci,k <_ T(ci,j + Cj,k), 0 <_ < j < k <_ n.

Note that, by the definition of c, it is sufficient to prove (4) for {0, 1}.
Case 1: i= 0 and k is odd. Then (by (3)) the claimed inequality (4)is equivalent

to

(4.1) ak <_ -(aj + ak_j), j- 1,...,k- 1.

Clearly it suffices to show (4.1) for 1 <_ j _< (k- 1)/2, which we assume henceforth.
Then k- j- 1 >_ j. Note further that k- j- 1- j is an even number and, therefore,
we can apply (2.3) to obtain ak-j ak-j-1

_
aj+l aj. Hence

aj + ak-j

_
aj+l -- ak_(j+l), j-1,...,(k-1)/2.

Moreover, we already know from (2.4) that statement (4.1) is true for j (k- 1)/2
and thus (by the inequalities we have just derived) it is true for all 1,..., (k- 1)/2.
This settles Case 1.

Case 2: 1 and k is even. In this case, (4) becomes

bk-1 <_ 7"(bj_ + bk-j), j- 2,...,k- 1.
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With h- k- 1 this is equivalent to

(4.2) bh <_ r(bj + bh-j), j- 1,...,h- 1.

Since h is odd, (4.2) can be verified analogously to the proof of (4.1) by making use
of (2.3) and (2.4).

The remaining cases (i 0 with k even, and 1 with k odd) can be settled by
similar arguments.

We now prove the main result of this section, which, in other words, states that
the smallest possible factor rn in the inequality (1t) equals

an+l

[(n + 1)/2]"

THEOREM 1. Let X {0, 1,..., n} with n 2q + r(O <_ r < 2, q >_ 1) and let c
be a cost function on X satisfying the r-inequality for - >_ 1. Then

(5) c(0, n) _< +
Ln/2J

c(j,j + 1),
j=0

which is best possible, as for each r >_ 1 and n >_ 2 there exists an example yielding
equality in (5).

Proof. We first consider the case in which n is a power of 2. In this case r 0
and thus the claimed inequality (5) becomes

(5’)
2q-1

c(O, 2) <_ rq E c(j, j + 1),
j=0

which can easily be verified by induction on q: indeed, for q 1, (5t) is just the
r-inequality, and for q > 2, by making use of the induction hypothesis, one obtains
the following:

2 --i

E c(j,j+l)
j--2q-1

Now let us assume that n is not a power of 2. Then 1 _< r _< [n/2]. Let

Tn i,j 0,..., [n/2J 1

be an [n/2J x [n/2J-matrix with entries 0 or 1 such that each row and each column
contains exactly r entries equal to 1; a matrix with these properties is easily seen to
exist. For each E {0, 1,..., [n/2J 1}, denote by ji,l,...,ji,r the column indices j
for which ti,j 1, where we assume

ji,1 < ji,2 <"" < ji,r, 0,..., In/2] 1.
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Furthermore, for each E {0, 1,..., [n/2J 1}, let Ji be the set of integers that are
of the form 2ji,k + 1 for k E {1,..., r}. Then, clearly, Ji c_ {1,..., n- 1} and Jl-- r
and, consequently, I{0, 1,...,n}\Jl q + 1. For 0,..., [n/2J 1, denote the
members of {0, 1,..., n}\Ji by

rni,o < mi,1 <’" < mi,2q.

Then, evidently, rni,o 0 and rni,2q n (i 0,..., Ln/2J 1). Hence we conclude
from (5’) that

2q--1

(6) c(O, n) Tq E C(ITti,k, ft’l,i, kq-1),
k=0

0,..., [n/2J 1.

For all {0,..., [n/2J 1} and k {1,..., r}, the w-inequality yields

c(2ji,k, 2ji,t; + 2) <_ T(c(2ji,k, 2ji,k + 1) + c(2ji,k + 1, 2ji,k + 2)).

Let us define an [n/2J x n-matrix Sn
and j {0,...,n- 1} let

(si,j) as follows: for all e {0,..., [n/2J 1}

if j 2ji,k or j 2ji,k + 1 for some k E {1,...,r}, and

otherwise.

In other words, Sn results from T by (i) doubling each column (i.e., inserting to the
right of each column an identical copy of it), and (ii) adding an all-zero column to the
right of all columns if n is odd. In particular,

(8) each column of S contains at most r entries equal to 1.

Now, from (6) and (7), together with the definition of S
obtains

(si,j), one immediately

(9)
n-1

c(O, n) G E -q+’ c(j, j + 1),
j=O

0,..., Ln/2J 1,

since for each there exist exactly 2q r pairs rni,t, mi,k+l of consecutive numbers,
whereas r pairs rni,, rni,k+l are of the form 2j,, 2j,k + 2 (so that (7) applies). Sum-
ming up these inequalities and dividing the result by [n/2J yields

Ln/2J-ln-1
1

c(0, n) < [n/2J E E-q+s’Jc(j’J + 1)
i=0 j=0

1 ’q+, c(j,j+l).
Ln/2J y=o ,-o

In addition, (8) yields for all j e {0,..., n- 1}

Ln/2J-1

E Tq-t-si’J rTqq-1 -- (kn/2J r)-q.
i=0
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FIG. 1. An example showing that the bound of (13) is best possible.

This proves (5).
Now, let X {0, 1,..., n} and let c be the cost function defined on X by (3).

Then by Lemma 2 the 7--inequality is satisfied, and we have c(0, n) an and

n--1

E c(j,j + 1)
j=0

Hence, for the so-defined example (X, c), (5) holds with equality.
To provide sharp bounds for the iterated 7--inequality in case T < 1 does not seem

easy. Here is the case of n 3 edges: From ci,j < Tci,k + 7-ck,j and 7-ck,j < 7-2ci,j+
T2Ci,k it follows that c,y < TCi,k - T2Ci,j - T2Ci,k whence (1 7-2)ci,j < 7-(1 + 7-)C,k,
that is,

7-
(10) c, < Ci,k for any triple of pairwise distinct vertices j, k.

--1--T

Iterating the 7--inequality for c0,3 in two different ways gives

Hence

(11)

C0,3 < T2C0,1 -4- T2Cl,2 -- TC2,3,

C0,3 < TCO,1 4- T2Cl,2 -4- T2C2,3

2C0,3 _< (T2 -f- 7-)C0,1 -f- 27-2Cl,2 A-(7-2 -f- 7-)C2,3.

Let > 0 be a real number (to be determined later); then by (10) we have /C0,1
A(T/(1 7-))Cl,2 as well as c2,3 < (7-/(1 7-))Cl,2, and thus we obtain from (11)

Cl 2 -4-" (T2 -’[- T /)C2 3.(12) 2C03<(7-2+T A)co,+ 2T2+2A1_7-
Now, in order to have all three coefficients on the right-hand side of (12) equal, we
choose

7-(1 T)2
1+7-

With this choice of the inequality (12) yields

27-2
(13) C0,3 < (C0,1 -[- Cl 2 -[- C2,3).

-1+7-

This bound is best possible, as the (legitimate) example of Fig. 1 shows.
Problem. Provide an analogue to Theorem 1 for 7- < 1.
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2. The TSP. By ACTSP we mean the Traveling Salesman Problem restricted
to distance matrices satisfying the T-inequality for some fixed - _> 1/2. Given an input
for ACTSP, that is, a set X of n "cities" and a distance function c on X satisfying
the w-inequality, we denote by Cmin the cost of an optimal tour on X; moreover,
given an approximation algorithm for ACTSP, we write Cpprox for the cost of an
approximate solution. In the following, we restrict ourselves to the case - _> 1. If
T 1, then we write ATSP rather than A1TSP. We discuss two well-known heuristic
procedures for the TSP, namely, the double-tree algorithm and Christofides’ algorithm;
cf. Papadimitriou and Steiglitz (1982).
DOUBLE-TREE ALGORITHM

Step 1. Find a minimum spanning tree T for (X, c).
Step 2. Create the multigraph Td by doubling each edge of T.
Step 3. Find a Eulerian walk E of Td, extract a Hamilton circuit H from E, and

return the corresponding tour as a heuristic solution.

CHRISTOFIDES ALGORITHM

Step 1. Find a minimum spanning tree T for (X, c).
Step 2. Create the multigraph Tm by adding to T a minimum-cost matching of the

vertices of T having odd degree.
Step 3. Find a Eulerian walk E of Tm, extract a Hamilton circuit H from E, and

return the corresponding tour as a heuristic solution.

In Step 3 of these algorithms, extraction of a Hamilton circuit H from E means
that, for each vertex v occurring more than once in E, m times say, one arbitrarily
deletes rn- 1 of v’s occurrences. If H can be obtained from E in this way, we also say
that H is an embedded tour of E.

It is well known that the double-tree algorithm and Christofides’ algorithm are
approximation algorithms for ATSP with performance guarantees 2 and 3/2, respec-
tively; cf. Papadimitriou and Steiglitz (1982). We now consider the ACTSP for some
fixed T > 1 and study the worst-case behaviour of the above procedures. The following
example is instructive. For X {0, 1,... ,n- 1} with n- 1 2q(q >_ 1), define the
distances ci,k as in (3). Recall that, by Lemma 2, the so-defined distance function c
on X satisfies the --inequality. Then

Cmin (n- 2)T + 1,

since a tour with cost (n- 2)- + 1 can easily be specified: just take the tour (0, 2, 4,
...,n- 1, n- 2, n- 4,..., 3, 1,0). Note also that the path T (0, 1,...,n- 1) is the
(uniquely determined) minimum-spanning tree of (X, c). Hence Christofides’ algorithm
returns the tour H (0, 1,... ,n- 1,0), and one easily sees that the double-tree
algorithm may also return this tour, since H is an embedded tour of the Eulerian
walk (0, 1,...,n- 1,..., 1,0). Note that

n-1 n-1 n-1
c(H)-

2 + 2
Tq-- (1---Tlg2 (n-l))

2

and thus
c(H) > (/t- 1)(1 -- Tlg2 (n-l))Cmin 2(n- 2)- + 2

which (as - > 1) goes to infinity as n goes to infinity. In other words, the worst-
case ratio of heuristic tour length and minimal tour length goes to infinity as the
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number n of "cities" increases. Actually, in the case of Christofides’ algorithm, things
are even worse: note that, in the above example, the graph Tm equals the circuit
(0, 1,..., n- 1, 0) and, therefore, no choice other than E H Tm was possible.
Hence, in the case of Christofides’ algorithm, it is impossible to overcome the poor
worst-case behaviour by specifying additional rules for the selection of E and H. This
negative result is in contrast to what we have for the double-tree algorithm: we will
see that, by carefully selecting H from the variety of Hamilton circuits embedded
in some Eulerian walk of Td, the double-tree algorithm can be refined to become an
approximation algorithm with performance guarantee 3-:/2 + -/2.

Our refinement of the double-tree algorithm is based on a result of Sekanina
(1960) stating that the cube T3 of a tree T with at least three vertices has a Hamilton
circuit; see also Walther and Voss (1974). For our purpose, we need the following
Theorem A, which is a slightly modified version of Sekanina’s theorem. For a tree T
with n _> 3 vertices, let H (x0, xl,... ,Xn x0) be a Hamilton circuit of T3 and
denote by Pi the unique xi-1, xi-path of T (i 1,..., n). Then, obviously, each Pi has
at most three edges. If Pi has exactly three edges, Pi (xi-, u, v, xi) say, then the
edge e {u, v} is called the middle edge of Pi, and H is called admissible if

(14.1) each edge of T is contained in exactly two of the paths Pi (i 1,..., n),

and

(14.2) each edge of T is the middle edge of at most one Pi (i 1,..., n).
THEOREM A. Let T be a tree with n >_ 3 vertices and let {a, b} be an edge of

T. Then T3 has a Hamilton a, b-path P such that the corresponding Hamilton circuit
H P + {a, b} is admissible.

Proof. The proof of Theorem A runs completely along the lines of the proof of
Sekanina’s theorem; see, e.g., Sekanina (1960) or Walther and Voss (1974). For n 3,
Theorem A clearly holds. Let n _> 4 and assume that the theorem is true for trees
with fewer than n vertices. Let T-{a, b} be the graph that results when we delete the
edge {a, b} from T; let Ta and Tb be the components of T- {a, b} containing a and b,
respectively. If [V(Ta)I >_ 3, pick a neighbour a’ of a with a’ E Ta, and (inductively)
find a Hamilton a, a-path Pa in T2 with the property described in Theorem A. If
IV(Ta)I- 2, let Pa be the path of length one formed by a and its unique neighbour
a’ V(Ta). If [V(Ta)I 1, let Pa be the trivial path consisting of a and let a’ a.
Analogously, b and Pb are defined. Then the desired Hamilton a, b-path P is obtained
by linking Pa and Pb by the edge {a’, b}. rl

The inductive argument of the preceding proof also shows that P (and conse-
quently H as well) can be obtained in O(n) time, since splitting T into Ta and Tb,
picking a and b, and forming P from Pa and Pb are operations that can. be done in
constant time.

Now consider the following heuristic procedure for the TSP which we call the
T3-algorithm.

T3-ALGORITHM
Step 1. Find a minimum spanning tree T for (X, c).
Step 2. Find an admissible Hamilton circuit H of T3 and return the corresponding

tour as a heuristic solution.

Note that by (14.1), if we traverse the above-defined paths P1, P:,..., P, in this
order, then we obtain a Eulerian walk E of Td having H as an embedded tour and,
therefore, the T3-algorithm can be viewed as a refinement of the double-tree algorithm.
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THEOREM 2. For 7. >_ 1, the T3-algorithm is an approximation algorithm for
ATSP with performance guarantee

(15) ( 1 /Capprox T2 nt- T Cmin

Proof. For 7. >_ 1, let (X, c) be an input for ATSP with IX n. For a spanning
tree T of (X,c), let H (xo,zl,...,Xn xo) be an admissible Hamilton circuit
of T3 returned by the Ta-algorithm. As above let Pi be the unique xi-1, xi-path of
T (i- 1,..., n). Further, put p "-I(P)l and recall that 1 _< p _< 3 (i- 1,..., n).

If pi 3, let Pi (vi,o, vi,l,Vi,2,vi,3) where xi_l vi,o, xi vi,a, and put
ei,j {vi,j-1, vi,j } for j 1, 2, 3. Iterating the 7.-inequality in two different ways one
obtains

< + +
< + +

Hence

7.2 + 7. 7.2 + 7-
(16.1) c(xi-l,Xi) < c(ei 1) nt- T2C(ei,2) q- C(ei,3) if pi 3.

2 2

If pi 2 then (choosing the notations ei,, ei,2 similar to the case pi 3) by
making use of the 7.-inequality one obtains

C(Xi-1, Xi)

_
TO(el,l) nt- Tc(ei,2).

Hence (because (7.2 + 7.)/2 _> 7.) we have

T2 -t- T T2 - T
(a6.) e(x_ x) < c(ei,)A-e(ei2) ifp- 2

2 2

Finally, if pi 1, let el,1 (Xi-l,Xi). Hence (because (7.2 + T)/2 >_ 1) we have

7-2q-T
(16.3) c(xi-,xi) < c(ei,1) ifpi- 1.

2

For 1,...,n and j 1,...,pi let Ai,j 7.2 if pi 3 and j 2, and
Xi,j (7.2 + 7.)/2, otherwise. Then we obtain from (16.1)-(16.3)

(17)
n rt Pi

Capprox Z C(Xi-1, Xi) EE i,jC(ei,j).
i=1 i=1 j=l

By (14.1) and (14.2) each e e E(T) occurs exactly twice in the right-hand sum of (17)
and, for at most one of these occurrences, the corresponding coefficient Aid equals 7.2.
Hence the right-hand side of (17) is at most

(7.2+7.) (=_3 .1 )c(e) 27.
2 + 7. c(T)

eE(T)

If in an optimal tour we delete an edge of maximum cost, then we obtain a spanning
tree of (X,c) which has cost at most (1- 1In)Cain and thus c(T) <_ (1- 1/rt)Cmin.
Summarizing, we have

( 1)(1)Capprox <__ T2 + 7. 1 --n Cmin,
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FIG. 2. The tree T for k 3. The Hamilton circuit H is indicated by the labels of vertices.

which implies the assertion of our theorem.
We do not believe that the performance guarantee obtained in (15) is really the

best possible. We conjecture that a more careful analysis of the T3-algorithm (possibly
together with a different selection of the Hamilton circuit H of T3) would yield

(15t) Capprox

_
(T2 -- T)Cmin.

This would asymptotically be best possible as the following example shows. Let- > 1. For k _> 1, define a tree T on 4k + 3 vertices as follows: Denote the ver-
tices of T by Xl, xk, x, xk, yl, Yk, YI, Yk, z, z’, w, and let the edges
of T be {w,z}, {w,z’}{z, yi}, {z’ y}{yi, x}, {y,x}(i 1,...,k). Let G be the
complete graph with vertex set X V(T), and let H be the Hamilton circuit of G
defined by

H-(Xl,Yl,Z,W,Z’, ytl, Xtl, Y2 X2 Y2, Xt2, Yk, Xk ytk, Xk, Xl).

In Fig. 2, T and H are displayed for k- 3.
It is easy to check that the graph T U H has the following property:

(18) T t H contains no cycles with fewer than six edges.

We define a cost function c on (2X) as follows: if e e E(T H), then let

’0 if e is a pendant edge of T,
1 otherwise.

Now, let e E(T H), say e {v, v}. If there exists a vertex u such that {v, u},
{v, u} E E(T H), then (by (18)) there is just one vertex u with this property and
so we can define

j" T if C(V, U) + C(V’, U) 1,c(v v [ 2T otherwise.

Finally, for the remaining edges e- {v, v}, we define

T2 -- T
if there exists a vertex u E X
such that one of the edges {v, u}, {v’, u}
has cost 0 and the other cost -,
otherwise.

We claim that the so-defined example (X, c) satisfies the --inequality. In order
to prove this, we first note that (trivially)

(19) no triangle of (X, c) contains more than one edge e with c(e) O.

We say that a triangle A of (X, c) is of type (a,/, } if a,/, and are the costs of the
edges of A, respectively. Now, let A be a (hypothetical) triangle of (X, c) that violates
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the 7.-inequality. Then one easily concludes from the definition of c (together with (19))
that A must be of one of the types (0, 7., 2-), (0, T2, 2T}, (0, 7.2, 7.2 + 7.}. On the other
hand, one finds that none of these types can actually occur in (X, c): Let a, b, d E X
and assume that c(a, b) 0. If c(b, d) 7. and c(a, d) 27., then (by the definition
of c together with (19)) one could find vertices e, f such that c(b, e) 1, c(e, d)
O,c(d,f) c(f,a) 1, contradicting (18). If c(b,d) T2 and c(a,d) {27.,-2 if- 7-},
then we could find a vertex e such that c(b, e) 7. and c(e,d) 0. Furthermore,
c(b, e) 7. implies that there exists a vertex f such that c(b, f) + c(f, e) 1, which
(by (19)) is impossible unless f a. But f a would imply c(a, d) 7., which is a
contradiction. Hence we have shown that (X, c) satisfies the 7.-inequality.

Since H is certainly an optimal tour of (X, c), we have

(0)
We claim

Cmin c(H) 2k + 3.

(2) c(H’) >_ 2(k 2)(7.2 + -) for each Hamilton circuit H’ of T3.

To verify this, let Ei {{x,v} v w or v yj for somej i}(i 1,...,k).
Clearly, {x, z} E(H’) can hold for at most two of the vertices xi and, therefore,
E C E(HI) for at least k 2 of the sets E. Further, one easily infers from the
definition of c that c(e) 72 + 7. for all e G E (i 1,..., k). t similar argument holds
for E {{x,’ v} v w or v yj’ for some j i}(i 1, k). It follows that H’
contains at least 2(k- 2) edges e with c(e) 7.2 + 7., thus establishing (21).

From (20) and (21) we obtain

c(H’) > 2k 4
(7.2 + T) - 7.2 + 7. for k -+

Cmin 2k + 3

which shows that, if the conjectured inequality (15I) is true, then it is best possible.

3. Steiner trees. Let (X, c) be a metric space and U be a finite subset of X
with IUI n _> 2. i tree S with V(S) c_ X is called a Steiner tree for U if U c_ V(S)
and if all end vertices of S are members of U. Let T be a minimum-spanning tree for
U. It is well known that

c(T) _<2(1--nl) c(S)

for any Steiner tree S for U; see, e.g., Lengauer (1990). In other words, if we choose a

minimum-spanning tree as a heuristic solution for the Steiner tree problem (i.e., the
problem of minimizing c(S) over all Steiner trees S for U), then 2 is the corresponding
factor of performance guarantee. The next theorem shows how this factor decreases
when we make the additional assumption that, for some 7. with 0 < 7. _< 1, the set U
satisfies the following "--inequality with respect to X U""

(22) c(u, v) < 7.(c(u, x) + c(x, v)) for all u, v U, x X U.

THEOREM 3. Let (X, c) be a metric space and let U be a finite subset of X with
]U n > 2. Assume that, for some T(0 < 7. < 1), U satisfies the 7.-inequality with
respect to X U. Let Cinf inf {c(S) S is a Steiner tree for U} and let T be a

minimum-spanning tree for U. Then

c(T) <27.(1-1) n
Cinf if 7. > and otherwise

n 2(n- 1)’
n

c(T) cinf if T <
2(n-- 1)"
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Proof. Let S be a Steiner tree for U. Note that S is the edge disjoint union of
nontrivial trees Si (i 1,..., q) such that V(Si))U is exactly the set of end ver-
tices of S (i- 1,..., q). Let U V(S)U. Then, clearly, S is a Steiner tree for Ui.
Let T be a minimum-spanning tree for U and let n I1. Then 2 <_ ni <_ n(i
1,...,q). We may assume that IV(S)I _> 3 for 1,...,p and IV(S)I 2 for

p + 1,...,q(0 _< p _< q). Then, clearly, S T (i p + 1,...,q).
Now, let 1 <_ _< p. Choose end vertices ai, b E S such that the cost of the

a,b-path in Si is maximum. Denote this a,b-path by P,I (i 1,...,p). Now,
extend this path to any Eulerian walk of the multigraph obtained by doubling each
edge of the tree S. Specifically, for each i(1 <_ _< p), enumerate the vertices of Ui by
xi,1 a, x,2,..., Xi,n-l, Xi,n b in such a way that, for each edge e of S, there
are exactly two paths among Pi,1 and the (x,j-1, x,j)-paths P,j (j 2,..., n) of Si
that contain e. Hence

ni

(23) 2c(Si)- E c(Pi,j) <_ nic(Pi,1) (1 _< _< p).
j--1

Note that each path Pi,y consists of at least two edges. Moreover, the end vertices of
Pi,j are members of U while all inner vertices of Pi,y are in X- U. From this, together
with (22) and the fact that (X,c) is a metric space, we conclude c(xi,j_l,xi,j) <_
Tc(P,j)(2 <_ j <_ n, 1 <_ <_ p). Hence, for i 1,... ,p

ni

c(Ti) E c(xi,j-l,Xi,j)
j=2

ni ni

<- E Tc(P,j) TE c(Pi,y) Tc(P,I
j--2 j=l-- 2Tc(Si) -ic(Si) 2 (1--1---) c(Si)

ni
by (23)

_< 2-(1- l)c(Si)
The last inequality holds because ni

_
n (i 1,..., p). Hence

q

(1)
p q

_<
i----1

n
i--1 i--p+1

Consequently, if - _ n/2(n- 1), then 27(1- l/n)

_
1, and thus c(T)

_
iq=l c(Si)

c(S). Because this holds for all Steiner trees S for U and since T itself is a Steiner
tree for U, we conclude c(T) cinf. If, on the other hand, - _> n/2(n- 1) then

_< i=lc(Si) 2T(1- 1/n)c(S), and thus c(T)

_
2T(1--

1/n)Cinf
Let n _> 2 and 1 _> - _> n/2(n- 1). The following examples show that the bound of

Theorem 3 is best possible. Let U {Ul,..., Un} and X U U {x}. Define distances
by c(ui, uj) 2T(i j) and c(x, ui) 1(i 1,..., n). This meets the requirement of
Theorem 3, and we have c(T) 2T(n- 1) for a minimum-spanning tree T for U and
c(S) -n for a minimum-Steiner tree S for U. Hence c(T)= 2-(1- 1/n)cinf.

4. Anticlustering. Let X {1,...,n} with n k. m(k, rn N,k,m >_ 2)
and let G (Z, (2x)) be the complete graph with vertex set X. Given a distance
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function c on X, the anticlustering problem asks for a partition of X into k disjoint
sets A1,..., Ak of size m (called anticlusters) such that

k

E c(A) - max.
r--1

By Cmax we denote the value Er=l c(A) for an optimal solution A1,..., Ak of the
anticlustering problem. For rn 2, the anticlustering problem is the well-known max-
imum weighted matching problem, which can be solved in 0(n3) time; cf. Papadim-
itriou and Steiglitz (1982). For fixed rn >_ 3, the anticlustering problem is known to
be NP-complete, since it contains "partition into complete subgraphs of order rn"
as a special case; see Garey and Johnson (1979). For information on the complexity
of related problems, cf. Johnson et al. (1984) and Khellaf (1987). Henceforth, we
assume rn _> 3. The following approximation algorithm for the anticlustering problem
(with fixed size rn of anticlusters) is due to Feo and Khellaf (1990). If m is even, find
a perfect matching M of G such that c(M) is maximum. Thereafter, partition M
arbitrarily into k sets MI,..., Mk of m/2 edges each, and choose the corresponding
vertex sets Ah {i E X i is incident to some edge of Mh} (h 1,... ,k) as anti-
clusters of an approximative solution. For odd m, a similar procedure is used: among
all matchings of G with (n- k)/2 (rn- 1)k/2 edges, find a matching M such that
c(M) is maximum; partition M arbitrary into k sets M,..., Mk of (rn- 1)/2 edges
each, and add to each Mh an arbitrary unmatched vertex, thus yielding vertex sets

k fAh of the required size rn. In either case, we denote the value --=1 c(A) or the
anticlusters A1,..., Ak obtained by this approximation algorithm by Capprox.

Now we extend the result of Feo and Khellaf (1990) from the case 7- 1 (the
standard triangle inequality) to arbitrary T >_ 1/2.

THEOREM 4. If the distances c,j satisfy the 7--inequality (for some 7- >_ 1/2),
then

2T(rn- 1)
Cmx < m--2+2r

ifmiseven,

Capprox 2Tm

m-1+ 27- if m is odd.

For the proof of this theorem, we need the following lemma.
LEMMA 3. Let G be a complete graph with vertex set {1,...,n} and let c be a

function assigning a nonnegative real number c,y to every edge {i, j} of G. Let M be
an arbitrary matching of G with [n/2J edges. Then the following inequalities hold:

(24) If M is a maximum matching, then

c(G) <_ (n-1)c(M) ifn is even, and
c(G) _<_ nc(M) if n is odd.

(25) If the c,j satisfy the T-inequality for some T >_ 1/2, then

n--2+2T

27-

c(M) <_ c(G) if n is even, and

c(M) <_ c(G) if n is odd.

Proof. The assertion (24) immediately follows from the fact that G can be de-
composed into n 1 (or n) matchings if n is even (or odd, respectively).



PERFORMANCE GUARANTEES FOR APPROXIMATION ALGORITHMS 15

As to (25), assume M {{1,2},{3,4},...,{n- 1, n}} ifn is even and M
{{1,2}, {3,4},..., {n- 2, n- 1}} if n is odd. By the T-inequality,

(26) Ci,i-4-1

_
T(Ci,j + Cj,i-4-1) for all {i, + 1} E M and j # i, + 1.

Hence
(n- 2)ci,i+l < E T(Ci,j + Cj,i+l) for all {i,i + 1} E M.

If n is even, summing up all these inequalities for {i, + 1} M yields

(n- 2)c(M)< 27-(c(G)- c(M)).

This establishes (25) for even n.
If n is odd, let G result from G by deletion of the vertex n. Since the number of

vertices of G is even, we have

n-3+2"
27-

c(M) <_ c(G’).

Consider (26) for j n. Then summation over all {i, + 1} M yields

n--1

c(M) < TECi,
i--1

Hence
n 3 + 2T c(M) n-1

2-
c(M) -- <__ C(t) t_ E Ci,n C(),

T
i=1

which settles (25) for odd n. [3

Proof of Theorem . Let Ai (i 1,..., k) be the anticlusters found by the ap-
proximation algorithm. Let M denote the maximum matching of G that is used by
the approximation algorithm for the construction of A1,..., Ak. Denote by Mi the
edges of M placed by the algorithm into Ai. Let A (h 1,..., k) be the clusters of
an optimal solution and let Mt be a maximum matching of the complete graph with
vertex set A (with respect to the distances ci,j). Let m rn- 1 if m is even and
m’= m otherwise. By (24), c(A) < m’c(M) and thus

k k

E c(A) < m’Ec(M) < m’c(M).
i--1 i--1

The last inequality holds since k[.Ji_lii is a matching of G. By (25)

27"
c(Mi) < m’- 1 + 2 c(Ai), i- 1,...,k

and thus

k

Cmax <_ rn’c(M) m’E c(Mi)
i=1

k

rn’ 1 + 2"r E c(Ai)
i=1

2Tm
m’ 1 + 2-

Capprox.
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The following example shows that the upper bound on Cmax/Capprox in Theorem
4 is best possible for each - >_ 1/2. We just treat the case when rn is even; for odd m,
a similar example can be found. Let k >_ m/2 and let X {1,..., n} with n k. m.
Further, let M {{1,2}, {3,4},..., {n- 1, n}} and Ah {j e N’(h- 1)m < j _<
hm}(h 1,..., k). For j, distances ci,j are defined by

1

ci,j 1

if {i,j} E M or if and j are in distinct sets Ah,

otherwise.

It follows that the --inequality is satisfied. Since M is a maximum matching, ap-
plication of the approximation algorithm may result in the anticlusters A1,..., Ak.
Then

k

Capprox c(Ai) k - + T 2 2
i--1

km(m- 2 + 2T)
4-

On the other hand, as long as k >_ m/2, one can choose a partition into anticlusters

A,..., A of size m such that each A intersects any Ay in an edge of M or in at
most one point, whence

Cmax k"
m(m- 1)

2

yielding
Cmax 2T(m- 1)

Capprox m- 2 + 2T
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Abstract. This paper relates an axiomatic generalization of matroids, called a jump system, to
polyhedra arising from bisubmodular functions. Unlike the case for usual submodularity, the points
of interest are not all the integral points in the relevant polyhedron but form a subset of them.
However, it is shown that the convex hull of the set of points of a jump system is a bisubmodular
polyhedron, and that the integral points of an integral bisubmodular polyhedron determine a (special)
jump system. The authors prove addition and composition theorems for jump systems, which have
several applications for delta-matroids and matroids.
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1. Introduction. Matroids are important as a unifying structure in pure com-

binatorics, as well as a useful model in the theory of algorithms and in combinatorial
optimization. (See Bixby and Cunningham [1] for a survey of the latter aspects.)
Delta-matroids constitute an interesting generalization and have been introduced
only recently. Many of the nice properties associated with matroids (greedy algo-
rithm, polyhedral description, interesting examples) extend to delta-matroids. In the
present paper we begin by reviewing some of this work. Then we prove a new compo-
sition theorem for delta-matroids. It has several applications, including constructions
for matroids. An important theme is to identify in which of the applications the
composition is algorithmically constructible.

The polyhedral aspects of matroids, developed more than 20 years ago by Ed-
monds [11], led him to a different generalization, integral polymatroids. In a certain
sense there are two views of an integral polymatroid; first, it is a polyhedron P, and
second, it is a set " of integral points. There is a simple relation between the two
views--P is the convex hull of 5, and is the set of integral points in P. In this
paper we introduce jump systems, a common generalization of delta-matroids and
(the second view of) integral polymatroids. A jump system is defined by a set "of integral points, but it is not generally true that it is the set of integral points in
its convex hull. We present some examples of jump systems and prove an addition
theorem, that implies the composition theorem for delta-matroids.

Although jump systems cannot be defined via polyhedra, there is an important
subclass that can. These arise from (integral) bisubmodular polyhedra, introduced by
Dunstan and Welsh [10] in 1973 in a paper that seems to have been fully appreciated
only recently. We prove that the integral points in such a polyhedron determine a
jump system. Moreover, there is a partial converse--if " is a set of integral points
determining a jump system, then the convex hull of 9 is an integral bisubmodular
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polyhedron. So it is true that a polyhedron with integral vertices is bisubmodular if
and only if the integral points in it form a jump system.

Throughout this paper S, with or without subscripts, is a finite set. We use

R, R+, Z, and Z+ to denote the sets of real numbers, non-negative real numbers,
integers, and non-negative integers, respectively. For x E RS and A C_ S, we often
use x(A) as an abbreviation for E(xj j A). For c,x Rs we write cx to mean
(cjxj j S). For x RS and A c_ S, we use XlA to denote the restriction of x
to A, that is, the vector x RA such that xj xj for all j E A. Finally, we use the

symbol A also to denote the incidence vector of A, that is, the vector x Rs such
that xj 1 ifj G A and xj 0 ifj A.

2. Delta-matroids. Let 9 be a family of subsets of a finite set S. Then (S, 9)
is a delta-matroid if the following symmetric exchange axiom is satisfied:

(SEA) If F1, F2 and j F1AF2 then there is k E F1AF2 such that FIA{j,k} :7z.
(Here and elsewhere A denotes symmetric difference.) These structures have been
introduced by Bouchet [2]. Essentially equivalent structures were independently con-
sidered by Dress and Havel [8] and by Chandrasekaran and Kabadi [5]. A main
motivation for their study is that, if is the family of bases of a matroid on S, then
(S, $’) is a delta-matroid. In fact, matroids are precisely the delta-matroids for which
all members of have the same cardinality. (We remark that throughout the paper
we use "matroid" to mean a matroid defined by its family of bases.) In addition to
these examples, we mention a few others.

Matching delta-matroids. Let G (V, E) be a graph, let S V, and let
F " if and only if there is a matching of G covering precisely the elements of F.
Then (S, 9) is a delta-matroid. This can be proved using augmenting path arguments.

Twisting. Let (S, 9) be a delta-matroid, and let N C_ S. Let S’AN denote
{FAN F G $-}. Then (S, 9AN) is a delta-matroid. For example, we can get
delta-matroids by applying twisting to a matroid. In one case we get again a matroid;
namely, when N- S, we get the dual matroid.

Linear delta-matroids. Let M (rnij S, j S) be a skew-symmetric
matrix over a field. Define by F if and only if the principal submatrix
(rnij F,j F) is non-singular. Then (S,$-) is a delta-matroid. The proof of
this result is not trivial; see Bouchet [3], where it is also generalized. (For example, a

symmetric matrix can also be used.)
Another basic fact is that, if (S, ) is a delta-matroid and $’t is the family of

maximal members of , then (S, 9) is a matroid. This and twisting can be used
to justify a greedy algorithm for optimizing any linear function over $’. Namely,
IcI(FAN) c(F)- c(N), where N {j cj < 0}. Therefore, we can apply the
matroid greedy algorithm to the maximal members ofAN with weight function Icl.
Translating that algorithm into one operating directly on (S, $’) and c, we get the
following procedure. It appears in [2] and [5], but a similar kind of greedy algorithm
can be found in Dunstan and Welsh [10].

Greedy Algorithm for Delta-Matroids

Input: Delta-matroid (S,) and weight vector c R.
Objective: To find F E such that c(F) is maximum.

begin
order S as {el,e2,...,en} so that Ic,l >_ Ic21 >_ >_ Icnl;
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end.

for 1 to n + 1 let Ti {ei,..., en};
J-0;
for i- 1 to n

if c >_ 0 and there exists F E $- with J U {ei } c_ F C_ J U Ti
then J - J U {ei};

if c < 0 and there does not exist F E 9c with J c_ F C_ J Ti+l
then J J U {ei};

Notice that to implement this algorithm we need to be able to answer the question,
given disjoint subsets A, B of S,

(2.1) Does there exist F oP with A c_ F C_ S \ B ?

A more general question is to ask for the value f(A, B), defined to be
A -]FNBI) since the answer to (2.1) is "yes" exactly when f(A, B) IAI. However,
the two questions are algorithmically equivalent because f(A, B) can be computed
by the greedy algorithm with cj 1 for j A, -1 for j B, and 0 otherwise.
We consider the existence of an efficient subroutine to evaluate the function f (or
answer the question (2.1)) to be the measure of algorithmic tractability of the delta-
matroid. (If (S, 9c) is a matroid with rank function r, a simple argument shows that
f(A, B) r(A) + r(S \ B) r(S). Since r(A) f(A, 0), it follows that this oracle is
available for a matroid exactly when the usual one is available.)

Composition of delta-matroids. Our main result on delta-matroids is a com-
position theorem. We define the composition of delta-matroids (So, -0), ($1, ’1) to
be (S, ’) where S SoAS1 and "- {FoAF1 F0 ’0, F1 E ’1, FoNS1 F oS0}.
That is, each feasible set is a symmetric difference of two feasible sets, one from each
of the initial delta-matroids, that agree on S0 C S. The proof that this construction
gives a delta-matroid is our original one, which we include because of its algorithmic
flavour. However, the reader is warned that the next section contains an easier proof
of a more general result, so he may want to skip this proof on a first reading.

THEOREM 2.1. The composition of delta-matroids is a delta-matroid.

Proof. We consider F, G 9c and j FAG, and we search for k FAG such
that FA{j, k} 9c. There exist F0, Go E $’0 and F1, G1 1 such that F- FoAF1
and G GoAG1. We also consider S S0IS1, F F0C?S Flf?S and
G Go C S G 1St. For any integer we let Fi, Gi, ’i be respectively equal to
F0, Go, $-0 if is even or to F1, (1, ’1 if is odd.

The element j belongs to FoAGoAFAG1. By symmetry we may assume that
j FLAG1. Applying (SEA) to F1, (1 -)1 and j F1/kG1 we can find z E FIA(I
such that FIA{j,z} $-1. If z S’ we have FIA{j,z}AFo FA{j,z} C_ S, and
the property is proved with k z. From now on we assume.that z St, so that
z FAG.

We consider a sequence U (jl, j2,..., jr) of pairwise distinct elements belonging
to F’AG’ with jl z. For 0 _< _< r we let Ui {j, jl,j2,... ,ji} if is odd or

Ui {jl,j2,... ,ji} if is even and suppose that q)i FiAUi . The conditions
are satisfied if V (jl) because (I)o Fo and O1 FIA{j,z}. From now on we
suppose that the length of U is maximal.

We have ((I)r_l/r_l)N- (gr_l/Vr_l/r_l)Cl- g’/’/Vr-1. The ele-
ment jr belongs to FAG but does not belong to Ur-1. Therefore jr
S c_ (I)r_AGr_. We apply (SEA) to g2r-l,Gr- .r-1 and jr Or-lAGr-1
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This yields an element jr+l E Or_lAGr_l such that d2r_lA{jr,jr+l} Jr-1. We
let Ur+l Ur-iA{jr,jr+l} and

We claim that either jr+l -((I)r-AGr_l) N S’ F’AG’AUr_I. Since Ur-1 c_ F’AG’, this implies that jr+l is
distinct from j, j2,..., jr. Therefore (jl,j2,..., jr+l) satisfies the same properties
as U, which contradicts the maximality of U.

If either jr+l - S or jr+l jr, we have (I)r+l N S (r f St UrAF’. Since
Or+l S-r+ and (I)r S-r, we have (r/kdPr+l S-. If jr+l - S we verify that
g2r/kdPr+l FA{j, jr+} and jr+l FAG, which proves the property with k
jr+l. If jr+l jr we have Or/kffPr+l FA{j}, which proves the property with
k-j.

Given a set of disjoint pairs of S and a subset F c_ S we abuse the notation FA1
to represent the symmetric difference of F with the union of the pairs that belong to
I. Let (S, ’) be a delta-matroid. For F, F , a linking L of (F, F’) is a partition
of FAF into pairs such that FA1 J: for all C_ L. We say that (S,’) is linkable
if there exists a linking of (F, Ft) for all F, F ’. This generalizes the notion of
strong base orderability (see Welsh [23]) for matroids.

THEOREM 2.2. The composition of linkable delta-matroids is a linkable delta-
matroid.

Proof. The notation is the same as in the proof of Theorem 2.1. For 0, 1, let
L be a linking of (F, G). Let H be the graph defined over the vertex-set So U $1
and the edge-set L0 U L. Each vertex of H has degree 0, 1, or 2, and no vertex in

SoAS1 has degree 2. Hence the components of H are paths and circuits, and each
path ends in SoASI. Let 7) be the set of the components of H that are paths. Let
L {{s, t} s and t are the ends of a path in 7)}. We prove that L is a linking of
FAG. Let l- {(81,tl),(82,t2),...,.(sk,tk)} C_ L. Let PJ be the path in 7) that ends
at sj andtj, for l_<j_< k. Let l LNPJ, form-0,1. Since L is alinkingof
(Fi, Gi), we have

Notice that XAlJoAl XA{sJ,tJ} holds for all X c_ S and 1 _< j _< k. Hence it
follows from (i) that gAl FAF, so gAl . B

Remark. Matching delta-matroids are examples of linkable delta-matroids. But
for matching delta-matroids an even stronger property holds. For F, F $’, there is
a partition of FAF’ that is a linking of both (F, F’) and (F’, F).

Composition of matroids. If we apply the composition to two matroids, it
is clear that the composed delta-matroid is not necessarily a matroid. However,
composition can be combined with twisting to provide a matroid construction.

THEOREM 2.3. If (S0,S-0), (S1,S-1) are matroids, then the composition (S,S-) of
(S0, s-0) with (SI,’I/(S0 S1)) is a matroid (provided jz is non-empty).

Proof. (S, S-) is a delta-matroid by Theorem 2.1, so we need only show that the
members of S- all have the same cardinality. But

f’-- {(Fo U F1) \ (,-o rl S1) Fo ..To, F1E fl, FoNF1 -0, FoUF1 _D Son&}.

Thus F e " implies IFI- IF01 + I hl- IS0 n Sl, and we are done. [:]

In fact, this matroid composition can be obtained from standard constructions:
(S, .7-) ((S, 9r0) + (S, S-1)) / (S’0 S), where + denotes matroid ,anion [23] and /
denotes contraction. This composition was investigated in [6] and [22]. It is easy to
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derive a formula for its rank function r in terms of the rank functions ro, rl of (S,)Co),
(S, 1 ), namely,

min (ro(XU(ANSo))+rl(XU(ArS1))-IXI).r(A)
xC_sonS,

The research in [6], [22] concentrated on cases where Isl > Is01, ISll and treated the
resulting decomposition, which has some nice properties based on connectivity. But
the composition also yields constructions for smaller matroids, as follows.

COROLLARY 2.4. Let Mo (So, Bo) and M1 (St, BI) be matroids with S1

_
SO.

Then {B \1 :g E 0, g[1 E 1 }, if non-empty, is the family of bases of a matroid
on S So \ $1. Its rank function is given by

r(A) min (ro(A U X) + r (X)
XGS1

COROLLARY 2.5. Let Mo (So, Bo) be a matroid, let S c_ So, let S1 SO \ S,
and let k be an integer. Then {B N S" B Bo, IB N S k}, if non-empty, is the
basis family of a matroid on S. Its rank function is given by

r(A) min(r0(A), ro(A U S) -ISll + k).

Proof. We apply Corollary 2.4, taking M to be the uniform matroid of rank k
on S1. This matroid has rank function r defined by rl(X) min(IX I, k). In the
expression for r(A), we see that if IXl _> k, then we may as well take X S1, and
if IXI < k, we may as well take X 0. This leads to the required expression for the
rank function.

We observe that the last construction contains as special cases both contraction
and deletion.

Ettlcient realization of composed delta-matroids. Another application of
Theorem 2.1 is the following result of Bouchet [4]. We use it and its additional corol-
lary to make an important point about the availability of the oracle for a composition
of delta-matroids.

COROLLARY 2.6. Let G be a bipartite graph with bipartition {S, S’}, let (S,)
be a delta-matroid, and let jzt {F C_ S F is matched in G to a member of }.
Then (St,t) is a delta-matroid.

Proof. (S’,’) is the composition of (S,$’) with the matching delta-matroid
of G.

In the special case of Corollary 2.6 in which (S,$-) is a matroid, we get that
(S’, ") is also a matroid; this is a classical result (see Welsh [23]). A further special-
ization gives a "partition" construction for delta-matroids. This is also from [4].

COROLLARY 2.7. Let (S, o), (S, JZl) be delta-matroids, and let {Fo U F1
F0 $’0, F1 1, F0 N F1 -0}. Then (S,’) is a delta-matroid.

We refer to this construction as the "union" of delta-matroids. Corollary 2.7 can
be used to show that Theorem 2.1 is not necessarily algorithmically realizable, in the
sense that an oracle for (S, ’) may not be available from oracles for (S0, 0), (S1, $Vl).
In Corollaries 2.4 and 2.5 oracles can be constructed efficiently, essentially by means
of the matroid partition algorithm, and of course Theoren 2.3 is even easier. We
show that in Corollary 2.7 (and hence in Corollary 2.6 and Theorem 2.1), in general,
they cannot.

Suppose we are given a graph G (V, E) and a matroid M (V, B). Consider
the union (V, ’) (as in Corollary 2.7) of the matching delta-matroid of G with the
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dual matroid M* of M. Suppose that we have an oracle for (V, $-). Then we can
apply the greedy algorithm to find a largest member of $’, and in particular to decide
whether V E . But V E " if and only if it is partitionable into a matchable set and
a basis of M*, that is, if and only if there is a basis of M that is matchable in G. It is
well known that deciding whether this is true ("the matroid matching problem" [17])
is not generally solvable in polynomial time. Hence an oracle for the union of (S, $’0),
(S, 91) is not constructible in polynomial time from oracles for (S, $’0), (S, $’1). The
composition is a useful construction, but it is important to distinguish the cases where
it is efficiently constructible from those where it is not.

We conclude the section by deriving a new class of delta-matroids from the compo-
sition theorem and constructing the relevant oracle. A red-blue graph is a graph with
each edge coloured either red or blue. A vertex v of a red-blue graph is bichromatic
or monochromatic according to whether v is incident to edges of both colours or not.
An alternating path of a red-blue graph is a path of length at least one whose edges
alternate in colour. Here is a class of delta-matroids arising from red-blue graphs.
Notice that the matching delta-matroids form a subclass, arising from the case where
there are no blue edges.

PROPOSITION 2.8. Let G- (V, E) be a red-blue graph, S be the set of monochro-
matic vertices, and jz {F C_ S F is the set of end vertices of a set of vertex-disjoint
simple alternating paths}. Then (S, $-) is a delta-matroid.

Proof Let (So, 90) be the matching delta-matroid of the graph (So, E0), where
So {v V v is incident to a red edge} and E0 is the set of red edges. Similarly de-
fine ($1,91) with red replaced by blue. It is easy to see that (S, ’) is the composition
of (S0,90)and ($1,’1). [

We describe an efficient construction of the oracle for this class of delta-matroids,
due to John Vande Vate. Given disjoint subsets A, B of S, delete the vertices of B
from G. For each bichromatic vertex w, split w into two vertices Wl, w2 such that wl
is incident to the red edges previously incident to w, and w2 is incident to the blue
edges previously incident to w. Also join Wl, w2 by a new "white" edge. Let G be
the new graph. Let P be the set of edges of a set of alternating paths determining a
feasible set F, A c_ F C_ S\B, and let M be P together with the set of white edges
corresponding to bichromatic vertices not in any of the paths. Then M is a matching
of G covering all vertices not in S\(A U B). Conversely, any such matching of G
determines such a set of alternating paths. Hence the oracle is provided by a matching
algorithm. In the next section we will see another example that is based on red-blue
graphs but allows the alternating paths to be nonsimple.

3. Two-step axiom and jump systems. For vectors x, y ZS, we use the
norm Ilxll -(Ixjl j e S) and the distance d(x, y) -IIx- YlI. For x, y e ZS a step
from x to y is a vector s e Z such that Ilsll 1 and d(x + s,y) d(x,y) 1. We
denote the set of steps from x to y by St(x, y). A jump system is a pair (S, 9) where

" c_ Z satisfies the following 2-step axiom:

If x, y , s St(x, y), and x + s , then there exists t
St(x + s, y)with x + s + t .

We begin by considering some simple examples of jump systems.
Low-dimensional jump systems. In Fig. 1 we illustrate two choices of -for the case where SI 2. In both we denote members of $" with solid dots and

nonmembers by hollow or non-existent dots. It is easy to see that in the first case,
we have a jump system, whereas in the second case a pair x, y violating (2-SA) is
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(C) (C)

o o o o o

0 0

FIG. 1. The 2-step axiom.

indicated. It is interesting also to consider the case ISI 1, that is, to ask which
subsets of the integers satisfy (2-SA). These are the sets that have no gap of size
bigger than one; that is, there do not exist two consecutive integers not in 9r, unless
either all elements of are bigger than both or all are smaller than both.

Hyperplanes. Let aE {0,1,-1}s, let bE Z, and let-= {x Zs" ax=b}.
It is easy to check that (S, ’) is a jump system.

Delta-matroids. It is an easy exercise to prove that a pair (S,’) such that- c_ {0, 1}z is a jump system if and only if it is a delta-matroid. (Here, of course, we
are identifying subsets of S with their characteristic vectors.)

Simple operations on jump systems. Here we mention a few elementary
operations that preserve (2-SA).

Translation. Let (S, -) be a jump system and let a Zz. Then the translation
(S,Jz’) of (S, 9r) by a is defined by.T" {x+a" x -}, and is clearly a jump
system.

Cartesian product. Let So, $1 be disjoint sets, and let (Si, Jzi) be a jump
system for 0, 1. Define S So U S1 and 9r {F0 U F1 F0 9r0, F1 E 9rl }. Then
(S, $-) is a jump system.

Reflection. Let (S, -) be a jump system and let N C_ S. For each x Rs, let
x be the vector obtained by reflecting x in the coordinates indexed by N, that is,

xj if j N and xj -xj otherwise. Then, where 9r- {x" x 9r} it is easyxj
to see that (S, ff) is a jump system. We observe that the twisting operation on delta-
matroids is a combination of reflection and translation; more precisely, twisting by N
is equivalent to reflecting in the coordinates indexed by N followed by translating by
the characteristic vector of N.

Minors. Let (S,’) be a jump system, let S c_ S, let x Z\s’, and let
$"- {x’ e Z’’ (x’, x) e ’}. Then (S’, ") is a jump system.

Intersection with a box. A box is a set of the form {x R" l_< x_< u},
where e (R {-c})S and u e (R U {c}). It is easy to see that the intersection
of a jump system with a box is again a jump system.

Restriction or projection. Let (S, ’) be a jump system and let S’ c_ S. Then
(S’,9’) is a jump system, where " {xls, x ’}. We remark that this is not
completely obvious, but we leave the (easy) proof to the reader. Also, we point out
that the minor operation is now redundant, in the sense that it can be obtained as
an intersection with a box followed by a projection. (Namely, intersect with the box
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defined by lj -oo, uj oo, j E St, and lj uj xj otherwise, and then restrict
to S’.)

Integral polymatroids. Now we introduce a less trivial example. An integral
polymatroid is a polyhedron P- {x E R" x(A) <_ f(A)for all A c_ S}, where
f {0, 1}s Z+ is normalized (f(0) 0) and submodular (f(A) + f(B) >_ f(A
B) + f(A fl B) for all A, B c_ S).

PROPOSITION 3.1. If P is an integral polymatroid in Rs, then P C Zs satisfies
(2-SA).

The proof uses a well-known result, from [11]. Given x P, where P is determined
by f, we say that a set A c_ S is x-tight or just tight if x(A) f(A).

LEMMA 3.2. The union and intersection of tight sets are tight.
Proof of Proposition 3.1 Let x, y be integral points of P and s a step from x to

y such that x + s P. Then it is easy to see that s must be non-negative, so s {e}
for some e S such that x < y. It follows that there is an x-tight set A such that
e A. Now if yj >_ xj for all j A, then y(A) > x(A) f(A), a contradiction.
So there existsj E Awithxj > yj. Ifx+{e}-{j} P, we are done, so we may
assume that for every such j there is an x-tight set Aj with e Aj and j Aj. The
intersection of all these Aj with A is, by Lemma 3.2, an x-tight set B such that e B
and xj < yj for all j B. But then y(B) > x(B) f(B), a contradiction.

Sum of jump systems. The sum of jump systems (S, 9Cl) and (S, -2), defined
on the same set S, is the pair (S, -) where $- ’1 + $’2 {x + y" x E $’1, y $-2 }.
The simple proof of the following theorem was suggested to us by Andrs Sebh.

THEOREM 3.3. The sum of two jump systems is a jump system.
Proof. We use the above notation. Let x, y -1 + $-2 and let s be a step from x

to y. We have to prove that x + s 9Cl + f2 or there exists a step t from x + s to y
such that x + s + t -1 + -2. We assume that x+ s 9Cl + 9c2 and we search for t. Let
x X + x2 and y Yl + Y2 with xl, Yl E -1 and x2, Y2 2- We have X + s
and x2 + s 9c2 (for example if xl + s 9Cl then (Xl + s) + x2 x + s 9Cl + 9c2,
contradiction).

We claim that we can find x 1, x E ’2 and a step t satisfying x + s + t

x + x. Since s is a step from X + x2 to yl + y2, s is a step from X to yl or a step
from x2 to y2. By symmetry we may assume the former. Apply (2-SA) to xl, yl $’1
and the step s from x to yl. Since x + s 9Cl there exists a step t from x + s to
ylSuchthatxl+s+t’l. Then (xl+s+t)+x2-x+s+tgCl+gc2, which
implies the existence of x and x.

Choose a triple (Xl,X2, t) that minimizes d(x, yl) + d(x2, y2). We show that,
under this assumption, t is a step from x + s to y, proving the theorem. Assume not;
we will derive a contradiction. Then -t is a step from x +x x+s+t to Yl +Y2 Y.
This implies that -t is a step from x to Yl or a step from x to Y2. By symmetry we
assume the former. Apply (2-SA) to x, yl 9Cl and the step -t. The point x- t
does not belong to 9cl because, if so, we should have (x t) + x x + s E ’1 + 9c2,
which contradicts the initial assumption. Thus we can find a step r from x t to yl

such that x.- t + r . This implies x + s + r (x t + r) + x . 9Cl + 9c2, where
x t + r is closer to Yl than x. So the triple (x t + r, x2, r) contradicts the choice
of (x., x,, t).

Bidirected graphs. We consider finite graphs that may have loops and multiple
edges. In order to define bidirections, it is convenient to let each edge be incident to
two half-edges. Formally a graph G is defined by three pairwise disjoint finite sets:
set of vertices V, a set of edges E, and a set of half-edges H. There is an incidence
relation, between H and V, as well as between H and E. These incidence relations are
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such that each half-edge is incident to precisely one vertex and one edge. Further, an

edge is incident to precisely two half-edges. We denote by hv the set of the half-edges
incident to a vertex v. The degree of v is d(v)

A biorientation, or bidirection, over G is a function e H -- {-1, +1}. For f E ZE

and v e V, the excess of f at v is ex(f)v ((h)f(e)" h e hv, e is the edge incident
to h), and the excess of f is the vector ex(f) (ex(f)v v e Y). Given Cl, c2 e ZE,
withcl_<C2, we denote by [cl, c2] the set {fZE" cl_f_<c2}.

PROPOSITION 3.4. Let Cl,C2

[Cl, c2] }) is a jump system.
Proof. For h H let x(h) Z be defined by x(h) e(h) if the vertex v is

incident to h, x(h), 0 otherwise. For e

[Cl (e), c2(e)]}, where h’ and h" are the half-edges of G incident to e. We easily verify
that (V,) is a jump system. (One way is to observe that it is a hyperplane jump
system intersected with a box and then extended by zeroes, but it is perhaps as easy
to check directly.) We have (V, {ex(f) f [c1,c2]}) E((V,’e)" e E), where
the summation stands for the sum operation considered in Theorem 3.3. The result
follows from that theorem.

The special case in which we take the bidirection to be trivial, that is, all the
values of e to be +1, is already quite interesting. If we also define cl(e) 0 and
c2(e) 1 for each edge e, then {ex(f) f [cl, c2]} is the set of degree sequences of
subgraphs of G. If we now intersect this set with the unit cube, we get the matching
delta-matroid of G. More general sets of this type are investigated in [7].

Suppose that we consider again the red-blue graph example of Proposition 2.8,
but this time we allow the alternating paths to repeat vertices, but not edges. We
show that we obtain another delta-matroid. We form a bidirected graph, by assigning
to each red edge two positive half-edges, and assigning to each blue edge two negative
half-edges; we define again Cl (e) 0 and c2(e) 1 for each edge e. Now consider the
resulting jump system, and reflect it in the coordinates corresponding to the vertices
incident only to blue edges. Next, intersect it with the box determined by 0, u, where

uj 1 if j is monochromatic, and uy 0 otherwise. Finally, project the jump system
to the coordinates corresponding to the monochromatic vertices. The resulting jump
system is a delta-matroid, and it is easy to see that it is precisely the desired one.

Moreover, an oracle for this delta-matroid can be realized in.polynomial time by
methods of bidirected Inatching; see [12].

Composition of jump systems. Let (So, 0) and (S1, $1) be two jump sys-
tems. The composition of (S0, ’0) and (S1,91) is the pair (S,), where S 0/1
and $" C_ Z is defined by x " if and only if there exists x0 E 90 and x ’1
satisfying XOtSofS1 XllSoCIS1 XlSo\I X01SO\Sl, XlSI\SO XllSI\S0 (We may also
speak of the composition 9 of 0 and 91.) Notice that this definition, in the case of
{0, 1}-valued vectors, corresponds to the composition of delta-matroids introduced in

2. Hence the next result generalizes Theorem 2.1.
PROPOSITION 3.5. The composition of two jump systems is a jump system.

Proof. For 1, 2 we extend each vector in ’i to an element of Zvw by filling
it out with zeroes. Then we reflect 1 in the components corresponding to S0 V S1,
then we take the sum, and then we take the minor associated with the vector 0
ZSo-)Si

Conversely, Theorem 3.3 can be easily derived from the preceding proposition.
(In fact, the original version of this paper proved the proposition directly and used it
to prove Theorem 3.3.) Consider two sets 9’,$"’’ c_ ZS that satisfy (2-SA). We first
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notice that (I) {(x, y, x + y) x, y E Z} is a subset of Z3, which satisfies (2-SA).
(For example, it is an instance of the hyperplane systems introduced earlier.) Let
us consider a family (Tv {v’, v", v} v S) of pairwise disjoint 3-element sets.
For each v e S let (I) {(x,, x,,, x,)’x,,, x,, e Z, x x, + x,,} c_ ZTv, and
consider the cartesian product (I) x((I) "v

with S’ {v’ v E S} and S" {v" v Ss},,. Then (I) satisfies (2-SA). We
make a copy G C_ Zs’ of $’ and a copy " C_ of $". The cartesian product

x " c_ Zs’s’’ satisfies (2-SA). Finally, we notice that the composition of
C_ Zs’Us’’US with C_ Zs’Us’’ is equal to 9

4. Bisubmodular polyhedra and jump systems. Here we describe a gen-
eralization of (integral) polymatroids, called (integral) bisubmodular polyhedra. We
show that the integral points of an integral bisubmodular polyhedron satisfy (2-SA).
In the next section, we show a partial converse: The convex hull of a set satisfying
(2-SA) is an integral bisubmodular polyhedron.

A function f from pairs (A, B) of disjoint subsets of S to R {c} is called
it s tis  s. (A. (A’.

f(A, B) + f(A’, B’) >_ f((A, B) A (A’, B’)) + f((A, B) V (A’, B’)).

Here (A, B) A (A’, B’) denotes (A N A’, B N B’), and we call it the intersection oi

(A, B) and (A’, B’); (A, B) V (A’, B’) denotes ((A U A’) \ (BU B’), (B B’) \ (A t A’)),
and we call it the reduced union of (A, B) and (A’,B’). (Notice that the operation
/ is not associative.) It is convenient to assume throughout that f(0, q)) 0. The
bisubmodular inequality (on real-valued functions) has been introduced by Kabadi
and Chandrasekaran [5], [16], by Nakamura [18], [19], and by Qi [21].

The bisubmodular polyhedron associated with f is P(f) {x RS x(A)-
x(B) <_ f(A, B), A, B C_ S, A N B }. These polyhedra, again with the exception
that the function values are finite, were introduced by Dunstan and Welsh [10] and
studied in [16], [18], [21]. Nakamura showed the equivalence of the Dunstan-Welsh
definition and the bisubmodular one. The function f associated in 2 with a delta-
matroid (S, ’) is bisubmodular and the associated bisubmodular polyhedron is the
convex hull of the elements of $’. This result appears in [5] and [2]. We say that f is
integral if its finite values are integral, and that P(f) is integral if f is integral.

A number of more familiar classes of polyhedra fall into this class. If f is sub-
modular on subsets of S, and if(0) 0, then f defined by I(A,O) f’(A) for
A c_ S and f(A,B) oc for B - 0 is bisubmodular. The associated P(f) is

{x RS x(A) <_ f’(A) for all A c_ S}, the submodular polyhedron associated with

f’. If we take f(A, B) f’(A) for all pairs A, B of disjoint subsets of S, then it is easy
to check that f is bisubmodular if and only if f is also monotone: if A1 c_ A2, then
f’(A1) _< f’(A2). In this case P(f) is {x e Rs+ x(A) <_ f’(d) for all A c_ S}, the
polymatroid associated with f’. (Although P(f’) is a polymatroid even without the
assumption of monotonicity, it is known that every polymatroid is determined by a

monotone submodular function, so every polymatroid is a bisubmodular polyhedron.)
Finally, the base polyhedron {x R x(A) _< if(A)for all A c_ S, x(S) f’(S)}
associated with f’ is obtained by taking f(A, B) if(A) + f’(S \ B) f’(S), and f
is bisubmodular.

Another more general class of bisubmodular polyhedra consists of Frank’s gener-
alized polymatroids. Here we suppose that g, h are submodular functions on S, which
are allowed to take the value c, and that they also satisfy
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g(A) + h(B) >_ g(A \ B) + h(B \ A)

for all pairs of subsets A,B of S. Then Q(g,h) {x E RS -h(A) <_ x(A) <_
g(A) for all A c_ S} is the generalized polymatroid determined by g and h. If we define
f(A, B) to be g(A)+ h(B) for disjoint pairs A, B of subsets of S, then P(f) Q(g, h),
and f is bisubmodular. The class of generalized polymatroids contains all the special
classes mentioned earlier, but the class of bisubmodular polyhedra is even larger.

PROPOSITION 4.1. Let f be bisubmodular and let C c_ S. Then reflecting P(f)
in C gives a bisubmodular polyhedron P(f), where f is defined by

f’(A,B) f((A \ C)U (B OC), (B \ C)U (AOC)).

Proof. It is clear that x’ P(f) if and only if x’(A’)- x’(B’) <_ f(A’,B’) for all
pairs (AI, B), where x is obtained by reflecting x in C. But this is equivalent to

x(A’ \ C) x(A’ 0 C) x(B’ \ C) + x(B’ ( C) <_ f(A’, B’)

or, taking A (A’ \ C) U (B’ N C), B (B’ \ C) U (A’ N C),

x(A) x(B) <_ f((A \ C) U (B N C), (B \ C) U (A C)).

Hence, the reflection of P(I) is P(/’), and it remains only to prove that f’ is bisub-
modular. This can be done by a straightforward computation, which we omit. [:]

PROPOSITION 4.2. Let f be bisubmodular and S c_ S. Then the projection of
g(f) onto the coordinates indexed by S’ is a bisubmodular polyhedron P(f’), where

f is the restriction of f to S.
Proof. It is obvious that ft is bisubmodular, so we need only show that P(ff) is

the projection. It is enough to prove this in the case in which S’ S \ {e} for some
e G S. By Fourier elimination of x, the projection is determined by two classes of
inequalities. The first consists of inequalities

(i) x(A) x(B) <_ f(A, B), where e A U B.

The second consists of inequalities that are all obtained by adding an inequality for
P(f) in which x has coefficient 1, to one in which x has coefficient -1. So each such
inequality has the form

(ii) x(A’) x(B’) + x(A") x(B") <_ I(A’, B’) + I(A", B"), where e e A’ B".

We need to show that each inequality of type (ii) is implied by those of type (i). In
fact, we add the inequality for (A’, B’) A (A", B") to the one for (A’, B’) V (A", B").
These inequalities are both of type (i). Their sum has the same left-hand side as (ii)
and its right-hand side is no larger than the right-hand side of (ii), by bisubmodu-
larity. [:]

We remark that it follows that every bisubmodular polyhedron is non-empty:
since f(O, ) 0, this is true by induction. Besides projection, several other op-
erations that preserve (2-SA) also preserve bisubmodular polyhedra, and the corre-
sponding bisubmodular function can be explicitly constructed. For cartesian product,
translation, and minors this is easy to show, and we do not bother to state the results.
On the other hand, for intersection with a box, it is not obvious, and the formula for
the defining function is not easy to establish. This result will be discussed elsewhere.
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The proof that integral bisubmodular functions yield jump systems uses a basic
lemma, the analogue for bisubmodular polyhedra of Lemma 3.2. Given x E P(f), we

say that a pair (A, B) is x-tight (or just tight) if x(A)- x(B) f(A, B).
LEMMA 4.3. The intersection and the reduced union of x-tight pairs are x-tight.
Proof. Suppose that (A, B) and (A’, B’) are x-tight.

x((A U A’) \ (B U B’)) x((B U B’) \ (A U A’)) + x(A N A’) x(B B’)
x(A) x(B) + x(A’) x(B’)

=I(A,B)+I(A’,B’)
>_ I((A,B) A (A’,B’)) + I((A,B) V (A’,B’)).

Since x P(f), the inequality also holds in the other direction, so we have
equality throughout.

We remark that the above lemma, or similar arguments as in the proof, can be
used to obtain further results. For example, if (A, B) and (A’, B’) are x-tight, then
so is (A \ B’, B \ A’), by applying the lemma again to (A, B) and (A, B) V (A’, B’).
This was pointed out in [16]. Also if f and x are integral, (A,B) is x-tight, and
x(A’) x(B’) f(A’,B’)- 1, then one of the intersection and reduced union is
x-tight.

THEOREM 4.4. Let f be bisubmodular and integral. Then jz_ ZS p(f) satisfies
(-SA).

Proof. Let x,y jz and s St(x,y) and suppose (2-SA) fails. By reflecting
P(f) in {j xj > yj}, we may assume that x _< y. Suppose that s {e}. Let
Q={j eS\{e} "xj <yj}, and letQ’- {j eQ’thereexistsx-tight (A,B) with
eEA, jCB}.

Claim. There exists x-tight (A, B) with e A and Q \ B Q’.
Suppose first that Q’ . Choose x-tight (A’,B’) with e A’. (Such exists,

because x + {e} P(I).) Then by the definition of Q’, Q \ B’ Q’, as required.
So suppose that Q’ . Now take the intersection of all the x-tight pairs
with e A" and Q \ B" - . This gives an x-tight pair (A, B) with B Q’ and
so, by the definition of Q, Q \ B Q’. This completes the proof of the claim.

Suppose there exists j Q \ Q’. Notice that j E B. Since x + {e} + {j} P(f)
and j Q’, there exists (A’, B) such that

(i) x(A’) x(B’) f(A’, B’), j e A’, e B’;

or

(ii) x(A’) x(B’) >_ f(A’, B’) 1, j, e e A’.

In case (i) the reduced union of (A,B) and (A’,B’) is an x-tight pair (A",B")
with e A", j B", so j Q’, a contradiction. In case (ii) both the reduced
union and the intersection of (A, B), (A’, B’) are pairs (A", B") with e e A", j B".
Moreover, at least one of the two pairs is x-tight, so j Q, a contradiction. It
follows that Q \ Q’ , so y(A) y(B) > x(A) x(B) f(A, B), again a contradic-
tion. [:]

We use Lemma 4.3 to prove another basic fact about bisubmodular polyhedra,
that each such polyhedron has a unique defining function. For the case where all
function values are finite, this result is proved in [14, p. 94].
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THEOREM 4.5. If f is bisubmodular on pairs of disjoint subsets of S, then for
each such pair A,B we have f(A,B) maXxp(f)(x(A) x(B)). Moreover, if f is
integral, then the maximum is achieved by an integral x.

Proof. By applying reflection and projection, using Propositions 4.1 and 4.2, we
can assume that A S and B --q}. Obviously, the maximum is at most f(S, 0), so if
it is oc, we are done. We choose 5: e P(f) maximizing x(d)- x(B). Fix e e S. Since
2 cannot be increased, there is a tight pair (A, B) with e A.

Claim. For each j A there is a tight pair (Aj, By) such that e Aj and j Bj.
Proof of claim. If not, then there is a tight pair (A’,B") with j A" and

e B". (Otherwise we could increase both 2 and 2). Now take (Ay, Bj) (A’, B’) V
(A’, B’). This pair is tight by Lemma 4.3, and it is easy to see that it satisfies the
conditions of the claim.

Now take the intersection over all j A’ of the pairs (Ai, Bj). We get a tight
pair (A, B) with e A and B c A’. The intersection of (A, B) with (A, B’) is a
tight pair (A, 0) with e G Ae. Finally, the union over all e of these tight pairs is the
tight pair (S, 0), so 2(S) f(S, 0), as required. It is straightforward to check that if
f is integral, then the whole argument applies to integral points, so the second part
is proved also.

5. Jump systems and bisubmodular polyhedra. We say that x E 9 is
(A,B)-maximal in " if y E ’, yj >_ xj for all j A, yj <_ xj for all j B imply

YlAUB XlAUB"
LEMMA 5.1. If J: satisfies (2-SA) and y,x e J: with y(A) y(B) > x(A) x(B),

then x is not (A, B)-maximal.
Proof. By twisting at B, we may assume that B . Suppose that x is (A,

maximal and there exists y " and y(A) > x(A). Subject to this, choose y so that
jA IXJ --Yjl is minimum. By the maximality of x, there exists e E A with x > y.
Either y’ y + (e} e ’, or y" y + (e} + s e 9 for some step s from y + (e) to x.
But this contradicts the choice of y.

Given 9, define f by I(A,B) maxx:(x(A)- x(B))if the maximum exists,
and to be cx otherwise.

LEMMA 5.2. If J satisfies (2-SA), then f is bisubmodular.

Proof. Let (A, B), (A’, B’) be pairs of disjoint sets. First, we consider the case
where the right-hand side of the bisubrnodular inequality is not x. We may assume
that f(A, B) = c, since otherwise the inequality holds trivially. Choose x " to be
(A V)A’, B V)B’)-maximal. Now by increasing xj for j e (BAB’) \ (A U A’), we can
find an x’ that is (A V A’, B V B’)-maximal. Then by Lemma 5.1, we get

f(A, B) + f(A’, B’)
>_ x’(A) x’(B) + x’(A’) x’(B’)
x(A N A’) x(B N B’) + x’((A U d’) \ (B U B’)) x’((B U B’) \ (A U A’))
f((A, B) A (A’, B’))+ f((A, B) V (A’, B’)),

as required.
Now suppose that the right-hand side of the bisubmodular inequality is infinity.

Let -k be " [ {x E Zs -k _< xy _< k for all j S}. Then -k satisfies (2-SA); let
fk be the corresponding (bisubmodular!) function. Then the right-hand side of the
bisubmodular inequality for fk goes to x) with k, and so the left-hand side must also,
and we are finished.
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THEOREM 5.3. If jz satisfies (2-SA), then conv() is an integral bisubmodular
polyhedron.

Proof. Define f by f(A,B) maxxe=(x(d)- x(B)). Then f is integral and
bisubmodular, by Lemma 5.2, and c_ P(f). If P(f) conv(-), then there exists
c E Rs and y P(f) such that cy > cx for every x ’. By astraightforward
perturbation argument we can choose c so that there does not exist j S with cj 0
and there do not exist distinct elements j, k of S with Icjl Ickl. By reflection in
N {j cj < 0}, we may assume that cj > 0 for all j S. Now maxxe cx exists, so

maxxe x(S) exists, by Lemma 5.1 with A S, B . Therefore, we can form the
polyhedron B(f) {x e P(f)" x(S) f(S, )}. The set B of maximal members of

is contained in B(f). Since cj > O, j S, there exists y B(f) with cy > cx for
every x B. This again follows from Lemma 5.1. We need the following claim.

Claim. If y, x B, A c_ S, and y(A) > x(A), then x is not A-maximal over B.
Proof of Claim. If possible, choose y and x violating the statement with jeA IXJ

Yjl as small as possible. Clearly there exists e A with xe > ye. Apply (2-SA) to get
j e S with y + {e} or y + {e} + {j} or y + {e} {j} e . By the definition of B, the
only possibility is the last one. But then y" y + {e} {j} B, and this contradicts
the choice of y, and the claim is proved.

Let us relabel the elements of S as el,e2,...,en so that c
and let Ti denote {el,e2,...,ei} for0 <_i_< n. ForTC_ S, z
we write zQ to mean that there exists 2 Q such that 2IT Z. Choose 2 E B as
follows"

For 1 to n
Choose 2 to be max( (2el,..., 2_, )B, if the maximum exists.
Otherwise, stop.

Now suppose the procedure runs to completion and delivers 2 B. By the claim,
2(T) f(T, O) < cx, 1 <_ <_ n. Now for any x B(f), we have

This shows that a point of B maximizes cx over B(f), a contradiction. Now
suppose that the procedure stops early; say that j is the first index for which the
maximum does not exist and 2 is the point constructed after step j 1. Then by the
claim, we have 2(T) f(T, 0) for 1 <_ i _< j- 1. Moreover, is not A-maximM in

2j+a for somel<i<j-landxB, so there exists x B with xe x,
positive integer c. But then, x’(S \ Tj) 2(S \ Tj) a, so cx’ >_ c2 + , where
e min(c -c+ 1 _< _< n- 1). But the same argument can be applied to x,
and so on, so cx is unbounded on B, a contradiction.

We remark that the proof of Theorem 5.3 contains the basis of a greedy algorithm
for optimizing a linear function over a set satisfying (2-SA). However, we have man-
aged to avoid many of the awkward parts of such an algorithm (such as those dealing
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with unboundedness and equal cost coefficients). These difficulties are handled for
some classes of polyhedra in [13]-[15].

It is a consequence of Theorem 5.3 that the convex hull of a set satisfying
(2-SA) is given by inequalities having coefficients 0, 1,-1. This result can be ap-
plied to the bidirected-graph example of 3 to conclude that the resulting polyhedra
can be described in this way. For the case of trivial bidirections, these results, and
somewhat more, were proved in [7].

We can also prove that an integral bisubmodular polyhedron, that is, the polyhe-
dron determined by a bisubmodular polyhedron that is integral, is indeed an integral
polyhedron. This result, in a slightly less general setting, appears in [16], [18], and

COROLLARY 5.4. Every integral bisubmodular polyhedron is the convex hull of its
integral points.

Proof. Let f be an integral bisubmodular function defined on pairs of disjoint
subsets of S. By Theorem 4.4, - P(f)N Z satisfies (2-SA), and so by Theorem
5.3, conv(9) is a bisubmodular polyhedron P(f’), where f’ is defined by f’(A,B)
maxx:(x(A)- x(B)). Now by Theorem 4.5, we have that f f’, and we are
done. [:]

A gap of a set $" C_ Zz is an integral point in conv(9) \. The examples in Fig. 1
show that adding a gap to a set satisfying (2-SA) can create a set violating (2-SA).
On the other hand, we have the following result.

COROLLARY 5.5. Suppose that satisfies (2-SA) and jz is obtained from by
adding all of the gaps of. Then satisfies (2-SA).

Proof. By Theorem 5.3, conv() is an integral bisubmodular polyhedron P. By
Theorem 4.4, the integral points in P satisfy (2-SA).

The following related results have been obtained recently. Duchamp [21] has
proved that the "delta-sum" (S, $’), of delta-matroids (S, 90) and (S, ’1), is again a
delta-matroid. Here $" {FoAF F0 0, F }. This result implies the com-
position theorem for delta-matroids. Payan [20] has proved that the mod 2 reduction
of a jump system is a delta-matroid. (That is, each component of a vector in 9 is
replaced by 0 or 1 according to its parity.) This result, together with Theorem 3.3
implies the result of Duchamp. Although adding an arbitrary gap can violate (2-SA),
there is a notion intermediate between this and adding all gaps. If j S, a gap in
direction j is a point x 9 such that x + {j } and x- {j} are both in 9. We originally
conjectured that adding all gaps in the same direction preserves (2-SA). Payan [20]
has proved this conjecture. This result implies Corollary 5.5.

Acknowledgment. We are grateful to Andrs Seb5 for his help and encourage-
ment.

REFERENCES

[1] R. E. BIXBY AND W. H. CUNNINGHAM, Matroid optimization and algorithms, in M. Grbtschel,
and L. Lovsz, eds., Handbook of Combinatorics, R. L. Graham, North-Holland, Amster-
dam, to appear.

[2] A. BOUCHET, Greedy algorithm and symmetric matroids, Math. Programming, 38 (1987),
pp. 147-159.

[3] , Representability of A-matroids, Colloq. Soc. Janos Bolyai, 52 (1988), pp. 167-182.
[4] , Matchings and A-matroids, Discrete Appl. Math., 24 (1989), pp. 55-62.
[5] R. CHANDRASEKARAN AND S. N. KABADI, Pseudomatroids, Discrete Math., 71 (1988), pp. 205-

217.



32 A. BOUCHET AND W. H. CUNNINGHAM

[6] W. H. CUNNINGHAM, A Combinatorial Decomposition Theory, Thesis, University of Waterloo,
1973.

[7] W. U. CUNNINGHAM AND J. GREEN-KRSTKI, b-matching degree-sequence polyhedra, Combina-
torica, 11 (1991), pp. 219-230.

[8] A. DRESS AND T. HAVEL, Some combinatorial properties of discriminants in metric vector
spaces, Adv. Math., 62 (1986), pp. 285-312.

[9] A. DUCHAMP, Tech. report, Universit du Maine, France, 1993.
[10] F. D. J. DUNSTAN AND D. J. A. WELSH, A greedy algorithm solving a certain class of linear

programmes, Math. Programming, 5 (1973), pp. 338-353.
[11] J. EDMONDS, Submodular functions, matroids, and certain polyhedra, in Combinatorial Struc-

tures and their Applications, R: K. Guy, H. Hanani, N. Sauer, and J. SchSnheim, eds.,
Gordon and Breach, New York, 1970, pp. 69-87.

[12] J. EDMONDS AND E. L. JOHNSON, Matching: A well-solved class of integer linear programs, in
Combinatorial Structures and their Applications, R. K. Guy, H. Hanani, N. Sauer, and J.
SchSnheim, eds., Gordon and Breach, New York, 1970, pp. 88-92.

[13] A. FRANK AND E. TARDOS, Generalized polymatroids and submodular flows, Math. Program-
ming, 42 (1988), pp. 489-563.

[14] S. FUJISHIGE, Submodular Functions and Optimization, North-Holland, Amsterdam, 1991.
[15] S. FUJISHIGE AND N. TOMIZAWA, A note on submodular functions on distributive lattices, J.

Oper. Res. Soc. Japan, 38 (1988), pp. 155-167.
[16] S. N. KABADI AND R. CHANDRASEKARAN, On totally dual integral systems, Discrete Appl.

Math., 26 (1990), pp. 87-104.
[17] L. Lovsz, Matroid matching and some applications, J. Combin. Theory Series B, 28 (1980),

pp. 208-236.
[18] M. NAKAMURA, A characterization of greedy sets: Universal polymatroids (I), Sci. Papers Col-

lege Arts Sci. Univ. Tokyo, 38 (1988), pp. 155-167.
[19] M. NAKAMURA, A characterization of those polytopes in which the greedy algorithm works,

abstract, 13th International Symposium on MathematicM Programming, Tokyo, Japan,
1988.

[20] C. PAYAN, to appear.
[21] LQUN Q, Directed submodularity, ditroids and directed submodular flows, Math. Programming,

42 (1988), pp. 579-599.
[22] W. R. RICHARDSON, Connectivity, Decomposition, and Complexity in Matroids, Thesis, Uni-

versity of Waterloo, 1973.
[23] D. J. A. WELSH, Matroid Theory, Academic Press, New York, 1976.



SIAM J. DISC. MATH.
Vol. 8, No. 1, pp. 33-50, February 1995

() 1995 Society for Industrial and Applied Mathematics
0O3

DUAL EULERIAN PROPERTIES OF PLANE MULTIGRAPHS*
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Abstract. A plane multigraph is said to be dual Eulerian if both it and its dual contain
an Euler path or circuit and the Euler paths have corresponding edge sequences. In this paper
several properties of plane multigraphs are derived, and a necessary and sufficient condition for
a plane multigraph to be dual Eulerian is given. Although the necessary and sufficient condition
for a multigraph to be Eulerian is somewhat trivial, the necessary and sufficient condition for a
plane multigraph to be dual Eulerian is not. Nevertheless, the question of whether or not a plane
multigraph is dual Eulerian can be answered in time proportional to a linear function of the number
of edges of the graph, and an algorithm that answers this question is presented in this paper. This
theory can be applied to the layout synthesis of functional cells for Complementary Metal-Oxide
Semiconductor Very Large-Scale Integrated circuits.

Key words. Eulerian graphs, planar graphs, VLSI layout

AMS subject classifications. 05C45, 68R10, 94C15

1. Introduction. The problem of identifying plane multigraphs that are dual
Eulerian is investigated in this paper. A dual Eulerian plane multigraph is one in
which both itself and its dual contain a Euler path or circuit, and the Euler paths
have corresponding edge sequences. The problem is restricted to planar multigraphs,
since these are the only graphs for which a dual is defined. Furthermore, it is assumed
that a specific embedding of a planar graph, called a plane graph, is given [3]. The
problem of whether or not a planar graph admits an embedding that is dual Eulerian
is a different problem and is not addressed in this paper. For example, the graphs
shown in Figs. l(a) and (b) are different plane embeddings of the same planar graph;
and the graph in Fig. l(b) is dual Eulerian but the graph in Fig. l(a) is not.

This problem is of interest in the design of Complementary Metal-Oxide Semi-
conductor (CMOS) Very Large-Scale Integrated (VLSI) circuits [8]. In VLSI design
it is desirable to design the physical implementations of circuits such that they re-
quire a minimum amount of silicon area. When circuits are represented by undirected
multigraphs, dual paths correspond to linear placements of transistors that require a
minimum amount of silicon area [8].

In general, the related VLSI layout problem requires one to find a minimum
number of disjoint dual Euler paths that cover the entire graph. This is exactly the
problem addressed in [8]; however, they restrict the problem to series/parallel graphs.
Uehara and VanCleemput [8] propose a heuristic technique for the solution of this
problem. Maziasz and Hayes [5] also address the problem for series/parallel graphs
and show that an exact polynomial-time solution exists. Nair et al. [6] present an
exact polynomial-time method for series/parallel graphs as well. Wimer et al. [10]
present a technique to solve this problem for arbitrary circuit topologies; i.e., it is
not necessary that the graph representations be dual to one another. Hence, their
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a a

(a) (b)

FIG. 1. Two plane embeddings of a planar graph that are (a) not dual Eulerian and (b) dual
Eulerian.

method is difficult to formalize mathematically, and is heuristic in nature. A parallel
algorithm for this problem on series/parallel graphs is presented in [4].

We address the problem for a more general class of graphs than [8], [5], [6],
[4] but for a less general class of circuit topologies than [10]. We cannot handle
arbitrary circuit topologies, since our technique is very formal; nevertheless, we solve
the problem for the most general class of plane graphs (i.e., biconnected graphs) whose
topological duals satisfy the graph definition used in this paper. The general problem
(i.e., determining a minimum number of disjoint dual Euler paths) for arbitrary plane
graphs is NP-hard [9]. We show that the problem of determining the existence of
a dual Euler path is polynomial-time solvable. Moreover, we give an algorithm for
computing a dual Euler path when one exists. Our method can easily be extended to
solve the VLSI layout problem either heuristically or exactly using branch-and-bound
method [1].

This paper is organized as follows. The necessary mathematical definitions and
some preliminary results are presented in the next section. The derivation of the
algorithm and the main results are presented in 3. The algorithm is specified in
pseudocode and analyzed in 4. An example illustrating the application of the algo-
rithm is presented in 5, and the paper is concluded in 6.

2. Definitions and preliminary results. F(V, f,E) is an undirected multi-
graph with a set V of vertices, a set E of edges, and a function f E --, P2(V),
where P2(V) is a set that contains the subsets of Y of size two [2]. Furthermore,
the edges are labeled for convenience in representation and presentation. A path
p VoeovlelV2... Vn-len-lVn in F is a sequence of alternating vertices and edges
that begins and ends at a vertex, f(ei) {vi, vi+l} (0 < < n- 1) and ei # ej
for # j. The length of a path is the number of edges contained in it. A path is a
circuit if v0 vn. A multigraph F is said to be Eulerian if and only if it contains a
path that contains every edge of F. A circuit is elementary if each vertex is distinct
with the exception of the first coinciding with the last. The edge set of a circuit in
F is a cycle [2]. An elementary cycle is the cycle of an elementary circuit. F is said to be
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FIG. 2. A plane undirected multigraph F and its dual Fd.

planar if it can be drawn on the plane with edges meeting only at the vertices [2]. An
embedding of a planar multigraph on the plane is called a plane multigraph [3]. A
face of a plane graph F is a domain of the plane surrounded by edges of F such that
any two points in it can be joined by a curve not crossing any edge [7]. A facial circuit
is a circuit that forms the boundary of a face in F. A facial cycle is the cycle of a
facial circuit. The dual multigraph Fd of a plane multigraph F can be constructed by
placing a vertex in each face of F and connecting two vertices, say vl and v2, in Fd by
an edge labeled e if and only if the edge labeled e in F is on the boundary of the faces
of F corresponding to vl and v2 of Fd. The edge sets of F and Fd are the same, and
the vertices of Fd correspond to the faces of F and vice versa. A plane multigraph F
and its dual Fd are shown in Fig. 2.

Henceforth it is assumed that F is a plane undirected multigraph. We restrict
ourselves to plane multigraphs, since their duals are unique. A path in F is said to
be a dual path if there exists a path in Fd with the same edge sequence. For example,
v2 d v3 m v4 k v6 g v2 e v5 f v6 is a path in F of Fig. 2, and u2 d u3 m u4 k u5 g u6 e u7 f u6
is a path in Fd. Since these paths have corresponding edge sequences, each one is a
dual path. A dual path is a dual circuit if it is a circuit in both F and Fd. A path can
be identified by its sequence of edges, and this alternative means of identification is
used throughout the sequel whenever it is unambiguous or the ambiguity is unimpor-
tant. In F of Fig. 2 a e f g is a path, but it is not a dual path since a e f g is not a path
in Fd. Similarly, e a b c is a path in Fd but is not a dual path since it is not a path in F.
F is said to be dual Eulerian if and only if it contains a dual path that contains every
edge. Of course if F is dual Eulerian, then so is Fd. An obvious necessary condition for
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Fd

FIG. 3. Example illustrating that both F and Fd being Eulerian is not a sufficient condition for
them to be dual Eulerian.

F to be dual Eulerian is that both F and Fd be Eulerian. A simple counterexample
shown in Fig. 3 illustrates that this is not a sufficient condition.

A submultigraph of a plane undirected multigraph F(V, f,E) is a plane undi-
rected multigraph F(V’,flE,,EP), where V c_ V, E c_ E, and fiE’ is the function f
restricted to the set E’. A submultigraph F’(V’, fiE’, E’) of F(V, f, E) is a component
of F if there does not exist v E V’ and e E \ E’ such that v f(e). A cocycle in F is
a set of edges of F such that the removal of these edges from F increases the number
of components of F. The set of edges incident on a vertex is a cocycle and is referred
to as a vertex cocycle. If the vertex cocycle of v V is denoted by f* (v), then

f*(v)=(eeE]vef(e)} [21

An isthmus is an edge that when removed from F increases the number of compo-
nents of F (i.e., it is a cocycle of size one). It is assumed that F does not contain any
isthmuses, since if it did, its dual would not satisfy the definition of a graph [2]. That
is, the dual of a graph with isthmuses contains loops (i.e., an edge that is incident
on the same vertex at both of its ends), and loops contradict the definition of the
function f :E - P2(V).

Two edges e and ej are said to be in series if they are incident on the same
vertex of degree two or they are connected by a sequence of series connected edges.
Two edges e and ej are said to be in parallel if f(e) f(e).

LEMMA 2.1. The series and parallel relations are equivalence relations.

A well-known necessary and sufficient condition for a multigraph to be Eulerian is that it have
no more than two vertices with an odd degree [2].
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(b)

F

(c)

(a)

(e)

(d)

FIG. 4. Examples illustrating graph reduction.

Let the equivalence classes induced by the series and parallel relations be known
as the series and parallel sets of edges, respectively. A series (respectively, parallel)
set of edges in F corresponds to a parallel (respectively, series) set of edges in 1d, and
vice versa. Define the series (respectively, paralleO reduction operation on a graph
F as the operation of replacing an odd series (respectively, parallel) set of edges in
F by one edge. Define the reduced graph Fr of a graph F as the graph obtained by
recursively applying the reduction operations to F until they can no longer be applied.
For example, the reduced graph Fr in Fig. 4(b) is obtained from F in Fig. 4(a) by
applying the series reduction operation, and the graph F in Fig. 4(d) is obtained
from F in Fig. 4(c) by applying the parallel reduction operation. The series reduction
operation can be applied to F in Fig. 4(d) to obtain the reduced graph Fr in Fig. 4(e).

LEMMA 2.2. Fr is unique.

Proof. Suppose that l"r is not unique. This implies that there is a precedence in
the order of application of the reduction operations. However, since an edge cannot
be in both a series and parallel set simultaneously, the order of application does not
make any difference.

A reduction procedure is suggested in [8] for series/parMlel graphs; and they show
that if there is a Euler path in Ir, then there is a Euler path in F. On the other hand
it is not obvious that a reduction method can be applied to general plane graphs. We
present the following result for the reduction of plane multigraphs.

THEOREM 2.3. A graph F is dual Eulerian if and only if its reduced graph Fr is
dual Eulerian.

3. Identifying dual Eulerian graphs. It is assumed throughout this section
that F is a reduced graph. The determination of dual paths in a plane undirected
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multigraph F requires the traversal of edges in both itself and its dual in corresponding
sequences. Suppose vl el v2 e2 V3 e3 V4 is a dual path in F and u e u2 e2 U3 e3 U4 is its
corresponding dual path in pd. These dual paths can be extended in length if and only
if there exists an edge ei e E such that ei e (f*(v4) N f*(u4)) t2 (f*(v) g f*(u)) and
e (el, e2, e3}. Therefore, the intersections of vertex cocycles of F and Id indicate
which edges can be adjacent in a dual path of F.

Let R denote the set of vertex cocycles of a graph F(V, f, E) (i.e., R {f* (v)lv e
V}). Similarly, let Rd denote the set of vertex cocycles of Id. Define the set T as
follows:

T- {xN ylx E R; y Rd}.

That is, take the intersection of all possible pairs of elements of R and Rd and let
these be the elements of the set T.

LEMMA 3.1. All nonempty elements of T have cardinality two.
Proof. The set of vertex cocycles Rd of Fd corresponds to the set of facial cycles

of F. Therefore, T is formed by taking the pairwise intersections of vertex cocycles
and facial cycles in F. Choose some vertex v V and facial cycle in F. If v is not in
the facial circuit that corresponds to the facial cycle , then the intersection is empty.
If v is contained in the facial circuit corresponding to , then the intersection must
have exactly two elements because is elementary.

The elements of T represent sets of edges that are incident on a common vertex
in both F and Id. Suppose (a, b} is an element of T for some F and [d. This means
that a and b are adjacent in at least one dual path. Now it must be determined
which edges can be placed adjacent to a and b such that a larger dual path can be
constructed. For this purpose a table is constructed that is known as a successor
table. The successor table is constructed beginning with all possible dual paths of
length two. This information can be obtained from T. Each element of T, say (a, b},
is ordered in two ways, (a b) and (b - a). These two orderings represent the
traversal of a then b and b then a, respectively. In order to determine which edge can
be appended to the dual path (a - b), the possible successors in F and Fd are listed
and their intersection is taken. This intersection represents the set of edges that may
be appended to (a --. b) in order to create a dual path of length three. The successor
table for the dual plane multigraphs shown in Fig. 5 is given in Table 1.

Placed in the first column of the successor table are two ordered pairs (each in a
separate row) for each element in T. Placed in the second (respectively, third) column
are the possible successors of the ordered pair in F (respectively, Fd). The intersection
of the second and third columns is placed in the fourth column and represents the edges
that may succeed the ordered pair in a dual path (i.e., a successor common to both
F and Fd). The sets in the second, third, and fourth columns of the successor table
are referred to as the F-successors, Fd-successors, and dual-successors, respectively.
For the example shown in Fig. 5 vertices v2 of F and u of Fd contribute the element
{a,c} e T (i.e., f*(v2) f*(u) {a,c} e T). This element of T contributes two
rows to the successor table as shown in rows 9 and 10 of Table 1.

The ordered pairs in the first column of the successor table represent all possible
dual paths of length two. The dual-successors of an ordered pair are a set of edges that
can be appended to the dual path of length two to form a dual path of length three.
Suppose (x --, y) is an ordered pair of a successor table and {z} is its dual-successor.
x y z is a dual path of length three, and therefore y z must be a dual path of length
two. Since all dual paths of length two are represented in the successor table, the
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av v2

F h
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FIG. 5. A pair of dual plane multigraphs.

ordered pair (y z) must be in the table. The ordered pair (y z) has a set of
dual-successors, so the dual path can be extended. Before taking this development
further, let us analyze one exceptional case.

The case in which two edges are in parallel requires special consideration, since
the ordered pair does not identify a unique vertex at which the dual path ends. Two
edges in parallel are referred to as a two-element circuit. For example, in F of Fig. 5,
(a -- b) can imply either the dual path vl a v2 b Vl or v2 a vl by2. Since it is desirable
that an ordered pair identify a unique dual path, the ordered pairs corresponding
to two-element circuits are split in two so that each identifies a unique dual path of
length two. For example, rows 3, 4, 5, 6, 15, 16, 17, and 18 of the successor table
shown in Table 1 must be split into two rows each. A new table is constructed by
splitting these rows and is known as the augmented successor table. The augmented
successor table derived from the successor table in Table 1 is shown in Table 2.

In the case where an entry in the first column of the successor table corresponds to
a two-element circuit in either F or Fd there are two sets in either the second or third
column corresponding to the two possible ways to traverse the two-element circuit.
Consider the two-element circuit Vla v2 bv in the graph of Fig. 5. The F-successor
of (a --, b) may be either {c, e} or {g, h} depending on whether (a --, b) is traversed
starting at v2 or v, respectively. Rows 3 and 4 of Table 1 are contributed by the
two-element circuit {a, b} E T. The edge b is the dual-successor of the ordered pairs
(g -- a), (g -, h), (c a), and (f - e) (rows 2, 5, 10, and 18 of Table 1, respectively).
The dual path a b is contained in the dual paths g a b and ca b. Concatenating the
dual paths g a b and cab with the dual-successors of (a --, b) yields the edge sequences
g a b e, g a b h, c a b e, and c a b h. g a b h and c a b e are dual paths, but g a b e and c a b h
are not. Therefore, the ordered pair (a - b) is split into two ordered pairs (a
and (a -- b)" with dual-successors {h} and {e}, respectively (rows 17 and 18 of
Table 2, respectively), and the dual-successors of (g - a) and (c --, a) are updated
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TABLE 1
The successor table for the plane multigraphs shown in Fig. 5.

F-successorsOrdered Pairs
(a )

Dual-successors
i {d,f,h} {h}

(g a)
(a-.b)

{b,c:e}
{c, e} or {g, h}

Fd-successors

{e,f,.h}

{d,f,g}

{e} or {h},

(b h)

4 (b--a) {a,e}.or {g,h} {c,d,g} {c} or {g}.
5 "(g’-- h) {d, f} or {a, b} {b, e, f} {f}.or {b}
6 (h g) {d, f} .or (a, b} {a, a, d} {d}. or {a}
7

(h b) a, c, e}
9 (a c) {d} {d,e,f} {d}
10 (b){b,g,h},

{b,.f,h}11

,(f e)

(b)

{a: b, c}

(e c) {d} {a,d,g} {d}
13 (b e) {f} {c, d, f} {f}
14 (e --,b) {a,g,h} {a} {a}
15 (c d) {f, g, h} {a, g} or {e, f} {g} or {f}
16 (d c) {a,’b, e} {a, g} or {e, f} {’a} or {e}
17 (e f) {d,g,h} {b,h} or {c,d} {h} or {d}
18 {b, h} or {c, d}

{h}19
2O

{a,b,h}(d g)
(, )

(b) or {c)
{h}.

21 (d f) {e} {b, e, h} {e}
22 (f d) {c} {a, c, g} {c}

(f -*h) {a,b,g}
{c,d,e}

23
’24 (h f)

to {b}’ and {b}", respectively (rows 2 and 6 of Table 2, respectively). Similarly, all
other two-element circuits are split.

LEMMA 3.2. The dual-successor of an ordered pair in the augmented successor
table is unique.

Proof. Assume the ordered pair is not a two-element circuit. Given an arbitrary
ordered pair (x - y), without loss of generality assume it corresponds to the dual
path Vl xv2yv3 in r and t Xt2yu3 in Id. Since y E (f*(v3)Cf*(u3)) and If*(v3) CI
f*(u3)l 2 (Lemma 3.1), I(f*(v3) \ {y})N (f*(u3) \ {Y})I 1. Hence, the dual-
successor is unique.

Assume the ordered pair is a two-element circuit. Using the same argument as in
the preceding paragraph, the duM-successor is unique for each starting vertex. Since
the ordered pair is split, the. duM-successor is unique.

A directed graph A(V,A), henceforth known as the continuity graph, is con-
structed where V is the set of vertices and A the set of directed arcs. The continuity
graph is constructed in such a way that there is a one-to-one correspondence between
the vertices of A and the ordered pairs of the augmented successor table. Hence, for
simplicity, in the following discussion the ordered pairs are used to denote the corre-
sponding vertices of A. An arc is directed from vertex (el e2) to vertex (e3,--* e4)
if and only if e2 and e3 are identical edges in F and {e4} is the dual-successor of
(el -- e2). The arc indicates that it is possible to traverse the edges el, e2 e3, and
e4 in F and Fd in that order. The continuity graph constructed from the augmented
successor table of Table 2 is shown in Fig. 6.

A chain in a directed graph A is a sequence of vertices Vl v2 v,, such that there
is an arc from v to v+ for 1 _< < n. A chain is said to be closed if Vl Vn. A chain
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TABLE 2
The augmented successor table derived from the successor table shown in Table 1.

1
2

Ordered Pairs
( )
(g a)
(b h)
(h b)

s ( )
(- )

10 (e --.b)
11 (d--g)
12 (g d)
13 (d-- f)
14 (f d)
15 (f h)

(h )
17 (a
18 (a b)"
19 (b a)’
20 (b a)"
21. (g h)’
22 (g
23 (h g)’
24 (h g)"
25 (c d)’
U ( d)"
27 (d c)
2s (d c)"
29 (e f)’
30 (
31 (f e)’
32 (f e) tt

F-successors
{d,f,h}
(b,c,e}
{d,f,g}
a, c, e}
{d}

(a,g,h}
(a,b,h}

Fd-successors Dual-successors

(a}

(b,f,h}
{a,d,g}
(c,d,f}

{h}
{) (,e,I)

(b,e,h)
(,,)

(a,b,g}
(e} (c,d,e}

{h}’

{h}{g,h}

{g,h} {c,d,g} (g}
{c,e} {c,d,g} (c}
(,} (,, }
(d,f} (b,e,f}

(a,c, d}
(a,c,d}

(f,g,h} (a,g}
(f,g,h)
(,,)

(c,d}
{b,h}
{c,d}

(d,g,h}
(d,g,h}
(a,b,c}
(a,b,c} (b,h}

in the continuity graph A corresponds to a sequence of edges traversed in F and Fd.
A maximal chain is a chain whose set of vertices is not properly contained in the set
of vertices of any other chain. For example, (a - c)(c d)’ (d --, g) is a chain in the
continuity graph of Fig. 6 and (a g)(g --, h)’ (h b)(b a)’ is a maximal chain.

The mirror image of a chain vl v2 vk in a continuity graph is the chain

v v_l v where vi and v contain the same edge labels with opposite ordering
(b-- a)).(e.g., if vi (a b), then v

LEMMA 3.3. For every chain in a continuity graph A, there is a mirror image of
that chain also contained in A.

Proof. Consider an arbitrary ordered pair (a b) and its row in the augmented
successor table. Suppose its dual-successor is c. Then the ordered pair (b - c) exists
in the first column of the table, and (a b)(b c) is a chain in A. It must be shown
that (c -- b)(b -- a) is also a chain in A. Since (b --. c) is an ordered pair in the first
column of the table, so is (c - b). The F-successors of (a - b) are the elements of the
vertex cocycle of F that contains b and not a with the element b removed. That is, it
is the set f*(x) \ {b} such that b e f*(x) and a f*(x). Similarly, the F-successors of
(c -- b) are the elements of the vertex cocycle f* (y) of F less b, where b e f* (y) and
c f* (y). Since b e f* (x) N f* (y) and F has no loops, x y. By hypothesis, a and
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(h-- f)"
.(c-- a)

b)"

(f_te-- 0"

FIG. 6. Continuity graph corresponding to the augmented successor table given in Table 2.

b must be in the same vertex cocycle of P for some v E V. b is contained in only two
vertex cocycles (i.e., [/(e)l 2, Ve e E) and a f*(x); therefore, a e f*(y). Hence
a is in the set of F-successors of (c b). That is, F contains the subgraph shown in
Fig. 7(a), and Fd contains the subgraph shown in Fig. 7(5).

A similar argument shows that a is in the set of Fd-successors of (c -- b) in the
augmented successor table, and therefore (c --. b)(b a) is a chain in A.

For example, the chains (a -, g)(g h)’ (h - b)(b -, a)’ and (a --, b)’ (b --,

h) (h - g)’ (g a) in the continuity graph of Fig. 6 are mirror images of one another.
The mirror image of a chain corresponds to the traversal of edges in F and Fd in the
opposite direction.

LEMMA 3.4. Every vertex in a continuity graph A has exactly one incoming arc
and one outgoing arc.

Proof. Choose an arbitrary vertex v V. From Lemma 3.2 it is known that v has
one outgoing arc. From Lemma 3.3 it is known that there is a corresponding v V
that is the mirror image of v. Since v has one outgoing arc, v’ has only one incoming
arc. It is also known from Lemma 3.2 that v’ has only one outgoing arc; hence, v has
only one incoming arc.

COROLLARY 3.5. A chain in a continuity graph A is maximal if and only if it is
closed.

The property of the continuity graph A stated in Lemma 3.4 makes the identifi-
cation of chains in A trivial. Since each chain is contained in a maximal chain, the
set of all maximal chains is sufficient to characterize the edge relationships of interest.
A dichotomy of the vertex set of A is induced by the mirror image property. The
dichotomy is obtained by placing in opposite sets chains that are mirror images of
one another. Since the direction in which edges appear in the chains is not important,
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X

(a) (b)

FIG. 7. Subgraphs illustrating the proof of Lemma 3.3.

it is sufficient to analyze only one set of the dichotomy. Let the chains that connect
the vertices of one set of the dichotomy be known as the representative set of maximal
chains.

A desired chain in a continuity graph A is a chain, say (e0 --* el) (el -- e2)...
(en en+), such that ej ek Vj
desired chain of maximum length.

LEMMA 3.6. There is a one-to-one correspondence between desired chains of A
and dual paths of F.

The dual path corresponding to the desired chain (e0 e)(e e2) (en --+

en+) is el e2 en. The above derivation has led to the major result of this paper,
which is presented in the next theorem.

THEOREM 3.7. F is dual Eulerian if and only if there exists a desired chain that
contains every edge of F.

Proof. Assume there exists a desired chain that contains every edge. From
Lemma 3.6 it is known that every desired chain has a corresponding dual path in
F and Fd. Hence, F and Fd contain a dual Euler path.

Suppose there is no desired chain that contains every edge. From Lemma 3.6
there is a desired chain corresponding to every dual path. Hence, there is no dual
path that contains every edge.

Theorem 2.3 in conjunction with Theorem 3.7 guarantee the successful identifi-
cation of dual Eulerian plane multigraphs.

4. Algorithm realization and analysis. The input to the algorithm is a spec-
ification of a plane connected undirected multigraph. The reduced graph can be ob-
tained easily by searching for vertices of degree 2 in F and Fd and applying the series
and parallel reduction operations. It is not necessary to identify parallel edges, since
a parallel set of edges in F (respectively, Fd) corresponds to a series set of edges in
Fd (respectively, F). The embedding of a multigraph on the plane can be specified by
indexing the edges incident on each vertex in the clockwise direction. The indices are
assigned in the clockwise direction with the first index being zero. Each edge has two
indices assigned to it; one for each vertex on which it is incident. The index of the
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FIG. 8. Partial graph used in the explanation of procedure Determine_Dual-Successors.

edge e incident on the vertex v is denoted by index(x, e). For example, in the partial
graph shown in Fig. 8, index(v1, el) 1.

Each edge appears in exactly four elements of T, except for edges that are con-
tained in two-element cycles; these edges appear in three elements of T. Consider
the partial graph shown in Fig. 8. The elements of T in which the edge e2 appears
are {e2, e}, {e2, e3}, {e2, eh}, and {e2, e6}. These four elements can be determined in
constant time due to the data structure used for a plane graph. Two edges el and e2
are said to be neighbors if and only if index(v, e) (index(v, e2) + 1) mod
or index(v,e) (index(v, e2)- 1) mod If*(v)l. The algorithm to form the set T is
shown in Fig. 9.

LEMMA 4.1. ITI 21E k + 1, where k is the number of two-element circuits
in F and Fa.

Proof. Each v E V contributes exactly If*(v)l elements to T. For each v e V these
elements are unique except for vertices that are contained in two-element circuits. The
same two-element set of edges in T is contributed by different vertices if the vertices
are contained in a two-element circuit. In addition, the empty set is an element of T.
Hence,

ITI- If*(v)l- k / X.
VvEV
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Procedure Determine_T() {
for (each e E E){

for (each neighbor, say e of e){
if (e is not marked)

add {e, e} to T;
}
mark e;

FIG. 9. Algorithm for determining the set T.

Since -vvey If*(v)l 2IEI[2], ITI 21El- k + 1.
Consider the example shown in Fig. 5. The neighbors of the edge b in F are a, e,

and h. Therefore, during the construction of T the sets {b, e}, {a, b}, and {b, h} are
placed in T and another edge is considered. The neighbors of the edge a in F are b,
c, and g. The sets {a, c} and {a, g} are placed in T. Since b is marked, {a, b} is not
placed in T a second time. This process is repeated for each edge and the result is T
{q}, {a, g}, {a, b}, {g, h}, {b, h}, {a, c}, {c, e}, {b, e}, {c, d}, {e, f}, {d, g}, {d, f}, {f, h}}.
This algorithm is clearly O(IE[) since the number of neighbors of an edge is constant.

LEMMA 4.2. The augmented successor table contains exactly 41E rows.

Proof. From Lemma 4.1 it is known that ]TJ 2]Z[ k + 1, where k is the
number of two-element cycles in F and Fd. Each element of T (except the empty
set) contributes two rows to the successor table. Therefore the successor table has
41E 2k rows. Each two-element cycle contributes two rows to the successor table,
and each row is split when the augmented successor table is formed. Hence, the
number of rows in the augmented successor table is 41E 2k + 2k 41EI. D

The dual-successors of the ordered pairs are determined using the algorithm shown
in Fig. 10.

In the graph of Fig. 5, the dual-successors of the ordered pairs (a g) and
(g --, a) are h and b, respectively. The dual-successors of the ordered pairs (b - h)
and (h - b) are g and a, respectively. The body of the for loop in the algorithm
Determine_Dual-Successors is executed in constant time, and the body of the
loop is executed once for each element of T. Therefore the time complexity of the
procedure is O(IEI).

Consider the augmented successor table given in Table 2. The procedure Deter-
mine_Representative_Set_of_Maximal_Chains (Fig. 11) works as follows. The
ordered pair (a - g) is chosen as the starting point of the first maximal chain. The
ordered pairs (a -- g) and (g -- a) are marked visited. Since the dual-successor of
(a -- g) is {h}’, the next ordered pair in the chain is (g - h)’. The ordered pairs
(g --, h)’ and (h --, g)’ are marked visited, and the next ordered pairs in the chain are
(h - b) and (b - a)’. Since (a - g) is the next ordered pair and it has already been
visited, the maximal chain is complete. Not all the ordered pairs have been visited,
so the body of the outer while loop is repeated. The next unvisited ordered pair in
the augmented successor table is (a - c). Beginning with this ordered pair yields the
maximal chain (a -- c)(c - d)’ (d -, g)(g h)".’(h f)(f e)" (e --, b)(b --. a)".
The procedure continues until all of the ordered pairs in the table have been marked
visited.
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Procedure Determine_Dual-Successors()(
for (each (ei, ej} e T)(/*Fig. 8*/

if ({ei, ej }is a two-element cycle) (
split it into two elements and mark the direction of
traversal in each;
place one of them in T so that it gets processed in a
successive iteration;

}
if (index(v,ej) (index(vl,ei)+ 1)mod If*(v)l){

/*ei and ej correspond to el and e2 in Fig. 8, respectively*/
the dual-successor of (e - ei) is the edge e such that
(index(v3, e) + 1)mod If*(v3)[--index(v3, ei);
/*e corresponds to e4 in Fig. 8*/
the dual-successor of (ei --. e) is the edge eg such that
(index(v2, eg)- 1) mod I*(v2)[-- index(v2,ej);
/*e corresponds to e5 in Fig. 8*/

}
else{

/*ei and e correspond to e3 and e2 in Fig. 8, respectively*/
the dual-successor of (ei --, ej) is the edge e such that
(index(v2, e) + 1)mod [f*(v2)l index(v2,ej);
/*e corresponds to e6 in the graph of Fig. 8*/
the dual-successor of (ej --, ei) is the edge e such that
(index(v4, e)- 1)mod If*(v4)[ index(va, ei);
/*e corresponds to e7 in Fig. 8*/

FIG. 10. Algorithm for determining the dual-successors.

Procedure Determine_Representative_Set_oLMaximal_Chains() {
while (an unvisited ordered pair exists in the augmented successor table){

Choose any unvisited ordered pair, say (a -- b), and mark it and its
mirror image visited;
( - ) ( - );
/*assign (a b) to the temporary variable (x -, y)*/
do{

choose the dual-successor of (x --, y), say z;
-, z);

mark (y --, z) and (z - y) visited;
}while((a b) (x -, y));
record the maximal chain;

Fic. 11. Algorithm for determining the representative set of maximal chains.
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Procedure Determine_Maximal_Desired_Chains() {
for (each maximal chain in the representative set of maximal chains){

if (the maximal chain is of the form (e e+l), (e+l - e+2),...,
(ej -- ei-I-1) (ei-]-I ej-]-l),...){
/*it has a repeated edge, namely ei+l $/

while -ei+ that is not the start of a maximal desired chain){
choose an ei+l arbitrarily;

z)
do{

(m -- n) (y --. z);
while (n ek+, V(ek ek+) E MDC)
/*MDC is the maximal desired chain currently being
constructed*/

n)
z)

}while ((y --+ z) (ei+ ei+2));
}

}
else

the maximal chain is a maximal desired chain;

FIG. 12. Algorithm for determining the maximal desired chains.

Lemma 3.4 and Corollary 3.5 guarantee the correctness of the procedure Deter-
mine_Representative_Set_of_Maximal_Chains. It is clear that this procedure
has time complexity O(IEI) since it visits exactly half the rows of the augmented
successor table and performs a constant time task at each row.

Since an edge of F appears in at most four elements of T, it appears in at most
eight vertex labels in the continuity graph A and, therefore, in at most four vertex
labels in the representative set of maximal chains. Hence, an edge in F can ap-
pear at most four times in a maximal chain. Based on these observations the set of
maximal desired chains is obtained from the representative set of maximal chains as
follows. Choose a maximal chain from the representative set of maximal chains, say
Vl v2 vn Vl. A desired chain is a subchain of a maximal chain that contains no
repeated edges. A subchain is a chain that is contained in another chain. Therefore,
a desired chain is maximal if it begins with an edge that appears twice in the maximal
chain and ends just prior to an edge that is already contained in the desired chain.
The maximal desired chains are determined using a constructive algorithm as follows.
Start at any vertex in the maximal chain from which a maximal desired chain is com-
puted. Traverse edges in the continuity graph until a vertex label is repeated. This
sequence of edges is a maximal desired chain (i.e., it has maximum length without
repeating any edge of F). Start the next maximal desired chain immediately following
the first instance of the repeated label. Repeat this until the first maximal desired
chain constructed from this maximal chain is repeated. If each repeated edge has
been used as the start of a maximal desired chain, then choose a new maximal chain
and repeat the outermost loop of the algorithm; otherwise, choose a repeated edge
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FIG. 13. () A CMOS functional cell, (b) a physical implementation of the cell, and (c) a
physical implementation of the cell after applying the dual Eulerian theory.
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that has not been used as the start of a maximal desired chain and continue. If a
repeated edge does not exist in the maximal chain, then the maximal chain is a maxi-
mal desired chain. The algorithm is shown in Fig. 12. The maximal desired chains for
the example of Fig. 5 are a g h b, a c d g h f e b, and c e f d. Since the maximal desired
chain a c dg h f e b contains every edge, the graphs shown in Fig. 5 are dual Eulerian.
With the proper data structures and manipulations of memory pointers the procedure
in Fig. 12 can be implemented to execute in O([E[) time.

THEOREM 4.3. The overall time complexity of the algorithm that identifies dual
Eulerian plane multigraphs is O([E]).

5. Application of the theory. In the design of functional cells for CMOS VLSI
circuits it is desirable to implement each functional cell such that it requires a mini-
mum amount of physical area [8]. For example, the CMOS functional cell shown in
Fig. 13(a) can be physically implemented as shown in Fig. 13(b); however, if the dual
Eulerian theory presented in this paper is applied, then it can be implemented as
shown in Fig. 13(c). The reduction in area due to the application of the dual Eulerian
theory is significant.

In order to apply the theory presented in this paper to the VLSI layout problem
the transistor circuit is represented by an undirected multigraph. The transistors
correspond to the edges of the graph, and the source and drain terminals of the
transistors correspond to the vertices of the graph. In addition, an edge is placed
between the output and ground (power) nodes of the circuit to eliminate isthmuses.
It is also necessary that the p-transistor and n-transistor networks of the CMOS gate
be dual to one another so that the corresponding graphs are dual. For details on the
application of this technique we refer the reader to [1].

6. Conclusions. It has been shown in this paper that the question of whether
or not a plane undirected multigraph is dual Eulerian can be answered in a time
proportional to a linear function of the number of edges in the graph, and an algo-
rithm has been presented that answers this question. Interesting properties of plane
multigraphs have been presented and can be summarized as follows.

1. A plane undirected multigraph F is dual Eulerian if and only if its reduced
graph Fr is dual Eulerian (Theorem 2.3).

2. A dual path of length two can be extended in a unique way (Lemma 3.2).
3. A plane undirected multigraph F is dual Eulerian if and only if there exists

a desired chain that contains every edge of F (Theorem 3.7).
4. The set of maximum length dual paths can be computed in linear time (The-

orem 4.3).
The question of whether or not a planar multigraph admits an embedding that is

dual Eulerian is interesting, since an algorithm to solve this problem can be used to de-
termine more efficient layouts for CMOS functional cells. However, since the number
of embeddings of a planar graph is exponential, it is not clear that a polynomial-time
algorithm can be found for this problem. Nevertheless, to the best of our knowledge
it is still an open problem and has not been proven to be NP-complete.
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ENUMERATION OF CONCRETE REGULAR COVERING
PROJECTIONS *
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Abstract. Counting covering spaces of graphs is one of the rapidly progressing aspects within
the enumerative branch of topological graph theory. A covering projection is said to be concrete if
it is accompanied by an explicit partition of the vertex set of the covering graph into "sheets" such
that each sheet meets each vertex fiber exactly once. The natural projection (subscript erasure) of
the voltage graph construction is the prototype of a concrete projection. An isomorphism of concrete
covering projections maps sheets to sheets. PSlya and DeBruijn enumerative methods and Moebius
inversion are used to derive a formula to count the isomorphism classes of regular covering projections
of a graph.

Key words, graph covering, enumeration, voltage group, subgroup lattice
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1. Introduction. In this paper we consider simple undirected graphs and their
corresponding symmetric digraphs. As usual, the vertex set and the edge set of the
graph G are denoted by V(G) and E(G), respectively; the set A(G) is the arc set of
the corresponding symmetric digraph. An r-to-one graph epimorphism p H - G
which sends the neighbors of each vertex x E V(H) bijectively to the neighbors of
p(x) V(G) is called an r-fold covering projection of G. The graph H is the covering
graph, and the graph G is the base graph of p. Topologically speaking, p is a local
homeomorphism. For an introduction into the field of topological graph theory see,
e.g., the famous textbook by Gross and Tucker [4].

The fibers of the r-fold covering projection p H --. G are the sets p-l(v) (v
V(G)). Inspired by Riemann surfaces, the covering projection p is called concrete, if
it is accompanied by an explicit partition P {P1, Pr} of the vertex set of H
such that every partition set Pi meets every vertex fiber exactly once; we write (p, 7))
for short. The partition sets Pi are the sheets of p.

H /

G G

FIG. 1.

There is a natural kind of isomorphism between covering projections of G, given
by a commutative diagram with an isomorphism and / Aut(G) (see Fig. 1). An
isomorphism of concrete covering projections (p, P) and (i5, 75) is an isomorphism of p
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and i5 in the sense of Fig. 1 such that preserves sheets, that is, (P) E 75 for every
sheet P E P; we write (p, P) - (15,/5) for short.

The problem of enumerating r-fold covering projections of a graph G up to isomor-
phism is still unsolved except in the cases of r 2 [6] or trivial automorphism group
[7]; however, nonisomorphic concrete r-fold covering projections of G are counted in
[8]. This could be done by an extensive usage of permutation voltage assignments, i.e.,
mappings F A(G) - Sr (where ,5’r is the symmetric group on the set {1, r}),
such that inverse arcs obtain inverse assignments. From such an assignment one
can construct the derived graph GF as follows. Its vertex set is V(G) {1, ,r};
two vertices (x, i) and (y, j) are adjacent in GF iff x and y are adjacent in G and
j F(x,y)(i). Gross and Tucker showed that the natural projection PF GF -- G(sending vertex (x, i) of GF to vertex x of G) is an r-fold covering projection [3].
This projection can be understood to be concrete in an obvious way by considering
the sets Pi {(x, i)lx e V(G)} as sheets of PF; the resulting concrete r-fold covering
projection is denoted by (PF, 7)F)

For the enumeration of concrete r-fold covering projections of the graph G the
following theorem is essential (see [8], Whm. 1).

THEOREM 1.1. Let (p,7)) be a concrete r-fold covering projection of G. Then
there is a permutation voltage assignment F with voltages in Sr such that Fig. 2 is
an isomorphism between (p, 7)) and (PF, 7F) for some isomorphism .

H

FIG. 2.

For more interesting problems concerning covering projections of graphs we refer
the reader to the articles [2], [10], [12]-[14].

2. Regular covering projections. A covering projection p" H G is called
regular if there is a group 4 acting freely on H such that H/4 is isomorphic to
G. In fact, regular r-fold covering projections of G can be obtained from ordinary
voltage assignments with some (abstract) voltage group 4 of order r, i.e., mappings
F A(G) -- j( such that inverse arcs have inverse assignments. The derived graph
GF is defined very similar to the case of permutation voltage assignments: its vertex
set is V(G) .4. Two vertices (x, a) and (y, b) are adjacent in GF iff x and y are
adjacent in G and b F(x, y)a. The natural projection PF GF -- G is defined by
setting pF(X, a) x.

Again, Gross and Tucker showed that every regular covering projection can be
represented by a derived graph of an appropriate ordinary voltage assignment (see,
e.g., [4, Thm. 2.2.2]). As for r-fold covering projections, the general counting problem
for regular r-fold covering projections is still unsolved; only some exceptional cases are
known. Since every 2-fold covering projection of G is regular, the result of [6] applies
in this case, too. In [10] regular fourfold coverings of identity graphs are counted; in
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[9] regular covering projections of identity graphs with voltages in finite vector spaces
over finite fields are enumerated.

A concrete regular covering projection is a concrete covering projection (p, P),
such that p H -- G is regular and the members of the group .4 acting on H preserve
the sheets in 7) It is an easy exercise to show that every concrete regular covering
projection is isomorphic to a concrete regular covering projection (PF, F), where PF
is a canonical projection that stems from an ordinary voltage assignment for G in an
appropriate voltage group ,4, and OF consists of the sets Pa {(x, a)lx E V(G)} for
a E A as sheets; hence we may restrict attention on derived graphs.

As an example, consider the nonisomorphic concrete regular double covering pro-
jections of the complete graph K3. It follows immediately from Fig. 3 that there exist
regular covering projections which are isomorphic, but not in the concrete sense; for
example, consider the first two covering projections of this figure, for which no sheet
preserving isomorphism can be found. The purpose of this paper is to count noniso-
morphic concrete regular r-fold covering projections. As an intermediate result, we
give some P61ya-like formulas for ordinary voltage assignments.

FIG. 3. Concrete regular double covering projections of K3.

3. A power group enumeration theorem. Let D and R be finite sets, and
let F and (I) be two finite groups acting on D and R, respectively. Then F (I) acts on
the set of functions f: D - R via (-, )(f) o f o ?-1. The computation problem
for the number of orbits of this action is well studied in the literature [1]; a useful
formula is given by the classical power group enumeration theorem [5].

A slight modification of this problem is to assume that the sets D and R contain
some additional "comparable" structure, where the functions f are demanded to pre-
serve this structure. An example that will be important in the context of counting
concrete regular covering projections but is also interesting on its own is given by or-
dinary voltage assignments of a graph G with voltage group .4. The first impression
is that we have a certain kind of power group enumeration: the domain is the arc set
A(G), where Ant(G) acts in an obvious way on A(G), and the range is the group 4
with the automorphism group Aut(j() acting on it. The further structure that has to
be preserved by ordinary voltage assignments is that inverse arcs must have inverse
assignments. Let

(1) ’(G; jr) {F’A(G) --* A IV (x, y) e A(G)" F(x, y) F(y, x)-1 }

be the set of ordinary voltage assignments of G with voltage group j[, and let F <_
Ant(G) and (I) <_ Ant(A). Then F (I) acts on (G; .4) via

(2) (, )(F)(x, y) (F("/-l(x),")’-l(y)))
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or (-, )(F) o F o .-1 for short. The number of the orbits of this action will
be denoted by gt(GIF;j[l(I)). In order to count the orbits of this action, we need
some further notation concerning the automorphisms of G and J[. We start with the
automorphisms of G.

Let - E F. Then the automorphism - may be understood as a permutation of
vertices, edges, and arcs, respectively. A vertex cycle a of - is called diagonal, if it
is of even length, 2q say, and for some (and hence for all) x E a, Ix,-q(x)] E(G).
The corresponding edge (respectively, arc cycle) is called diagonal, too. For N
let/i(’) be the number of diagonal edge cycles of - of length i, and let i(-) be the
number of edge cycles of length that are not diagonal. Set s (s l, s2, ...) and
t (tl, t2, ). We define the cycle index of the graph G with automorphism group
F by setting

(3)

where G is assumed to have m edges. Note that Z(GIF; s, t) reduces to the ordinary
cycle index of the automorphism group of G, considered as a permutation group of
edges of G, if F Ant(G) and the automorphisms of G do not contain diagonal
cycles. The cycle indices of small complete graphs with full automorphism groups are
tabulated in Table 1.

TABLE
Graph cycle indices for complete graphs.

Now consider an automorphism (I) of A. Since is a permutation of the
members of ,4, it decomposes into disjoint cycles. We distinguish three types of
cycles of . A cycle T of is of

(i) type 1, if V a E T a-1 T. For E//, let A() be the number of/-cycles
of type 1 of ;

(ii) type 2, if V a T a-1 a A a-1 @ T. For /N, let #i() be the number
of/-cycles of type 2 of ;

(iii) type 3, if V a e T a-1 a. For e SV, let pi() be the number of/-cycles
of type 3 of .

We define, for e (I), the full cycle contribution sequence C() (C1(), C2(),...
and the diagonal cycle contribution sequence D()= (O1 (), 02(),... by

(4) Ci() E d(Ad() + #d() + Pd()),

Di() E d#d() + E dpd().
2 mod 2-_--

Now we are ready to state and to prove our power group enumeration theorem for
ordinary voltage assignments. Remember the definition of (GIr; AIO) above.
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THEOREM 3.1. The number of orbits of ordinary voltage assignments in 9V(G; A)
determined by the power group action described in (2) is

1
(6) (alr; AI) -[ Z(alr; C(), D()).

Proof. According to Burnside’s lemma (which in fact is due to Cauchy-Frobenius,
as we know from [11]), we have to count the ordinary voltage assignments F A(G) --.4 that are fixed under (, 6) E F x (I). We conclude from (2) that the assignment F
is fixed under (if, ) iff

() (F(x, )) F((), ())

for every (x, y) A(G). Let r be the edge cycle of the automorphism containing
Ix, y], and let s(r) denote the length of r. We distinguish two cases.

Case 1. Assume that the edge cycle is not diagonal. Then r corresponds to
two arc cycles where the one of them contains the inverse arcs of the other. Assign
to (x, y) a value F(x, y) ,4. From (7) we obtain by successive iteration that

(s) ()(F(, )) F(x, ).

It follows that F(x, y) has to be chosen from a cycle of the automorphism such that
its length divides s(r); hence there are C8(.)() possible choices for F(x, y).

Case 2. If the edge cycle r is diagonal, then it follows from (7) that

(9) (’) (F(x, )) F(, ) F(, )-.

Hence the cycles of the automorphism from which F(x, y) must be chosen cannot
be of type 1 If such a cycle is of type 2, then 2s.(..) 1 mod 2, where d is the lengthd
of this cycle. If it is of type 3, then its length is a divisor of s(r). Hence there are

Ds(.)() possible choices for F(x, y).
Summarizing, we obtain

1 1
Ft(G]F;AI(I))

I(i) IF H Cs(,)() H Ds(,)

1

I]
y Z(lP; C(),D()),

where C(’y) and :D(-y) are the sets of not diagonal and diagonal edge cycles of
respectively.

There are some conclusions that follow immediately. The first one we present is

the case of classical power group enumeration, which appears if the automorphism
group F of G does not contain automorphisms with diagonal edge cycles.

COROLLARY 3.2. If F does not contain automorphisms with diagonal edge cycles,
then

1
(10) (lr;1) z(r; c()),

where the cycle index is the ordinary cycle index of the group F; F is to be understood
as permutation group of edges, which is indicated by the e-index.
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Another interesting case appears if the chosen automorphism group of A is trivial.
This case corresponds to the classical Phlya theorem.

COROLLARY 3.3. Let s be the number of self-inverse elements of A, and let
r IJ(I. Then

(11)  (Olr; AIz ) z(olr; r, s),

where r (r,r, and s (s,s, ).
As a further example, assume that ,4 ,r, the cyclic group of order r, which

is written additively. Then Aut(’r) 2, the (multiplicative) group of numbers in

2r that are relatively prime to r. Let A E . It is easy to see that C(A) is the
number of solutions of Az z in 2, while D(A) is the number of solutions of the
equation z -z in r; hence C() gcd(Ai- 1, r), while D(A) gcd( + 1, r).
Table 2 shows the numbers (KnlSn; ZIZ:) for small values of n and r. For the
computation we took the cycle indices of the complete graphs from Table 1.

TABLE 2
Some numbers (KnlSn; rl,).

n\r 2 3 4 5 6 7 8 9 10

2 1 2 2 3 2 4 2 4 3 4

3 4 6 13 10 16 16 42 33 40

4 1 11 30 148 205 1181 906 3154 3923 11021

5 1 34 342 5162 21240 259965 396593 2263962 4861983 20909774

It is often helpful for concrete computations to dispose of an effective encoding
of the cycle types of group automorphisms. For this we introduce the cycle index of
the group .4 with automorphism group to be the polynomial

(12)
1

r
() () p()

N II
CeeI) i--1

where s (Sl,S2,...), t (tl,t2,...), and u-- (ul,u2,...). Remember that A(),
#(), and Pi() are the numbers of/-cycles of type 1, 2, and 3, respectively. Note
that the classical cycle index of the automorphism group of A can be obtained by
setting s t u. Some examples of group cycle indices with full automorphism
group are given in Table 3. Note that, for E /, :D is the dihedral group on

TABLE 3
Some group cycle indices.

.4 Z(AIAut(A); s, t, u)

g2 x ZZ4
)3

)4

vertices. Using the information encoded in Table 3 we can compute the numbers
}(I1,; JtlAut(Jt)) presented in Table 4.
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TABLE 4
Some numbers gl(KnJS; AIAut(A)).

2
3
4
5

... g2 4 z 4
2 4 3 5
7 34 17 51

64 1896 469 3547
1908 1152547 88477 2295980

FIG. 4. A subgroup lattice and its abstract subgroup poser.

In the area of ordinary power group enumeration the question of counting orbits
containing surjective functions arises in a natural way. Several counting formulas are
known (see, e.g., [1]). The analogous problem for ordinary voltage assignments is to
count orbits such that the image of the assignment generates the whole voltage group.
More precisely, let

(13) 9(G; A) {F e 9V(G; A) < imF >

Then F (I) acts on 9(G;A) as described by (2). The number of orbits of this
action will be denoted by t(GIF; AI(I)). Our purpose is to develop a formula for these
numbers for automorphism groups (I) of ,4 that satisfy a certain kind of regularity
that will be explained now.

Let (A) be the subgroup lattice of the finite group ,4. Then the automorphism
group (I) of 4 acts on (,4) in a canonical way; the orbits of subgroups
will be denoted by (I)(b/). The subgroup relation which is the partial order of
induces an ordering of the orbits of this action by setting (I)(h() <_ (I)(;) iff there exist
/ E (I)(L/), E (I)()) such that/ _< 9. The poset built up by this relation is denoted
by/(,4/(I)), which we will call the abstract subgroup poset of the group 4.

As an example, consider the subgroup lattice of 22 x 24. The subgroups of
2 X Z4 are ,A1 --< (1, 0), (0, 2) > 2’, JI2 < (0, 1) > 24, ,A3 --< (I, 1)
,4, B1 :< (0, 2) > ’2, B2 < (1, 0) > - 22"2, B3 < (1, 2) >----- 292, and :. The
Hasse diagram of the subgroup lattice is depicted on the left side of Fig. 4.

Now assume that (I) Aut(z2 x 4). There are automorphisms mapping ft.2 onto
.43 and B2 onto B3. The Hasse diagram of the abstract subgroup poset is depicted
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<imF> <imF>

H H

FIG. 5.

on the right side of Fig. 4. We used abstract representations for the members of this
poset. This notation is a bit sloppy but suggestive: ’2 24 contains two subgroups
z’2 that are essentially different in the sense that there is no automorphism in (I)

mapping one of these subgroups onto the other.
We write (u to denote the fixed group of the subgroup b/of A in (I). We say that

( preserves fixed groups, if

(14) u _< v v e u , e ’v lu lU.
It is easy to see that every automorphism group (I) of A preserves fixed groups, if
:(J[) has dimension _< 2.

Let [(I)(H)] be the order ideal of (,4/(I)) generated by (I)(H). We say that the
automorphism group (I) of 4 is order ideal preserving if

(5) [(u)] (u/u),

for every subgroup b/of jr. Clearly, cyclic groups are order ideal preserving, no matter
what automorphism groups are considered; however, there exist groups together with
automorphisms that are not. Consider for example the group z32 For abbreviation
we introduce the symbols a (1, 0, 0), b (0, 1, 0), and c (0, 0, 1). We take the
cyclic group generated by (abc) as automorphism group (I). The group (I)<a,b> is

trivial; it follows that/2(< a, b > /O<a,b>) looks like a diamond, while [(I)(< a, b >)]
is a chain of (3/().

The Moebius function of (A/) is denoted by/((I)(H), (I)())). Remember the
previous definition of (GIF; 4](I)).

THEOREM 3.4. Let the automorphism group ( of ,4 preserve fixed groups and
order ideals. Then the number of orbits of ordinary voltage assignments in 9(G; A)
determined by the power group action described by (2) is

(16) (lr; tl)
(u)e(A/)

Proof. Let ) < Jr. We will develop an expression for (G[F; Vlv)o Let H <
]). Assume that F,/ E ’(G; ]2) are chosen so that < imF > and < im/ > are

isomorphic to H via automorphisms , e (I)v. If/(/(x), /(y)) (F(x, y)) with
(’y, ) e F (I)v, then Fig. 5 commutes with o o -1 (I)v. Clearly, (I)u.
We conclude that H (F) and (/) are in the same orbit of power group
action of F (I)u on 9V(G,b/). These arguments can be conversed by observing that
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each o E @u can be chosen to be in v, since preserves fixed groups. This gives
rise to a bijection between orbits of ordinary voltage assignments F E ’(G; 2) under
F @v such that < im F > is isomorphic to/% via a member of v and orbits of
ordinary voltage assignments in ’(G;/g) under F u. We conclude that

where the last equation follows from the fact that (I) preserves order ideals. Applying
Moebius inversion we obtain

(17) ,(e(u), e(v)) a(alr;uleu).

The assertion follows by using the full group A for/W, rl

Again we consider the particular case of trivial automorphism group of ,4. The
corresponding formula for surjective functions can be obtained by the principle of
inclusion and exclusion.

COROLLARY 3.5. Let su be the number of self-inverse elements of the subgroup
bl of,4, and let ru Ibl[. Then

(18) fi(alr; .(u..4) z(alr; ru. su).

where ru (ru, ru, ), su (su, su, ), and # is the Moebius function of (4).
Table 5 contains numbers a(KI&;AIAut(A)) for small numbers n and groups

A. Each of them is computed by the formula of Theorem 3.4 using the results of
Tables 2 and 4.

TABLE 5
Some numbers

2 1 1 1 0 1 1 0 1

3 3 5 9 3 9 7 8 15 29

4 1 10 29 137 53 204 1141 429 905 3006

5 1 33 341 5128 1874 21239 259590 88102 396592 2258800

4. Topological enumeration. Remember that our original problem was to
count nonisomorphic concrete regular covering projections. We start with a theo-
rem that describes how to characterize such concrete regular covering projections up
to isomorphism by their ordinary voltage assignments and isomorphisms of subgroups
of their voltage groups.

THEOREM 4.1. Let F -(G;.A) and " 9(G;) be ordinary voltage assign-
ments. Then the following are equivalent:

I. (PF, PF) - (P$,, 7).



60 M. HOFMEISTER

2. There exists a bijection o A --+ and / E Ant(G) such that, for every
(x, y) e A(G) and a e 4,

(19) /(7(x), 7(y)) (F(x, y) a) (a)-.
Moreover, can be chosen so that restricted to < imF > is an isomorphism
between < im F > and < im/ >; in this case, maps cosets of < imF > to cosets
of < imF > via (< imF > a) =< imF > (a).

Proof. Let (PF, 79F) - (Pk, 79). Then Fig. 1 commutes for PF and pk with
an isomorphism and 7 Ant(G). Since preserves sheets, we have (x, a)
(7(x), (a)) for some bijection " 4 --+ j. Since is an isomorphism, there is an
edge between (x,a) and (y,b) in GF if[ there is an edge between (7(x), (a)) and
(7(Y), (b)) in Gk. It follows from the definition of derived graphs that b F(x, y)a
and (b) F(7(x), 7(y))(a). The first part of part (2) of the theorem can now be
obtained by a simple substitution.

A short calculation shows that (19) is satisfied with 5(a)"- (a)(1)-1 instead
of (a), too; note that 5(1) 1. Clearly, 5 preserves multiplication; hence it is an
isomorphism between < im F > and < im F > that maps the cosets as claimed by
the theorem.

Conversely, it is easy to see that (x,a) (3,(x),(a)) is the desired graph
isomorphism. [5

For r N, we denote the set of nonisomorphic groups of order r by r. Remember
that n(GIr; AI) is the number of orbits of the action of F x (I) on (G; ,4). The
classification given in Theorem 4.1 is the base of the following enumeration formula.

THEOREM 4.2. The number of nonisomorphic concrete regular r-covering projec-
tions of the graph G is

(20) E E (GIAut(G);HIAut(b/))"

Proof. Let jr, A e Gr. Assume that there are given F E ’(G_; 4) and/5 (G; A)
such that (PF, T)F) (P/, P). Set < im F >= ; and < im F >= ). By Theorem
4.1 there exists an isomorphism o" ) -+ ) such that /(y(x), y(y)) o(F(x, y)) for
some 7 Ant(G). Assume that I;I I)1 d, and let L/ 6d such that ; and
) are isomorphic to b/via isomorphisms X and , respectively. Setting H x(F),
/ )(/), and ;oooX-1 we obtain two ordinary voltage assignments in (G; L/)
that are in the same orbit of power group action by Ant(G) x Ant(L/) via (9’, ).

TABLE 6
Numbers of nonisomorphic concrete regular covering projections of complete graphs.

n\r 2 3 4 5 6 7

2 2 2 3 2 4 2

3 1 4 6 16 10 24 16

4 11 30 201 205 1610 906

5 34 342 7036 21240 348067 396593

Conversely, if H,/ e (G;b/) are in the same orbit via (7, ), set F X-I(H)
and )-(/). Then part 2 of Theorem 4.1 is satisfied with o )- o o X,
extending o to the full group A in the following way. If (ci) and (5i) are representative
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systems for the cosets of ) and ;, respectively (excluding
and (f CA)= (f)5i for f E

Hence there is a bijection between nonisomorphic concrete regular covering pro-
jections of G such that the corresponding voltage assignments generate a group iso-
morphic to/, and the orbits of power group action Ant(G) Ant(5/) on
which proves the theorem. [:]

COROLLARY 4.3. If p is a prime, then the number of nonisomorphic concrete
regular p-fold covering projections is gt(GIAut(G);

Table 6 presents the numbers of nonisomorphic concrete regular r-fold covering
projections of complete graphs Kn for small numbers r and n.
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EXTREMAL CAYLEY DIGRAPHS OF FINITE CYCLIC GROUPS*

XING-DE JIA

Abstract. Let Cay (m, A) denote the Cayley digraph of Zm generated by A, where Zm is the
cyclic group of residues modulo m. Let r(m, A) denote the average distance of Cay (m, A). For any
r >_ 1 and k _> 1 define m*(r, k) as the largest positive integer m such that the average distance
of the Cayley digraph Cay(m, A) is at most r for some set A with k elements. In this paper, an
asymptotic formula for m* (r, 2) is proved and a lower bound for rn* (r, k) is also obtained for k _> 3.
Applications to the construction of optimal distributed loop networks are discussed in this paper. A
lower bound of the average order of subsets for asymptotic bases in number theory is proved using
the main theorem of this paper.

Key words. Cayley digraphs, average distance, explicit construction, extremal problems
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1. Introduction. Let F be a given nontrivial finite group with a generating set
A. The Cayley digraph of F with respect to S, denoted Cay (F, A), is a digraph whose
vertex set is F, and (x, y) is a (directed) edge if and only if x-ly E A. Let rn be
a positive integer. Let Zm denote the additive group of residue classes modulo m.
Let A be a generating set of Z,. We use Cay (m, A) to denote the Cayley digraph
Cay (Zm, A). In this paper, we focus on Cayley digraphs of Zm.

Let x,y Zm, and d(x,y) denote the distance from x to y, and d(Cay (m,A))
denote the diameter of Cay (m, A). For any integers m > 2 and k > 2, define

d(m, k) max d(Cay (rn, A)),
A with

where IAI denotes the cardinality of the set A. For any d > 1 and k > 2, define

rn(d, k) max{m d(Cay (m, A)) _< d for some A withlA k}.

Wong and Coppersmith [22] proved that

m(d,k)> +1
Hsu and Jia [13] proved among other results that

m(d, 2)= [d(d+ 4)J3
+1

for all d _> 2, and as d

1 3 3d 1

i-d + - + O(d) < m(d, 3) < (d+3)3

14- ax/
Jia [18] recently proved that, for fixed k >_ 4 as d

(256) [k/4J
> + O(d ),
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Department of Mathematics, Southwest Texas State University, San Marcos, Texas 78666
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where

1 ifk-0or 1 (mod4),
4

ak= if k--2 (mod4),

27- ifk--3 (mod 4).

Chen and Gu improved this lower bound in [6]. The best-known lower bound is due
to Su [21], who proved that

(55"74)[k/5] () k

n(d, k) >_ k 175 + O(dk-l)

k(5.2844) [k/s] + O(dk-1),

where

1

4/3
4752
2197

2.163

165888
50625

3.2768

if k--0,1 (mod5),

if k_=2 (mod5),

if k_=3 (mod5),

if k--4 (mod5).

Let r(rn, A) denote the average distance of Cay(m, A), that is

r(m,A)
1 E d(0, x),
m

XEZm

where d(x, y) is the distance from x to y. It is obvious that the average distance is
less than or equal to its diameter. In many cases, the average distance reflects more
information about the Cayley digraph.

Given m _> 2 and k _> 1, define

r(rn, k) min r(rn, A).

On the other hand, given a real number r >_ 1 for any finite set A of integers, let
m* (r, A) denote the greatest positive integer m such that the average distance r(m, A)
of the Cayley digraph Cay(m, A) associated with Zm and A is less than or equal to
r. For any real number r _> 1 and any integer k _> 1, define

m* (r, k) max m* (r, A).

In other words, m* (r, k) is the largest positive integer m such that the average distance
of the Cayley digraph Cay(rn, A) is at most r for some set A with k elements. In this
paper, we are interested in these two extremal functions. We shall prove in 2 an
asymptotic formula for rn*(r, 2), namely

27r2 + as r --+ (:x:).
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We obtain in 3 the following lower bound for rn*(r, 3)"

256r3m*(r, 3)_> - + O(r2) 0.351r3 + O(r2).

In 4, using the lower bounds for m* (r, 2) and m* (r, 3), we prove the following lower
bound rn* (r, k) for any fixed k _> 3 as r tends to infinity"

m

k

()k +O(rk_l)

where Yk is a constant defined as follows:

1 if k-=0 (mod3),

0.945 if k 1 (mod 3),

243
0.964 if k 2 (mod 3).

One fundamental goal in constructing a communication network is to minimize
the transmission delay within the network when the number of nodes and the number
of links are given. We often face the following problem when we design a network.
Given a limit to the transmission delay and the number of links that a node can have,
what is the maximal number of nodes a network may have and what is its structure?
The Cayley digraph Cay(rn, A) is often referred as a distributed loop network. Its
vertices represent the nodes of the network, and the edges represent the links in the
network. The diameter of the Cayley digraph corresponds to the transmission delay
within the network, and the average distance of the Cayley digraph corresponds to the
average transmission delay of the network. Distributed loop networks with minimal
transmission delay have been studied extensively by a number of authors, see, for
instance, Wong and Coppersmith [22], Fiol et al. [9], Erdhs and Hsu [8], Hsu and Jia
[13], Hsu and Shapiro [14], [15], and a recent survey by Bermond, Comellas, and Hsu
[3]. In 5, we shall apply the results of this paper to obtain an infinite class of optimal
double loop networks with respect to their average distances and an upper bound for
r(m, k) for k _> 3, which improves that of Wong and Coppersmith [22]. In the last
section of this paper, we study an application to a problem in additive number theory
concerning the average order of subsets of asymptotic bases.

2. Asymptotic formula for m*(r, 2). A subset A of Zm is called a basis of
order h if every element in Zm is a sum of at most h not necessarily distinct elements
of A. For any n E Zm, let f(A, n) denote the least number of elements in A with sum
n. The average order of A as a basis for Zm is defined as

m
nEZn

It is clear that f(A, n) is the distance from 0 to n in the Cayley digraph Cay(rn, A),
and the average order of A is the average distance r(m, A) of Cay(m, A). A similar
result can be found also in [9].
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THEOREM 2.1.

27r2.*(, 2/= + o(1 as rc.

Proof. First, we show that

27r2.*(, 2) >_ + o() s - .
It suffices to construct a basis A {al, a2 } of average order at most r for Z,, where

27r2m + O(r).
Let r >_ 2 be any positive real number. Let

A-lJ, a-3A, rn-a+.

Define A {1, a}. We now calculate the average order r(rn, A) of A as a basis for
Zm. Let n E [0, rn) be any integer. If n E [Aa, rn), we write

n- (n- Aa). 1 + A. a.

Hence

(1) f(A, n) <_ (n- Aa) + for n [Aa, rn).

Now assume that n [ta, (t + 1)a) for some t" 0 _< t < A. Noticing that a 3A,
we see that (t+l)a-A [ta,(t+ 1)a). When n [ta,(t+ 1)a-A), n can be
represented as n (n ta) 1 + t a. This implies that

(2) f(A,n) <_ (n ta) + t for n E [ta, (t + l)a- ).
If n [(t + 1)a- , (t + 1)a), then n + m [( + t + 1)a, ( + t + 1)a + A). Hence we
have

n n + rn (n- (A + t + 1)a). 1 + (A + t + 1).a (mod rn).
Hence

(3) f(A, n) <_ (n- ( + t + 1)a) + (A + t + 1),
for n e [(t + 1)a- A, (t + 1)a). It then follows from (1), (2), and (3) that

m--1 Aa--1 m--1

E f(A,n) E f(A,n) + E f(A,n)
n--0 n--0 n--Aa

- [7A A
2 2

t=O

5Aa
2 2

< 5Aa.

3A2 A
3At A

2 2
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Therefore,

which implies that

m--1 5/3
r(m, A)

1 E f(A, n) <
m a+

n--O

5/3

< 5/ < r,
3/2 + ,k 3

27r2> + + O(r).

We now prove

27r2(4) m*(r, 2)<_ +O(r).

Let A {a, b} be a set such that

m*(r,A) m*(r, 2)-m.

Using a similar argument of Tong and Coppersmith [22], we can show that

25m
r(m, A) >_ 1,

which implies (4) because r >_ r(m, A). The proof of Theorem 2.1 is complete.

3. Lower bound for m*(r, 3). In this section, we shall construct a set A of
three elements, which gives the following lower bound for m*(r, 3).

THEOREM 3.1.

256r3m* (r, 3) _> - + O(r2) 0.351r3 + O(r2).

Proof. Let r >_ 3. Define

b- 4,
c b + ,
m c + 2.

Let A { 1, b, c}. We now calculate the average order r(m, A) of A as a basis for Z,.
Let l_<v_<Aand l_<w_< A be any integers. If hE [m+(v-1)b+wc, vb+

(r + w)c), then

n (n- m- (v- 1)b- wc). 1 + (v- 1). b+ w.c,

which implies

f(A, n) <_ (n- (v 1)b- wc) + (v 1) + w.

Wong and Coppersmith originally considered only a special case where A {1, b}. But their
proof with asuitable modification still works in the general case A {a, b}.
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Noting that

{vb + ( + w)c} {m + (v 1)b + wc} 2A,

we see that

m+(v-- )bWwc_n<vbW(A+w)c

2A-1

f(A,n) <_ E ((v -1) + w + t)
t--0

2A(v + w) + 22 3.

It follows directly from the definition that the interval

[vb + (A + w)c, m + (A + v)b + (w 1)c)

contains A integers. If n is one of these integers, then

n (n- vb- ( + w)c). 1 + v. b + ( + w).c,

which implies that

f(A, n) <_ (n vb (A + w)c) + v + ( + w).

Therefore,

vb+(,kWw)c_n<mW(,kWv)b+(w- )c

A-1

f(A, m) <_ E(v + + w + t)
t--0

3A2 1
a( + /+ a.

Noting that

{m + vb + wc} {m + (A + v)b + (w- 1)c} A,

and that every integer n in [m+ (A + v)b + (w 1)c, m + vb + wc) can be written as

n (n- m- ( + v)b- (w- 1)c). 1 + (A + v). b+ (w- 1).c,

we have

mW(,kWv)bW(w- )c_n<m+vb-t--wc

A-1

f(A,n) <_ E(A + v + w l + t)
t--0

32 3

Therefore,

E f(A,n)
m+ 1)b-bwc_n< +vbWwc

E f(A,n)
m+(v-- 1)b+wc_n<vb+(.,k-bw)c

+ E f(A,m)
vb+(A+w)c_< <m+(A+v)b+(w- )c
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+ E
m-t-(A-4-v)b(w- )c<_n<m+vb+wc

< {e(v + ) +e a}

{ 3A2 1 }+ (+)+ -{ }+ (+)+ -4(v + w) + 5A 5.

f(A,n)

Since v is arbitrary on [1, A], we see that

It is easy to see that the length of the interval [m + Ab -4- wc, m + (w -4- 1)c) is , and
that every integer n is this interval can be written as

n (n-m- Ab-wc). 1 + A.b+w.c.

Hence

m+Ab+wc<_n<m+(w+ )c

A-1

f(A, n) <_ E(A + w + t)
t--0

3A 1=+ -x.
Therefore,

mq-wc<_n<mq-(wq-1)c

Since w is arbitrary on [1, A], we have

f(A, n) E E f(A, n)
w=l m-4-wc<_n<mq-(w+l)c

<- E 4Aw + 7Aa- +Aw-A
’w--1

9A4 3Aa A.
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Similarly,

2--1

E f(A,n)_< E(A +l+t)=4/k2+,
mT(ik+ 1)c_nK2mTc t--0

because the length of the interval [m + ( + 1)c, 2m + c) is 2, and every integer n
in this interval has representation

n (n- m- (A + 1)c). 1 + (A + 1).c.

Therefore,

m+c_n<2m+c

f(A,n) < 9Aa 3A3 + 3A2 +

Finally, we have

r(m, A)
1 E f(A, n)
m m---c_n<2m--bc
9/k4 3A3 + 3A2 + A

4A3 + A2 + 2A
9< -/k r,
4

that is, A is a basis of average order at most r for Zm Therefore,

256r3m* (r, 3) _> m 4A3 q- A2 q- 2A - + O(r2).

The proof is complete. [:]

4. Lower bound for m*(r, k).
THEOREM 4.1. For any k > 1,

r k
(rk_m* (r, k) >_ /k - + 0 ),

where

1 if k=O (mod3),

0.945 if k-- 1 (mod 3),

243
0.964 if k-- 2 (mod 3).

To prove Theorem 4.1, we need the following lemma, which is analogous to
Lemma 1 in [18].

LEMMA 4.2. Let rl >_ 1 and r2 >_ 1 be any real numbers, kl and k2 any positive
integers. Then

m* (rl + r2, kl -t- k2) >_ m* (rl, kl m* (r2, k2).
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Proof. Assume A {a, a2,...,a} is such that

m*(rs,As)=m*(rs, ks) for s=l,2.

Let n be any integer. Let p f(A1, n). Suppose

n=-alil+.-.+aip (modml),

thus,

n nlml + alil -- alip

for some n’. Suppose q f(A2, n’) and

n’ a2 +’." + a2 (mod m2).

Hence,

n a +... + al + ma2 +... + ma2 (mod mm2).

Let A A1 {ma2 ma2k}; then

f(A, n) p + q f(A, n) + f(A2, n’).
Since

r(ms, As) __1 mms
f(As,x),rs

x

we see that A, as a basis for Zmlm2 has average order

r(m, A)
1

f(A, n)
mira2

1 mlm2

(f(d, n) + f(A2, n’)) (where n n’ml + no, 0 no < ml)
mira2 n=l

+
mlm2 =1 =1

1 m 1

x=l x=l

The proof of the lemma is complete.

Proof of Theorem 3.1. If k 3q, we write u r/q. It follows from Theorem 4.1
and Lemma 4.2 that
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It is easy to see that

(5) m* (r, 1) [2r].

We now assume that k 1 or 2 (mod 3). Write k k’ + u, where u 1 or 2. Let
q r/k. It follows from the above argument and (5), Theorem 2.1, and Lemma 4.2
that

m*(r,k) m*(qk’ + qu, k’ + u)
>_ m* (qk’, k’)m* (qu, u)

>_ ( qk’_)
k’

+ o((qk’) }.
k

+ O(rk-l),

where k is as defined in the theorem. The proof of Theorem 4.1 is complete.
We end this section with the following problem.

integer r >_ 1,

lim 1,
k- n(r, k)

Is it true that, for any fixed

r(m, 1)
m-1

For k 2, Wong and Coppersmith [22] proved that

5

3v/
V/- 1 <_ r m, 2)

_
x/- 1,

where the lower bound holds for all m, whereas the upper bound holds for an infinite
family of positive integers m. Theorem 2.1 leads to an infinite family of positive
integers m such that

5
(1 + o(1))x/.

This infinite class of directed double loop networks is asymptotically optimal with
respect to average distances. In fact, we can construct several other infinite classes

where n(r, k) denotes the greatest positive integer m such that there exists a subset
A of Zm for which the diameter d(m, A) of the Cayley digraph Cay(m, A) is no more
than r. This is clearly true for r 1. For more results about n(r, k), see [10], [13],
[18], and [12].

5. Minimal average distance of distributed loop networks. Distributed
loop networks that are optimal or nearly optimal with respect to their diameters have
been studied extensively (see a survey by Bermond, Comellas, and nsu [3]). Since the
average distance of a network reflects its global performance, the investigation of loop
networks that are optimal with respect to their average distances is of great interest
and importance.

It is easy to see that
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of asymptotically optimal double loop networks. For k _> 3, Wong and Coppersmith
proved that

k kk
ek+l

where the lower bound holds for all m, whereas the upper bound holds for an infinite
family of positive integers rn. Theorem 4.1 implies the following.

THEOREM 5.1. Let k >_ 1 be an integer. Then there exists an infinite class of
positive integers rn, for which

r(rn, k) <_ (1 + o(1))-
where

1
6k

1 if k=_O (mod3),

1.058 if k- 1 (mod 3),

243
1.037 if k-2 (mod 3).

This improves the lower bound of Wong and Coppersmith. Moreover, from the
proofs of Lemma 4.2 and Theorems 3.1 and 4.1, we have the precise construction of
the basis corresponding to each rn in the infinite class. We list, to each 1 _< k _< 5, the
infinite class of integers {mr}, the corresponding generating set At, and the average
distance r(mt, At)

k 1: mt t for t 1, 2,...,
At- {1} for t- 1,2,...,
r(mt, At) t-1.

2
k 2: mt

_
3t2 + t for t 1, 2,...,

At {1,3t} for t- 1, 2,...,
r(mt, At)

k=3" mt =4t3+t2+2t fort-- 1,2,...,
At {1, 4t, 4t2+t}fort=l,2,...,
r(mt, At)

k 4" mt 4t4 + t3 + 2t2 for t 1, 2,...,
At { 1, t, 4t2, 4t3 + t2} for t 1, 2,...,
r(mt, At) 11t-24

k 5" mt= 12t5 + 7t4 + 7t3 + 2t2 for t 1, 2,...,
At { 1, 3t, 3t2 + t, 12t3 + 4t2, 12t4 + 7t3 + t2} for t 1, 2,...,
r(mt,At)-- 47t

12"
From our proofs, it is easy to construct many other infinite classes of integers

and corresponding generating sets that give similar average distances. For k _> 2, it
is of great interest to find an infinite class of optimal loop networks with respect to
their average distance, that is, to find an infinite class of positive integers mt and
k-element-generating sets At such that

r(mt, k) r(mt, At) for all t.
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6. Average order of subsets of asymptotic bases. Theorems 2.1, 3.1, and
4.1 can be applied to a problem in number theory concerning the average order of
subsets of asymptotic bases. A set A of nonnegative integers is called an asymptotic
basis of order h if a very large integer is a sum of at most h elements in A. Let g(A)
denote the least such positive integer h. For any h _> 2 and k _> 1, define

Gk(h)- max max g(A\F).
g(A)_h

g(A\F)<oc

This extremal function has been studied extensively by many authors (see, for in-
stance, ErdSs and Graham [7], Nathanson [20], Nash[19], Jia [16], [17], and Chen and
Gu [6]). In this section, we consider the analogue problem with respect to the average
order.

Let A be an asymptotic basis.2 The average order r(A) of A is defined as follows:

r(A) limsup --1 mo f(A, n),
m--, m

n--No

where No is such that every integer n >_ No is a sum of elements in A.
Let A be an asymptotic basis of average order r and F a subset of A. We are

interested in the growth of the average order r(A\F) of A\F in terms of r, the average
order of A. Let r _> 1 be a real number and k a positive integer. Define

G(r) max max r(A\F).
r(A)_r

THEOREM 6.1. For any integer k >_ 1,

r
Gk(r >_ Ak k + l

where

k+l

1.058 if k-O (mod 3),

1 if k-1 (mod3),

1.021 if k-2 (mod 3).

In particular, we have

27r2> +

100

Given a real number r >_ 1 and an integer k >_ 1, let m(r, k) denote the greatest
positive integer m such that the average distance of the Cayley digraph Cay(m, A)
is no more than r for some set A {al 1, a2,..., ak} of integers. It is clear that

In fact, A is not necessarily an asymptotic basis. The only condition we need is that every large
positive integer is a finite sum of elements in A.
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m (r, k) _< m*(r, k) for any r and k. From the proof of Theorem 4.1, the lower bound
for m*(r,k) is also valid for m(r,k). Therefore, Theorem 6.1 follows immediately
from the following theorem and Theorem 4.1.

THEOREM 6.2. For any integers r >_ 2 and k >_ 1,

1
*(r-1 k+l)Gk(r) >_ ml

Proof. Let m m(r- 1, k + 1). Let Ak+l {a0 1 < al < < ak} be a set
such that m*(r- 1, Ak+l) m*(r- 1, k + 1).

Define F {a,...,ak}, and A {1,irn i 0,1,...} t2 F. It is clear that
m Therefore it suffices to show that the average orderthe average order of A\F is 7"

r(A)

_
r.

If q is sufficiently large, it is clear that n E [qm, (q + 1)m) has representation with
the least number of elements

if and only if

n pm +ail +"" + ai

n=al+..-+a (modm)

is a representation of n E Zm aS a sum of elements in Ak+l with the least number of
summands. Since f(A, pm + n) f(A, am + n) if p, q are sufficiently large, we see
that, for some q sufficiently large,

r(A) _1 f(A, qm + n) 1 + f(Ak+l
m m

n--0 n--0

l +r(m,A+) <_ l + (r-1) =r.

The proof is complete. [:]
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FRACTIONAL COVERS AND COMMUNICATION COMPLEXITY*

MAURICIO KARCHMERt, .EYAL KUSHILEVITZ:, AND NOAM NISAN

Abstract. It is possible to view communication complexity as the minimum solution of an
integer programming problem. This integer programming problem is relaxed to a linear program-
ming problem and from it information regarding the original communication complexity question is
deduced. A particularly appealing avenue this opens is the possibility of proving lower bounds on
the communication complexity (which is a minimization problem) by exhibiting upper bounds on the
maximization problem defined by the dual of the linear program.

This approach works very neatly in the case of nondeterministic communication complexity. In
this case a special case of Lovsz’s fractional cover measure is obtained. Through it the amortized
nondeterministic communication complexity is completely characterized. The power of the approach
is also illustrated by proving lower and upper bounds on the nondeterministic communication com-
plexity of various functions.

In the case of deterministic complexity the situation is more complicated. Two attempts are
discussed and some results using each of them are obtaied. The main result regarding the first
attempt is negative: one cannot use this method for proving superpolynomial lower bounds for
formula size. The main result regarding the second attempt is a "direct-sum" theorem for two-round
communication complexity.

Key words, communication complexity, linear programming bound

AMS subject classifications. 68, 94A15, 94A29, 94A49

1. Introduction. Many combinatorial optimization problems can be expressed
as integer programming problems. Relaxing an integer programming problem to a
linear programming problem often gives useful information regarding the original one.
In this paper we apply this technique to the study of communication complexity.

We consider communication complexity in the wide context of computing rela-
tions: we have two players P1 and P2, holding n-bit input strings, x and y respectively.
They wish to find a value z satisfying a relation R(x, y, z). The goal of the players
is to communicate as few bits as possible. This general communication complex-
ity problem contains as special cases the communication complexity of functions, as
defined by Yao [Y79] (and studied in numerous works later on), and the relations
defined by Karchmer and Wigderson [KW88], which are important because of their
close relationship with boolean circuit depth.

It is convenient to count the number of different histories of the protocol. It is
well known (see [K89]) that the logarithm of this quantity is equal (up to a constant
factor) to the communication complexity. In the case of relations corresponding to
circuit depth of boolean functions, this measure gives exactly the formula size. We
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We assume that such z always exists. Alternatively, we can say that if there is no such z then
any output is legal.
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may thus view the communication problem as a covering problem: cover the whole
space of possible inputs by possible histories. As an integer programming problem this
becomes the following: assign 0-1 weights to the possible histories of a communication
protocol such that each possible input is covered with weight 1.

We formalize this integer programming problem and then study the linear pro-
gramming relaxation of it. Two of the most intriguing features of this approach are

It allows one to study the dual linear programming problem. In particular,
one can give lower bounds to the original problems by providing upper bounds
to their dual problems.
It turns out that the linear programming relaxation often has "direct sum"
properties; i.e., the complexity of solving two independent problems simul-
taneously is exactly equal to the sum of the separate complexities. These
results then imply similar results for the original complexity measure.

In this paper we study three different formalizations and relaxations. The first
formalization deals with the nondeterministic case. It is presented first since it is the
most elegant and successful case. Two formalizations for the deterministic case are
Mso presented, neither of them without problems.

Our first formMization, for nondeterministic communication complexity, is studied
in 2. The main results we obtain in this case are

The linear relaxation gives exactly Lovsz’s "fractional cover" measure [L75].
On the other hand it has a natural interpretation in communication complex-
ity terms.
The linear relaxation is always very close to the "true" nondeterministic com-
munication complexity.
We get direct-sum results for nondeterministic communication complexity,
re-proving and strengthening the recent results of [FKN91]. In particular
we show that the linear relaxation completely characterizes the amortized
nondeterministic communication complexity.
Various known upper and lower bounds are given new simple proofs using the
linear programming relaxations.
Some connections are shown with the private-coins vs. public-coins question
in randomized communication complexity.

Our second formalization, studied in 3, considers the "natural" approach to de-
scribing deterministic communication complexity as integer and then linear programs.
Our main concern in this section is with communication complexity of relations that
correspond to boolean circuit depth and formula size (as in [KW88]). The main results
we obtain using this approach are

We give a surprising new proof of Khrapchenko’s quadratic lower bound [KTI]
on the formula size of the parity function.
We show that this approach cannot give superquadratic lower bounds for the
formula size of any boolean function. In particular, the solution of the integer
program may be vastly different from the solution of the linear program.
We give some indication that for monotone circuit depth and formula size,
this approach may yield exponential lower bounds.

The basic failure of the "natural" approach to deterministic communication com-
plexity led us to consider the third formalization, discussed in 4. This formalization
uses a round-by-round approach to communication complexity, and we were only able
to obtain results for one-round and two-round protocols. The main results we obtain
are
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Direct-sum results for deterministic one-round and two-round communication
complexity.
En route we generalized some of Lovsz’s results regarding fractional covers
to the weighted case, results that may be of independent interest. (General-
izations of some of the results were already known [C79].)

The three different sections of this paper are technically nearly independent of
each other. Each section contains an introduction which describes the formalization
studied in the section and mentions the basic results obtained.

2. Nondeterministic complexity.

2.1. Introduction. In the nondeterministic model of communication complex-
ity the two players may act nondeterministically, but once they reach an answer, they
must be sure of its correctness. It is well known that the nondeterministic communi-
cation complexity of a relation R, denoted CN(R), is simply the logarithm (base 2) of
the number of monochromatic rectangles needed to cover the matrix associated with
the function.

DEFINITION 2.1. Given a relation R c_ {0, 1}n >< {0, 1}n >< Z we denote by MR the
matrix representing this relation. That is, each row of MR corresponds to an input
x of P1, and each column corresponds to an input y of P2. The entry (x, y) contains
the set of all z’s that satisfy R(x, y, z). A rectangle of MR is a submatrix of the form
A x B where A,B C_ {0, 1}n. A rectangle A B is called monochromatic if there
exists some element z which is a member of all entries of the rectangle.

DEFINITION 2.2. The nondeterministic cover number of a relation R, denoted
N(R), is the minimum number of monochromatic rectangles that cover MR, allowing
overlaps.

We associate with every relation R a hypergraph HR (V, E) as follows. The
vertices of HR are all possible inputs (i.e., Y {0, 1}n {0, 1}n). The hyperedges
are all monochromatic rectangles. We can write the nondeterministic cover number
as an integer programming problem. Let R be a relation, and let HR (V E) be the
corresponding hypergraph. A nondeterministic cover of R can be viewed as a boolean
function " E - {0, 1}, such that

VveV.
eEE :yEa

The cover number N(R) is defined as mine eeE )(e) where ranges over all non-
deterministic covers of HR.2 We now define the relaxation of N(R).

DEFINITION 2.3. A nondeterministic fractional cover of HR is a real function

" E [0, 1], such that

Vv e v >_
eE ve

The fractional cover number of R, denoted N*(R), is defined as mine -eeE(e)
where ranges over all nondeterministic fractional covers of HR.

2 Note that in fact all the definitions of the various cover numbers do not make any use of
the special structure of the hypergraphs of the form H}{, and therefore can be generalized to any
hypergraph (as in [L75]). For making the exposition more clear we concentrate on hypergraphs of
the form HR. In the technical part of this section we will be interested in the cover numbers of other
hypergraphs as well.
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As mentioned, this definition is just a special case of Lovsz’s definition of frac-
tional covers [L75], and therefore we may apply his more general results. In particular,
Lovsz shows (see Theorem 2.6 below) that the fractional cover number N* can never
be much smaller than the cover number N (clearly, N*(R) <_ N(R), for every R).
Thus, the linear program will give us much information regarding the original nonde-
terministic communication complexity problem. We use this approach to obtain some
very simple proofs of (basically known) upper and lower bounds to nondeterministic
communication complexity.

We now give a simple interpretation for the fractional cover number in the case
of communication complexity: a simple way to give a lower bound to N(R) is to give
an upper bound to the size of any monochromatic rectangle. This can of course be
done relative to any distribution P on X Y: let Boundp(R) maxe Prp(e), where
e ranges over all monochromatic rectangles of R. It is clear that for any distribution
P, 1/Boundp(R) is a lower bound for N(R). It turns out that the best bound one
can obtain this way is exactly N*(R).

where P ranges over all probabilityLEMMA 2.4. N*(R) maxp Boundp(R)’
distributions on X Y.

Proof. By the same argument as above, N*(R) > for every P. There-Boundp(R)’
fore one direction follows immediately. For the second direction we use the primal-dual
theorem for linear programming. The dual of the linear program defining N*(R) is

max (x, y)

where is any real function " V --. [0, 1], such that

/e E E (x,y) <_ 1.

The lemma can be verified by associating with every a distribution P, P(x,y)

The main result we obtain regarding the fractional cover number is that this
measure captures completely the cost of solving simultaneously several problems on
independent inputs. In particular, we show that N* is multiplicative with respect to
the direct sum.

THEOREM. Let R, R1,..., Rk be arbitrary relations. Then,
log N* (R) <_ CN(R) <_ log N* (n) + O(log n),

" 1-IiN*(ni)= N*(R1 ... nk)
These results immediately imply the "direct sum" results in [FKN91]. In fact the

following corollary gives the underlying reason for these "direct sum" results. Let k
be an integer and let Rk denote the "direct sum" of R k times. Namely, to compute
Rk we need to compute simultaneously R on k independent inputs. Denote by N(R)
the amortized communication complexity of R [FKN91], i.e., lim supk__,oc, CN(Rk)/k.

COROLLARY. Let R be any relation. Then, CN(R) log N*(R) >_ CN(R)-
O(log n).

A similar theorem holds for the "one-sided" version of nondeterministic complex-
ity of boolean functions, where the players have to be sure about the output only
if they output 1. In this case, the problem is to cover the l’s of the function us-
ing 1-monochromatic rectangles. (We denote by CNp(f), Cgp(f), and NP*(f) the
analogues of CN(f), Cg(f), and N*(f), for this case.)
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To demonstrate the tightness of our results we exhibit a simple function which
has a large gap between NP(f) and NP*(f), and thus also between CNp(f) and
NP(f). Let NE(x, y) be the nonequality function giving "1" iff the n-bit strings x
and y are not equal. We show

CNp(NE) O(logn) but CNp(NE) O(1).

It is interesting to note that for this function the complexity difference between
CNp(f) and CNp(f) mirrors the complexity difference between the "private-coins"
and "public-coins" variants of randomized complexity. We explain this phenomena
(that randomization in the public-coins model is more powerful than nondeterminism)
and prove that while the (one-sided error) randomized co_mplexity in the public-coins
model can be smaller than CNP(f), it is always at least CNp(f) log NP*(f).

2.2. Direct sums. We start by defining the product of two hypergraphs.
DEFINITION 2.5. Given two hypergraphs H1 and H2 we define their product

H1 H2 by V(H H2) V(H1)V(H2) and E(H H2)
E(H2)}.

The following result of Lovsz is crucial.
THEOtEM 2.6 ([L75]). Let H,H, and H2 be any hypergraphs then

N(H)1. N*(H) _> In
2. N*(H x H2) N*(H) N*(H2).

The first statement directly yields the following corollary.
COROLLARY 2.7. Let R be any relation. Then, log N*(R) <_ CN(R) <_ log N*(R)+

logn + O(1).
DEFINITION 2.8. Given two relations R and S, their direct sum, denoted R S,

is the problem of solving both R and S simultaneously on independent inputs.
Note that usually, for two relations R and S, the hypergraph Hns is not the

same as the hypergraph obtained by the product HR Hs. However, the following
lemma claims that both have the same nondeterministic fractional cover number.

LEMMA 2.9. Let R and S be two relations. Then N*(HRs) N*(HR
Proof. For proving that N*(HRxs)

_
N*(HR Hs), note that if eR is

monochromatic rectangle of Mn and es is a monochromatic rectangle of Ms, then
e es is a monochromatic rectangle of Ms. Therefore, E(Hn Hs) C E(H$).
This implies that every nondeterministic fractional cover defined for HR Hs can
be extended with zeroes to a nondeterministic fractional cover of HRxS, and thus the
inequality follows.

On the other hand, given the optimal nondeterministic fractional cover defined
on E(HRs), we can take every hyperedge e X Y C_ V(H) V(H) with
(e) > 0, and define X,Xs, Yn, and Y8 to be the projections of X and Y on the
first and second coordinates respectively (i.e., the projections on V(Hn) and V(H)
respectively). Now, define en Xn YR and es Xs Ys. These are monochromatic
rectangles of MR and Ms (respectively) and thus eR eS is a hyperedge of HR Hs.
Define, for every e, ’(eR es) (e) (if more than one hyperedge correspond to the
same en, es then ’(eR es) is the sum of (e) for all those e’s). We get that ’ is
a nondeterministic fractional cover of Hn Hs (since the monochromatic rectangle
eR es contains the monochromatic rectangle e) and therefore N*(HR Hs)
N*(H).

We can now get the following set of "direct sum" results.
THEOREM 2.10. Let R, R1,..., Rk be the arbitrary relations:
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R) 1-I N*N*(=l (R);
k N* k Ri) < ik__l (Ri) + log kn + O(1);i=1 log (R) <_ CN(Xi= logN*

N(R) logN*(R).
Proof. The lower bounds on CN follow from Theorem 2.6 and Lemma 2.9. The

upper bounds follow from Theorem 2.6 and Corollary 2.7. The bound for N is
obtained by taking k copies of R and letting k approach infinity. B

By using Corollary 2.7 we can eliminate N* from the statement, getting as a
corollary the somewhat weaker results of [FKN91].

COROLLARY 2.11. Let R, R R be the arbitrary relations:
R) <EC(R)=CN(R)- k logn- O(1) CN(X=i

C(R)- og- O(1) 5(R) C(R)
2.3. One-sided nondeterministic complexity. In the case that boolean func-

tions are computed, one is frequently only interested in the "NP"-version of nonde-
terministic complexity, i.e., where the players need only be sure of the answer in the
case where f(x, y) 1. We denote this complexity by CNp(f). It is not difficult to
see that the corresponding covering problem is simply to cover all the 1-inputs of f
by 1-monochromatic rectangles.

It is straightforward to carry over all of our results to this ce as well, where in
the direct sum of f and g, we need only cover the joint l’s of f and g, i.e., cover the
l’s of f A g. In particular we get the following corollaries.

THEOREM 2.12. Let fi,..., fk be any k functions. Then

k k

c(f) logn o(1) c.(fl ... f) c(f).
i=1 i=1

The following example shows how the above results can be used for proving lower
bounds on the nondeterministic communication complexity.

Example 1. Let the "disjointness" function be defined as follows: DISJ(x, y) is
defined for every x, y E {0, 1}n as 1 if there is no index such that x y 1 (and
0 otherwise). Clearly,

n

DISJn(x,y) A DISJl(x,y).
i--1

Therefore, NP(DISJn) >_ NP*(DISJn) (NP*(DISJ1))n 2n, where the last equal-
ity follows by noting that NP*(DISJ1) 2. Thus we have

CN(DISJn) CNp(DISJn) n.

2.4. Fractional covers and randomized complexity. The following theorem
relates NP*(f) to CR_pub(f)--the communication complexity of computing f by a
probabilistic one-side error protocol (i.e., a protocol that might err only if f(x, y) 1
with probability smaller than, say, 5) in the public coins model.3 It is known that
CR-pub(f) is smaller than CR-priv(f) (one-sided error protocols in the private-coins
model) by at most an additive factor of log n. Clearly, CNp(f) < CR-priv(f).4 We

3 In the public coins model, instead of flipping coins locally, the two parties share a string of
random coins. For a formal definition of themodel and some results on the relations between the
public coins and private coins models, see IN91].

4 The parties "guess" good random coins and run the randomized protocol.
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already proved that log NP* (f) is smaller than CNp(f) by at most an additive term
of log n. To complete the picture we give the following theorem.

THEOREM 2.13. Let f be a function. Then logNP*(f) <_ Cn-pub(f) + 1.

Proof. Given F, a probabilistic one-sided error protocol for f in the public-coins
model, we will construct a fractional cover for the l’s of Mr, as needed. Let r be a
possible (public) random string and let p(r) be its probability. Fixing r, then F is
just a deterministic protocol and therefore induces a cover of the l’s of Mf by at most
2CR-pub() monochromatic rectangles. We add to the cover all the rectangles in which
the output is "1." As the protocol has only one-sided errors then these rectangles
cover only "l"-entries. With each such rectangle e we associate a value (e) 2p(r).
We repeat this process for every possible random string r. We claim that the obtained
cover is what we aim for. First, note that for every (x, y) such that f(x,y) 1 we
have

e: (x,y)ee

1
(e) 2. Prob(F outputs 1 on input (x, y)) >_ 2. 1.

Finally, note that the cover we construct satisfies

We now show that the above theorem can be used to estimate NP* (f).

Example 2. Let the "nonequality" function be defined as follows: NEn(x, y) is
defined for every x,y E {0, 1}n as 1 if x y and 0 otherwise. It is known that
Co(WEn) n, and that CN(NEn) O(logn).5 On the other hand, CR-pub(NEn)
O(1).6 By Theorem 2.13, we get that NP*(NEn) O(1). (Note that for this function
Ca-pub is less than NP.)

In the following example we show how to use these techniques to derive nontrivial
upper bounds on the nondeterministic communication complexity. Interestingly, this
is done without describing explicitly protocols that compute the functions.

Example 3. Let n be a perfect square. Let fn be the following function: view
each input string as x/ substrings of length v (i.e., x xlx2...v-d and y

YlY2...f-a, where 5i,i E {0, 1}v, for every i). Let fn be defined as follows:
fn(x, y) is 1 if there exists an such that 5i i. This function was studied in

[MS82], [F87], and a (tight) O(v/) upper bound was proved for its nondeterministic
communication complexity, using a complex protocol. Here we give a very simple
proof for this upper bound. Clearly, CNp(fn) O(V/).7 Therefore to prove that
CN(fn) O(V/) it is enough to prove that CNp(?n) O(-)"8 For this, we write

-]n(X.) A__ NEf-a(-,i). Therefore, NP*(?n) (NP*(NEf’a)) 4-a which equals

by the previous example to (O(1)) vra. This implies that Cgp(-]n) O(x/).

5 P1 "guesses" an index and sends the index together with xi to P2.
6 The parties can view the public random string as a n-bit vector b and exchange the inner product

of b with x and y.
7 p1 "guesses" and sends and Ni to P2 who checks whether Ni i.
s The trivial upper bound for CNP(]n) is O(vlogn): P "guesses" for every _< _< an

index in which Ni differs from i. It sends to P2 all those indices with their values.
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3. Deterministic complexity: disjoint cover.

3.1. Introduction. As shown, our approach works well for nondeterministic
complexity. In the case of computing functions we do get some nontrivial information
regarding deterministic complexity, as [AUY83] showed that there can be at most a
quadratic gap between deterministic and nondeterministic complexity. In the case
of relations we may get no information at all, as the gap between deterministic and
nondeterministic complexity can be exponential. However, we will show that the
suggested approach leads to some results.

A natural approach to present deterministic communication complexity as a cov-
ering problem is simply to forbid overlap of any two rectangles in the monochromatic
cover.

DEFINITION 3.1. The deterministic cover number of a relation R, denoted D(R),
is the minimum number of monochromatic rectangles in a disjoint (nonoverlapping)
cover of the set of inputs.

As opposed to the nondeterministic case where the nondeterministic complexity,
CN(R), was always O(log N(R)), it is still an open problem whether the deterministic
complexity, Co(R), is always O(log D(R)). However, it is still true that log D(R) <_
CD(R). Furthermore, it is implicit in [AUY83] that log D(R) >_ v/CD(R), and thus
these two measures are quite close. Let us also mention that if Rg is a relation
associated with the circuit depth of a boolean function g ( la [KW88]) then D(Rg)
yields, a lower bound to the formula size complexity.

Therefore it is important to understand the measure D(R). This measure has the
advantage of being more combinatorial than CD(R). As previously, we can express
D(R) as an integer program. For a relation R, let HR (V, E) be the corresponding
hypergraph. A deterministic cover of HR is a boolean function E -- {0, 1}, such
that

VvEV (e)=l.
eEE vEe

The deterministic cover number of R, denoted D(R), is mine -]eeE (e) where is a
deterministic cover. Again, we can relax the integrality condition. Thus, we get the
following definition.

DEFINITION 3.2. A deterministic fractional cover of the hypergraph HR i8 a real

function : E [0, 1], such that

Vv(EV (e) 1.
eEE vEe

D*(R) is defined as mineeE (e) where is a deterministic fractional cover.
Our goal is to prove lower bounds on D(R) by proving lower bounds for D*(R).

For this, we look at the dual linear program which is defined as follows. Let R be a

relation, and let HR be the corresponding hypergraph. Then, by the duality theorem,

D* (R) max w(x, y),
W

vEV

where w ranges over all real functions that satisfy

Ve e E w(x,y) <_ 1.
vE
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It is important to notice that, as opposed to the nondeterministic case, there may
be a huge gap between D(R) and D*(R) (we will present an example below). Still,
lower bounds for D*(R) do give lower bounds to D(R). Our first result does exactly
that, giving a new proof to Khrapchenko’s quadratic lower bound for the formula
size of the parity function, by proving a lower bound for D*(R), where Rn is
the relation associated ( la [KWS8]) with parity.9 The new proof is achieved by
exhibiting an upper bound to the dual problem.

THEOREM. Let R$n be the relation associated with the parity function (as above)
then D*(R) O(n2).

Our major result regarding this approach is negative though. We show that this
method cannot prove superquadratic lower bounds to the formula size of any boolean
function.

THEOREM. Let f be any boolean function and let Rf be the relation associated
with it. Then D*(Rf)= O(n2).

Note that for most boolean functions f, D(R) 2O(n). This result specifically
suggests that anyone aiming to prove lower bounds for the circuit depth of boolean
functions should abandon this approach. However, we do give some indication that
proving lower bounds to monotone circuit depth might be possible using this approach.
This gives another example of the big difference between monotone and nonmonotone
computation.

3.2. Khrapchenko’s lower bound. Khrapchenko [K71] gives the only known
general lower bound for search problems. Let R C_ X Y Z be any relation, and
let M be the corresponding matrix. Let A c_ X Y be any set with the following
properties:

1. V(x, y) e A, [Mx,y[ 1.
2. Vx E X and z E Z there is at most one y Y such that (x,y) A and

Mx,y {z}.
3. Vy Y and z Z there is at most one x E X such that (x,y) A and
M, {z}.

THEOREM 3.3 ([K71]). D(R)>_
As an example of an application of Theorem 3.3 consider the matrix of R

indexed by {x "ix 1} {y’iy 0} and whose (x,y) entry is {i’x y}.
COROLLARY 3.4. D(R) >_ n2.
Proof. Let A { (x, y) Z Y such that d(x, y) 1}.1 It is easy to see that A

has the required properties and provides the desired lower bound.
We prove a slight strengthening of this result.

THEOREM 3.5. D*(R)

_
i)/:i]z

COROLLARY 3.6. D*(R$n >_ n2, with equality for n 2k.
We give here the proof of the corollary. The same ideas with some technical

algebraic calculations can be used to prove Theorem 3.5 in its full generality. In
3.2.1, we give some general heuristics that can help in such proofs. In 3.2.2, we use
these heuristics for proving the corollary.

3.2.1. Heuristics for proving an upper bound for the dual. To prove a
lower bound for D*(R), we only have to exhibit a solution to the dual program. For

9 The relation associated with a function f, denoted Rf, consists of all triples (x, y, i) such that
f(x) 1, f(y) 0, and xi Yi.
o d(, ) I{ }1.
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this, we have at our disposal the powerful paradigm of trial and error. The following
heuristics can be quite helpful in our quest for a solution for the dual problem. After
presenting these heuristics we will use them for the proof of Corollary 3.6.

Let H(Hn) be the automorphism group of HR. A solution for the dual
problem is invariant under H(HR) if w(x,y) w(x,y) for every (x, y) and r E
II(HR). Similarly, we can define invariant solutions for D*. A symmetrization
argument can be used to show that, without loss of generality, the optimal
solutions to both D* and its dual are invariant under II(HR). This clearly
reduces the size of both linear programs.
Intuitively, it is worthwhile to give (x, y) a positive weight if it does not
appear in many monochromatic rectangles. This is because such a positive
weight does not affect many rectangles. Conversely, if (x, y) appears in lots of
monochromatic rectangles then we could benefit by making w(z,y) negative,
thus helping many rectangles without lowering by much the value of D*.
Having decided which pairs (x, y) will get positive weights, we could test this
decision by asking whether the following modified version of M has the same
D*:

//x,y { Mx,yZ otherwise,ifw(,) is positive,

where Z is the set of all possible solutions. In a sense, this means that we
have to assign positive weights to the hardest pairs. Conversely, if we have a
solution for the dual problem, we will get information about the core of the
problem.
Given an optimal solution to D*, the theory of linear programming tells us
which of the inequalities of the dual have to be saturated. In particular, if for
a given monochromatic rectangle e, (e) is positive then the corresponding
inequality in the dual has to be saturated. That is, the sum of the weights of
the entries in e have to add up to one. Given that we suspect that a given
solution to D* is optimal, we can use this information to try to construct a
suitable solution for the dual.

3.2.2. Proof of Corollary 3.6. We will assume that n 2k. For general n
the corollary follows from the theorem. The upper bound follows from the protocol
attaining F(R) < n2, where F denotes the number of different histories in the
protocol. We describe it here: let I {1,..., n/2}. The players start by exchanging
the parities of their vectors on I. That is, @elX and eIY. The players then
continue recursively in either I or In] \ I depending on whether elX elY or
not. It is easy to see that this is a correct protocol with n2 different histories.

The lower bound will follow by providing a specific function w for the dual problem
which add up to n2. At this point we could provide w and finish in two more lines.
Instead, we will reason using our heuristics and derive the desired solution. We
therefore can get away with some informality.

First, we start with a belief that the upper bound just described is optimal.
If so, we know that the inequalities associated with the chosen rectangles have to
be saturated. We therefore have to understand better our upper bound. Let A
{(x, y) E X Y such that d(x, y) I}. A closer look at the protocol reveals that
each of its histories is followed by the same number of entries from A. Furthermore,
each history defines a square rectangle with exactly one entry from A in each row and
column. Note that the set of histories partition MRe.
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Following our first heuristic, w(x, y) will depend only on d(x, y). Following our
second heuristic, it is worthwhile to give entries from A a positive weight. Let us try

y)= a if(x,y) eA,w(x -b otherwise,

for some a and b. We will finish the proof if we find a and b which respect all
inequalities and saturate those associated with histories from our upper bound. This
is because we have n2 saturated rectangles which partition the whole matrix.

Let us look now at the monochromatic rectangles. In each one there is at most
one entry from A in every row or column. Therefore, the heaviest rectangles are the
square ones with exactly one entry from A in each row and column. For a k k such
square we have the inequality

ka- k(k- 1)b

_
1

with equality when k IAI/n2 N (the size of the rectangles in the optimal solution).
Writing the above inequalities as -bk2 + (a + b)k 1

_
0 we have one root of the left-

hand side, namely k N. Noticing that the inequality is only restricted to integral
k, we can let the second root be N- 1 and solve for a and b. This finishes our proof.
For the skeptic, we provide the final values a- 2IN and b- 1/N(N- 1).

3.3. The linear programming bound and boolean relations. Let f (0, 1}n- (0, 1) be a boolean function and let Rf be indexed by f-l(1) f-l(0), and for
(x,y) e f-(1) f-l(0) let the corresponding entry be (i" xi yi). We call rela-
tions of the form Rf boolean relations. For example, Rn is a boolean relation. The
relevance of this definition comes from the following theorem.

THEOREM 3.7 ([KW88]). For every f, d(f) C(Rf and n(f) r(R).
Here, d(f) and L(f) are the depth and formula size of f respectively. For def-

initions of circuits and related material concerning the above theorem see [BS90],
[K89].

Let Un be the relation indexed by (0, 1}n (0, 1)n and for (x, y) e (0, 1}n (0, 1}n,
x y, let the corresponding entry be (i" xi yi). If x y, the corresponding entry
remains undefined. The following claim is trivial and explains why we call Un the
universal relation [K89].

CLAIM 3.8. For every f" (0,
D*(Un).

We will show that the best lower bound for boolean relations attainable via the
linear programming bound is very weak by proving the following theorem.

THEOREM 3.9. D*(U) O(n2).
Proof. We will use some of the ideas behind the logarithmic randomized protocol

for Un [K89]. For S _c In], let As (x iesxi 1} (Y iesYi O} and
Bs (x" @esx 0} (y" @esY 1}. The upper bound of Corollary 3.6 implies
that both D(As) and D(Bs) are at most n2. Let
and Bs into monochromatic rectangles.

It is easy to see that for every x =fi y, (x, y) E As U Bs for exactly half the subsets
S. We will give a weight of 2-(n-) to every rectangle from Use_[nIPs. Each pair
(x, y) with x = y is covered by 2n-1 such rectangles with total unit weight. Also, the
total weight is 2
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3.4. The linear programming bound and monotone boolean relations.
Let f: (0, 1}n (0, 1} be a monotone boolean function. We denote by min(f) and
max(f) the set of minterms and maxterms of f respectively (see [K89] for definitions).
Note that each minterm and each maxterm, as a set of variables, intersect. Let R
be a relation indexed by min(f) max(f) and for (p, q) E min(f) max(f) let the
corresponding entry be p N q. We call matrices of the form R monotone boolean
relations. The following theorem is the monotone analogue of Theorem 3.7.

THEOREM 3.10 ([KW88]). For every monotone function f, dm(f)
and Lm (f) r(R).

Here, d, and Lm denote monotone depth and monotone formula size (see [K89]
for definitions).

As in the preceding section, we define a monotone universal relation. Let Um
be a relation indexed by P([n]) 7)(In]) and for p, q e 7)(In]) with p g q : q} let the
corresponding entry be p N q. If p q 0 the entry of U remains undefined. We
have the following claim.

CLAIM 3.11. For every monotone function f" {0, 1} {0, 1} we have D(R) <_
D(Um) and D*(R) <_ D*(U).

The main reason to define universal relations is to try on them new ideas to prove
lower bounds. The fact that D*(Un) O(n2) means that the best lower bound for
boolean relations attainable with the linear programming bound is at most quadratic.
The following theorem gives evidence to the fact that the linear programming bound
may give exponential lower bounds for monotone boolean relations.

THEOREM 3.12. D*(Unm) >_ dn for some constant d > 1.

Proof. We will construct a feasible solution to the dual problem whose value is
the desired bound. Following our first heuristic, w(p, q) depends only on IP N ql. It is
natural to try the Hadamard matrix ((-1)lPnql)p,qep([n]) ,as the sign pattern for our
weights. We want to give a positive weight to those entries (p, q) with IP N ql 1 and
we must give zero weights to the undefined entries. Let us try

w(p,q) { 0 if pNq= O,
-(-1)lPrnqlc otherwise,

for some constant c to be specified later. Using the fact that

we get

E (-1)lPql 2n

v,qP([n])

E "to(p,q) C" I{(p,q)’pNq 0)1 C" (3n 2n).
p,qP([n])

We now look at the monochromatic rectangles. Let Ri {p:i p} {q:i q}.
Every monochromatic rectangle is a subrectangle of Ri for some i. The pattern of
signs of weights of entries from Ri constitute an 2n-1 2n-1 Hadamard matrix. We
will use the following lemma of Lindsey [ES74, p. 88] which says that minors of a
Hadamard matrix are balanced.

LEMMA 3.13. Let H be an N N Hadamard matrix and let S and T be subsets
of rows and columns respectively. Then,

E Hi,j <_ v/N IS[. ]T
ieS,jeT
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In our case, we use the lemma to show that for every subrectangle R of Ri

E W(p,q) <_ c. x/’2n-2n-2’- < c. 2x/ < c. (x/)n
(p,q)eR

which is less than 1 if c (x/) -n. We have therefore found a feasible solution whose
value is (v/)-n(3n 2n) > dn for any d < 3/v/-.

4. Deterministic communication: two rounds.

4.1. Introduction. The previous approach tried to look at the protocol globally,
and failed. Our next approach deals with the protocol in a round-by-round fashion.
We will associate a covering problem with every round of the protocol. Unfortunately,
we are not able to carry our results to protocols having an arbitrary number of rounds,
but only succeed for one-round and two-round protocols.

To best explain our approach let us first limit ourselves to one-round protocols. 11

Intuitively, in a one-round protocol, P2 partitions the columns of the matrix in a way
that enables P1 to decide on the answer. Formally, we associate with any relation R
the following covering problem. Let X denote the space of all possible inputs to P,
and Y the space of inputs to P2. A set A C_ Y is called compatible if for every x E X
there exists an answer z that is a legal answer for all y E A (i.e., such that R(x,,y, z)
holds for all y A). D (R) is defined to be the minimum number of compatible sets
that are needed in order to cover Y.

It is not difficult to see that logD(R) gives the one-round communication com-
plexity of R (denoted by CD1 (R)). It is also not difficult to see that in this case
the disjoint and nondisjoint covers are the same, and thus when we relax the inte-
ger problem to a linear one, giving D (R), we will be able to use Lovsz’s results
regarding fractional covers. At this point we will already be able to reprove the
"direct sum" results for one-round deterministic complexity obtained in [FKN91],
specifically C_D1 >_ DI

_
Co1- O(logn). In [KRW91] it was conjectu_red that

for every R, Co(R) >_ Co(R)- O(logn). In [FKN91] it was proved that Co(R) >_
v/VD(R)-O(log n). Here we show that the conjecture is true for two-round protocols.

We look at two-round protocols12 in the following way: in the first round, P
partitions the rows of the matrix, and then the parties continue with a one-round
protocol on the subdomain. This can be expressed as the following weighted covering
problem. Our aim is to cover X, where we are allowed to use any subset of X in the
cover, and the cost of using a subset A C_ X is the one-round complexity of solving R
given that x A, denoted D(A).

DEFINITION 4.1. A cover of X is a boolean function " P(X) {0, 1}, such
that

VxX E (A) k 1.
AEP(X) xEA

11 P2 sends to P1 a single message, and P1 then needs to compute the answer.
12 P1 sends a message to P2, who sends another message to P, who computes the answer.
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The weighted cover number of R, denoted D2(R), is defined as

D2(R) min (A)D1 (A)
AeP(Y)

where is a cover.
It is not difficult to see that log D2(R) is equal (up to a constant factor) to

the two-round deterministic complexity, Col.(R). Again, we relax the integrality
conditions and look at the resulting linear program giving D2*. We can now no longer
use Lovsz’s results, as we have a "weighted" covering problem. This problem was
already considered by Chvtal [C79] who extended the first part of Theorem 2.6 to the
"weighted" case. We prove that the second part of Theorem 2.6 can be generalized
as well. We believe that these generalizations are of independent interest. Using
these generalization we can prove a direct-sum result for two-round communication
complexity. In particular, let (YD. (R) denote the amortized two-round communication
complexity of R.

THEOREM 4.2. For every two relations R and S,
D_2(R)D2(S)/poly(n)<_ D2(R S) <_ D2(R)D2(S);
CD. (R) O(CD. (R)) O(log n).

4.2. Weighted fractional covers. In this subsection we present the new no-
tion of weighted fractional covers. This notion will be later used in the proof of
Theorem 4.2.

DEFINITION 4.3. Let H be a hypergraph and let w be a weight function de-
fined on E(H) such that w(e) >_ 1, for every hyperedge e. Given a determinis-
tic/nondeterministic integral/fractional cover the weight function w gives it a weight
w() -]eeE(H) w(e)(e). The weighted cover numbers D(H, w), D* (H, w), N(H, w),
and N*(H, w) are defined as the minimum of w() over all appropriate covers .
(Note that the original definitions, as presented in 2.1, are special cases of the new

definitions with w =_ 1.)
The next theorem is an extension of Theorem 2.6.
THEOREM 4.4. Let H, H1, and H2 be any hypergraphs, and let w, wl, and w2

be weight functions on E(H), E(H1), and E(H2) (respectively) that give weights >_ 1

for every hyperedge (i.e., w(e) >_ 1, for all e e E(H)). Then
N(H,w).1. N*(H, w) In

2. N*(H1 H2, wl w2) g*(gl, wl)" N*(H2, w2), where Wl w2 is defined

Proof. Part (1) of the theorem was proved in [C79]. 13 To prove (2) we first
prove that N* (H1 H2, wl w2) _< N* (H1, wl). N* (H2, w2). Let 1 and 2 be the
optimal-weight fractional covers for H1 and H2 (i.e., those that give the minimum for
g*(Hl,wl) and g*(H2,w2) respectively). Define (el e2) el(el)" 2(e2). We
show that is a nondeterministic fractional cover of H1 H2 and that its weight
is the multiplication of the weights of 1 and 2. Clearly, is a function from

E E(H1 H2) to [0, 1]. In addition, every vertex (Vl, v2) e V(H1 H2) is covered
as needed:

ele2EE (Vl,V2)Eele2 eleE1 Vlel e2E2 v2e2

13 In fact, the result stated in [C79] is somewhat different than the one stated here. However, the
proof in [C79] immediately implies the result stated here.
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Thus, is a legal cover and we get

N*(Hi x H2,w x w2)

eiEE: VlEel e2E2 v2e2

ei6E v6el e2ES2 v2e2

>1.1-1.

For proving the other direction, that is N* (Hi x H2, wl x w2) >_ N* (Hi, wl)
N*(H2, w2), it is convenient to use again the dual program

N*(H, w) max {’T@[AO _< w, @ >_ }.
We can think about every such vector @ as a real function defined over V(H). Let
1 and 2 be the functions that give the maximum for N*(H1, wl) and N*(H2, w2)
(respectively), at the above linear program. Define @(vl,v2) @l(vi)" (I)2(v2). We
show that @ satisfies the conditions in the linear program for H1 x H2 and that
its value (i.e, veV(H xH2)@(V)) is the multiplication of the values of @1 and @2.
Clearly, @ is a nonnegative function defined over V=V(H1 x H2). in addition, for
every hyperedge el x e2 E E(H1 x H2)

Thus,

This completes the proof of the theorem. []
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4.3. Proof of Theorem 4.2. Now, we can come back to the proof of Theorem
4.2. To analyze the two-round deterministic communication complexity of a relation
R, we define the following hypergraph H. The vertices are again all the pairs in
{0, 1}n X {0, 1}n. The hyperedges are all the rectangles of the form A {0, 1}n, where
A C_ {0, 1}n. Now, for each such hyperedge e we define its weight to be D1 (e), the
one-way deterministic communication complexity of computing R on the subdomain
e.

Note that for every relation R, the definitions of H and of D1 imply that
D(H,D1) N(H,D1) and D*(H,D1) N*(H,D1).

We are interested in the relations between D(Hs, D1) and D(H, D1), D(H,
O1). Again, it can be easily verified that D(Hs, 01) <_ D(H, D1). D(H, D1).
For proving connections in the opposite direction, let us concentrate for a while on
the case of computing functions. We need the following lemma.

LEMMA 4.5. Let e e E(Hyxg). That is, e A ({0,1}’ {0,1}n), where
A c_ ({0, 1} {0, 1}n). Let Af and Ag be the projection of A on the first and second
coordinates (respectively). Then,

1. DI((Af Ag) ({0, 1}n {0, 1}n))= DI(AI {0, 1}n) DI(Ag {0, 1}n);
2. D(e)= D((AI Aa) ({0, 1}’ {0, 1}n)).

Proof. (1) was proved in [FKN91]. We now prove (2)" As A C_ AAa then one di-
rection is trivial. Therefore, it is enough to prove that for any B C_ ({0, 1}n {0, 1 }n),
if the submatrix A B is constant in each row then so is the bigger submatrix
(AI Aa) B. By the definitions if A B in constant in each row then for ev-
ery (xl,x2) e A and every (y,y2), (y,y) e B we have f g((x,x2), (yl,y2))
f g((xl,x2), (y, y)). In particular, this means that for every xl e Af,x2 e A and
every (Yl, Y2), (Y, Y) e B we have f(xl, Yl) f(xl, y) and g(x2, y2) g(x2, y),
which gives us what we need.

The following theorem is an analogue of Lemma 2.9.
THEOREM 4.6. Let f and g be two functions. Then N*(Hg, D1) N*(Hy

H2,D1
Proof. The proof that N*(Ha,D1) <_ N*(Hy H2g,D1 01) is similar to the

proof of Theorem 2.9 (second direction), together with the first part of Lemma 4.5
that guarantees that O1(e e)

The proof that N*(Hg,D1) >_ N*(H H2g,D1 D) is similar to the proof
of Theorem 2.9 (first direction), together with the second part of Lemma 4.5 that
guarantees that 01 (e) D1 (eI) D (eg). [:]

Using the last two theorems, we get

D(Hy, D) D(H2g,D) >_ D(Ha, D1) >_ D(Hy, D1) D(H2a, D1)
cn2

for some constant c.
Let us now briefly discuss the case of computing general relations and not neces-

sarily functions. The equality in Lemma 4.5 part (1) does not hold anymore. However,
by [FKN91] the two sides cannot be too far. As a result, Theorem 4.6 is changed as
well and it claims" let R and S be two relations. Then

N*(H H, D1 D1) < N*(Hs, D1)In IV(HR8)
<_ N*(H H,D1
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which implies

H2 D(H D1) D(H D1)D( R, D1)" D(H DI) > D(H2 s,D ) >
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ON LOTTERIES WITH UNIQUE WINNERS*

EYAL KUSHILEVITZt, YISHAY MANSOUR$, AND MICHAEL O. RABIN

Abstract. Lotteries with the unique maximum property and the unique winner property are
considered. Tight lower bounds are proven on the domain size of such lotteries.

Key words, lotteries, lower bounds, symmetry breaking
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1. Introduction. A lottery is a collection of discrete, independent random vari-
ables H1,...,IIN defined over a set {1,...,B}. Sometimes, we associate with each
random variable Hi a player Pi and think of a lottery as a subset of players choos-
ing numbers, each player Pi according to the corresponding Hi. A lottery has the
unique maximum property if for every subset of the random variables II1,... ,IIN,
with constant probability (say 2/3), the maximum value of the random variables
is chosen by exactly one random variable. (Formally, for every non-empty subset
S c_ {1,... ,N}, define the random variable Ms max{iev} Hi. Let Ps be the prob-
ability that I{i E S Hi Ms}l 1. The unique maximum property states that
ps >_ 2/3 for every S.)

A lottery has the unique winner property if for every subset of random variables,
with constant probability, there exists a value that is chosen by exactly one random
variable. (Formally, let qs be the probability that there exists a j E {1,... ,B} such
that I{i S" Hi J}l 1. The unique winner property states that q _> 2/3 for
every S.)

Lotteries with these properties have many applications in computer science, es-
pecially in cases where symmetry breaking is required. Examples include randomized
mutual exclusion algorithms [7, 5], broadcast in radio networks [1], elections in anony-
mous networks [6], and various CRCW-PRAM algorithms [2].

A trivial way to achieve these properties is by letting the participants draw num-
bers uniformly in the set {1,..., B}, where B is "large enough" (compare to N). For
B N with constant probability, the maximum is unique (and with much higher
probability there exists a uniquely chosen value). Unfortunately, in the applications
it is important that B is as small as possible, as this value corresponds to important
complexity measures such as time (in the case of radio broadcast) and space (in the
case of mutual exclusion).

Rabin [7] described and analyzed the following geometric lottery" Let B
log2 N+4. All players use the same probability distribution; for every i, 1 _<

_
B-1,
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Solffle of these applications require the unique maximum property (e.g., the mutual exclusion)
while for others the unique winner property is sufficient (e.g., the radio broadcast).
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the value i is chosen with probability 1/2i. The value B is chosen with probability
1/2B-1. Rabin proved that this lottery has the unique maximum property.

This research was initiated with the motivation of discovering whether this con-
struction can be improved or if it is optimal (in the sense of the number of values,
i.e., B). The results of this note show that it is optimal (up to constants).

A critical point is that the number of actual participants, t, is not known in
advance. If t was known beforehand, we would be able to use the following lottery:
choose the value 1 with probability 1- lit and the value 2 with probability lit. One
can verify that if t numbers are chosen according to this lottery, then with probability
of about 1/e the maximum is unique. (This probability can easily be improved to
2/3.) This way we get a lottery whose number of values B is independent of N.
However, we prove that this cannot be the case when t is not known in advance.2

Namely, we show that every lottery with either the unique maximum property or the
unique winner property requires B fl(log N).3

A different line of research is to give lower bounds for the problems in which
those lotteries are used. Following this research, a significant progress was made in
this direction; in [4], a lower bound for randomized mutual exclusion is proven. From
this lower bound, one can get a lower bound for lotteries with the unique maximum
property, in which all players use the same random variable II. In [3], a lower bound
for broadcast in radio networks is proven. From this lower bound, the results of this
note can be derived. However, the direct proofs in this note are much simpler and
give a better understanding of the problem as well as much better constants than
those that can be obtained indirectly by using the results of [3].

2. Lotteries with the unique maximum property. In this section we prove
that any lottery with the unique maximum property requires t(log N) values.

THEOREM 2.1. Let B be an integer. Let II1,... ,IIg be a lottery for N players
P1,. PN over the set {1, 2,..., B}. If the lottery has the unique maximum property,
then B >_ log6 N.

Proof. We use the following notation: Let A be a set of participants, and let E
be an event; then Pr(EIA denotes the probability that the event E happens given
that A is the set of the participants in the lottery (and each participant Pi E A
uses the corresponding random variable II). We use the following definitions: Let
A c_ {P1,..., PN} be a non-empty set of participants. We define

max Pr(max>jlA) >
I<_j<_B

That is, re(A) is the maximal value j, such that if A is the set of participants in the
lottery, the probability that the maximum number drawn is at least j is greater than
1/2. We also define for every 1 _< t _< N,

rn(t) = min rn(A).
A:IAI--t

This definition satisfies the following trivial properties:
For every A, m(A) is well defined (as at least j 1 satisfies the condition).

Again, this is usually the case in the applications.
Clearly, the t(log N) bound for lotteries with the unique winner property implies the same

bound for lotteries with the unique maximum property. Nevertheless, we present two different proofs
as the proof for the case of unique maximum is much simpler and yields a better constant.
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. For every A, 1 <_ re(A) <_ B; and therefore for every 1 <_ t <_ N, 1 <_ re(t) <_
B.
If A’ c_ A, then m(A’) <_ re(A). This follows immediately from the definition
of m and by the fact that for every j, gr(max _> jlA) >_ Pr(max _> jlA’).
This implies that if t’ < t, then m(t’) <_ re(t) (take A to be a set that gives
the minimum for re(t) and A’ a subset of A of size t’, then m(t’) <_ m(A’) <_
re(A) re(t)).

The following claim says that re(t) is not only non-decreasing but should be
strictly increasing from time to time.

CLAIM. Assume t is divided by 6. Then m(t/6) < re(t).
Proof of Claim. Assume, by way of contradiction, that re(t) m(t/6) jo.

Let A be a set of size t such that re(A) jo (i.e., A gives the minimum for re(t)).
Partition the set A into six disjoint subsets, A1,..., A6 each of size t/6. For each of
these Ai’s, since Ai C_ A, it follows that m(A) <_ re(A) jo. On the other hand,
since IAI t/6, m(A) >_ m(t/6) jo. Thus, m(A) jo. This in particular implies
that Pr(max _> jolAi) > 1/2.

Let M be the random variable that is the number of Ai’s for which the maximum
is at least j0, and let M be the number of Ai’s for which the maximum is exactly j0
or M 0 in the case that any of these maximum values is greater than j0 (i.e., M
and M’ take values in {0, 1,..., 6}). Note that if M’ >_ 2, then the lottery fails. Also
note that

Pr[M’ >_ 2IA] _> PrIM >_ 2[A]- Pr[max _> j0 + l lA].

Since re(A) j0, we have Pr[max >_ j0 + llAI <_ 1/2. By the independence of
choices between the Ai’s and since for each of the A’s Pr(max _> jolA) > 1/2, we
get PrIM >_ 21A > 57/64. All together we get that PriM’ >_ 21A _> 57/64- 1/2
25/64 > 1/3. This contradicts the assumption that the algorithm succeeds with
probability 2/3 for any number of participants.

As re(N) <_ B and m(1) _> 1, the above claim implies B _> log6 N. This completes
the proof of the theorem.

3. Lotteries with the unique winner property. In this section we prove that
any lottery with the unique winner property requires (log N) values. We start by
proving it for the case that all players use the same probability distribution. Then we
prove the general case by reducing it to this special case.

THEOREM 3.1. Let B be an integer. Let II,..., 1-IN be a lottery for N players,
over the set {1,2,... ,B}, such that H HN II. If the lottery has the unique

log6 N) 2.winner property, then B >_ (-
Proof. Let pj be the probability, according to H, of picking the number j. We

consider the probabilities p,p2,...,pB and prove that for every t (1 _< t _< N) there
S Smust be one of the pj that is "close" to lit. Otherwise if all the pj are either

"much bigger" than 1/t or "much smaller" than lit and there are t participants that
choose numbers according to these probabilities, then with a high probability each
number is either picked at least twice or is not picked at all. In such a case there is no
number that is chosen by a single participant (i.e., no unique winner). Therefore, for

Severy t there must be (at least) one of the pj that is "close" to l/t, and this implies
the result.

log6 N) 2 (otherwise, we are done). LetMore formally, suppose that B < (
m 2B + 3 and 0 < c < 1 be some small enough constant (e.g., c 1/6). We
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associate with every probability pj (1 _< j < B) a subinterval Ij [gj, uj] of [0, 1]
that contains pj, in the following way" Let (> 1) be the smallest integer such that
pj < ai and such that ai is not the right point of any Ij,, for jl < j. If such an
exists, then uj c; otherwise uj 1. Let (< m) be the largest integer such that
pj >_ c and such that c is not the left point of any Ij,, for jl < j. If such an
exists, then tj c; otherwise gj 0. As m 2B + 3, by the way of constructing
the subintervals Ij (1 < j < B) there exists an index 1 < < rn such that c does
not belong to any of these subintervals. Consider the case where t 1/c numbers
are chosen. In this case we prove that with a "high probability" each "big" j (i.e.,
j such that pj >_ Oi-1 is chosen at least once and each "small" j (i.e., j such that
pj <_ cti+1) is not chosen at all:

Pr (no "small" j is picked t 1- Pr (some "small" j is picked t

> 1- E Pr (j is picked t
j:pj <_c+1

> 1- E t.pj
j:pj _c

=i-t.
j:pj _ol

’SBy the construction of the subintervals Ij we can bound the pj in the above sum by
the corresponding uj’s that form a geometric progression. Thus the sum is bounded
by ai+1. 1/(1- (). Therefore,

Pr (no "small" j is picked t) >_ 1-
t Ci+1

By the choice of t, this is equal to (1 2c)/(1 c). By the choice of c 1/6, this is
at least 4/5. Similarly, we have

Pr (every "big" j is picked t 1- Pr (some "big" j is not picked t

> 1- E Pr (j is not picked t
j:pj >_ci-

=1- E (1-pj)t.
j:pj >_o-

’SBy the construction of the subintervals I we can bound the pj in the above sum by
the corresponding tj’s. Thus we have

E (1-pj)t<- E (1-e)"j:p >_ci- j:p >_(-

In addition, all the tj’s in the last sum are of the form ck, k < i, and t 1/ci.
Therefore, the last sum is less than

i--1

e-(5)-j=l

By the choice of a 1/6 this stun is at most 1/5; theretbre, the above probability is
at least 4/5. Therefore, with probability at least 3/5 each "big" j is chosen at least
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once and each "small" j is not chosen at all. Hence, when there are 2t participants,
with probability >_ 9/25 > 1/3 each "big" j is chosen at least twice and each "small"
j is not chosen at all. Therefore, with probability > 1/3 no number is chosen by a
single participant--contradicting the requirement about the lottery. The only item
remaining to be verified is that 2t _< N (otherwise there are not enough players). This
follows from our choice of parameters: as t 1/ai, a 1/6, < rn, rn 2B + 3, and
by assumption B < (a log6 N) 2, it follows that t 1/a 6 _< 6m-1 62B+2
61og6 N-2 < N/2. The theorem follows.

In the following theorem we extend the result of the previous theorem to the case
where each player Pi may use a different distribution Hi. The proof is by a reduction
to the case where all players use the same distribution.

THEOREM 3.2. Let B be an integer. Let H1,..., HN be a lottery for N players,
over the set {1,2,... ,B}. If the lottery has the unique winner property, then B >_
d. log6 N, for some constant d.

Proof Assume toward a contradiction that there exist distributions Ha,..., 1-IN
defined over the set {1,...,B}, for B dlog6N such that the unique winner
property, holds (and d is some constant). We construct a distribution H over the
same set that guarantees the unique winner property (with almost the same success
probability4) for any 1 <_ g <_ Na/4 participants. By Theorem 3.1 the result follows.
The distribution H is defined as follows:

Choose, uniformly at random E {1,..., N}.
Choose a number in {1,..., B} according to Hi.

Let 1 <_ g <_ Na/a participants choose numbers according to H. We say that the
choice is good if each participant Pj chooses a different distribution Hi. The first claim
says that this happens with a high probability.

CLAIM. For any 1 <_ g

_
Na/4, the choice is good with probability at least 1-

Proof. The probability that a pair of participants Pjl and Pj. choose the same
Hi is exactly 1IN. Therefore, the probability that among g participants there exists
a pair that choose the same Hi is no more than (). 1IN. As g <_ ga/4 it implies that
the choice is good with probability at least 1 1/v/. [:]

CLAIM. For any 1

_
t

_
N1/4, the probability of having a unique winner is at

least . (1 1/V/-).
Proof. Clearly,

Pr(unique winner) >_ Pr(unique winner]choice is good). Pr(choice is good).

The probability that the choice is good is at least 1 1/v/, by the previous claim.
In such a case we are exactly in the same situation as in the original lottery. By
assumption, this lottery guarantees a unique winner with probability at least 2/3 for
any set of t participants; hence, this is certainly true for a random set of t participants.
The claim follows.

We defined a lottery for Na/4 identical players that has the unique winner prop-
erty. Therefore, by Theorem 3.1, B >_ clog6 Na/4, for some constant c, which com-
pletes the proof of the theorem.

Amplification of the success probability to 2/3 can be done by picking pairs of numbers according
to H, which only slightly affects the constants.
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ALGORITHMS FOR SQUARE ROOTS OF GRAPHS*

YAW-LING LINt AND STEVEN S. SKIENA$

Abstract. The nth power (n >_ 1) of a graph G (V, E), written Gn, is defined to be the
graph having V as its vertex set with two vertices u, v adjacent in G if and only if there exists a
path of length at most n between them. Similarly, graph H has an nth root G if G H. For
the case of n 2, G is the square of G and G is the square root of G2. This paper presents a
linear time algorithm for finding the tree square roots of a given graph and a linear time algorithm
for finding the square roots of planar graphs. A polynomial time algorithm for finding the square
roots of subdivision graphs, which is equivalent to the problem of the inversion of total graphs, is
also presented. Further, the authors give a linear time algorithm for finding a Hamiltonian cycle in
a cubic graph and prove the NP-completeness of finding the maximum cliques in powers of graphs
and the chordality of powers of trees.

Key words, square graphs, power graphs, tree square, planar square graphs

AMS subject classifications. 05C85, 05C50, 05C12

1. Introduction. Given an undirected graph G, the distance between vertices
u and v, denoted by dG(u, v), is the length of the shortest path from u to v in G. The
nth power (n >_ 1) of G, written Gn, is defined to be the graph having V(G) as its
vertex set with two vertices u, v adjacent in G if and only if there exists a path of
length at most n between them, i.e., d(u, v) <_ n. Similarly, graph H has an nth root
G if (n H. For the case of n 2, we say that G2 is the square of G and G is the
square root of G2.

Mukhopadhyay [21] found that a connected undirected graph G with vertices

Vl,...,vn has a square root if and only if G contains a collection of n complete
subgraphs G1,..., Gn such that for all 1 <_ i, j <_ n:

1. Ul<i<n Gi G,
2. vi E Gi
3. vi Gj if and only if vj Gi.

Characterizations of squares of digraphs were given by Geller [13], and charac-
terizations of nth power of graphs and digraphs were given by Escalante, Montejano,
and Rojano [7]. Ross and Harary [23] showed that a graph has an unique tree square
root (up to isomorphism) if it has a tree as its square root.

Although many properties of the square roots of graphs have been discovered, no
efficient algorithms for finding the square root of a graph was known. One reason is
that the mathematical characterization of the squares of graphs involve the concept
of clique, which is an NP-complete problem in general. Furthermore, note that the
characterization given by Mukhopadhyay deals with some n cliques of G which will
have exponentially many candidate cliques. Indeed, Motwani and Sudan [20] showed
that recognizing the general square graphs is an NP-complete problem.

Fleischner [8] proved that the square of a biconnected graph is always Hamilto-
nian. Although the Hamiltonian cycle problem is NP-complete for general graphs
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T T2

FIG. 1. A tree and its square.

[10], the biconnectivity of a graph can be tested in linear time [25]. Thus an efficient
algorithm for finding the square root of some special classes of graphs could be useful
for finding Hamiltonian cycles in these graphs. Unfortunately, Underground [27] had
shown that finding a Hamiltonian cycle in G2 given G is also NP-complete.

In the first part of this paper, we concentrate on the problem of finding the square
roots of graphs. We give an O(m) time algorithm for finding the tree square roots
of a graph in 2 and a linear time algorithm for finding the square roots of a planar
graph in 3. In 4, we propose an O(m2) time algorithm for inversion of total graphs,
which are the square of subdivided graphs.

Optimization problems concerning the square, and more generally the powers, of
graphs are discussed in 5. We prove the following results"

Finding the maximum clique, the minimum independent set, the minimum
dominating set, the minimum clique partition, and the chromatic number in
Gk are all NP-complete for any fixed k _> 1. Also, we show that when G is
a tree, Gk is a chordal graph for any k _> 1, implying these five optimization
problems in Gk can all be determined in linear time [14].
A Hamiltonian cycle in Gk, k >_ 3, can be found in linear time given G. When
G is a tree, the existence of a Hamiltonian cycle in G2 can be determined in
linear time.

We conclude with open problems.

2. Tree square roots. Tree square roots were first considered by Ross and
Harary [23], who showed that they are unique up to isomorphism. Figure 1 presents
a tree and its square. In this section, we present an O(IV + IEI) algorithm for finding
the tree square root of a given graph G (V, E). We will show that the leaves of
the tree square root can be readily identified, and, after all leaves of its square root
have been found, we can trim all leaves from the graph, resulting in a graph that is
the square of a smaller tree. If we repeat this process and build appropriate edges
between the different levels of leaves, the ultimate structure of its tree square root
follows.

Now consider a graph T2 (V, E) which is known to be the square of some
tree T (V, E’). The degree of a vertex v in G, written degG(v), is the size of its
neighborhood. A vertex v is a leaf (or endpoint) of a graph G if degG(v 1.

The longest distance among all vertices of a graph is called its diameter. A tree
with diameter less than or equal to two is called a star. Note that the square of a star
is a complete graph. Recall that a vertex v is simplicial if its neighborhood forms a
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clique.
LEMMA 2.1. v is a simplicial point of T2 if and only if v is a leaf of T or T is a

star.
Proof. Assume that v is a leaf of T. Since N.(v) {u: dT(u, v) <_ 2}, graph

(N2 (V))T can be obtained by starting from a leaf Y and walking at most two steps
in T. The resulting graph has a diameter less than or equal to two, i.e., (N2(V))T
is a star. The square of a star is a complete graph, so (N. (v)T2 is complete, i.e., v
is simplicial. Now assume v is not a leaf and T is not a star. Then there must be a
path (x, v, y, z) in T. Since dT(x, z) 3 implies xz E(T2) and x, z e NT:(V), v is
not simplicial.

For each leaf v of T, we can partition NT(V) into two sets Lv and My, where
Lv denotes all leaves of T in NT(V) and M the set NT2(V)- L,. According to
Lemma 2.1, a leaf node has the lowest degree of any vertex in its neighborhood of T2.
The following lemma characterizes when the degree of a leaf will be strictly less than
the degree of its neighboring internal node.

LEMMA 2.2. Let T be a nonstar tree and v a leaf of T, then
1. For all u c L, degT (u) degT. (v).
2. For all w e My, degT(W) > degT. (v).

Proof. For part 1, let u e Lv. Since (N2(V)}T is a star, we know that N2(v)
N.(u). So degT(U degT2(V). For part 2, let w e My. Since T is not a star,
without loss of generality, there is either a path (v, w, x, y) or a path (v, x, w, y) in T.
For either case, y e NT(W) but y NT(V). We conclude that N2(w) N(v),
Since, by Lemma 2.1, N.(v) C N(w), degT(W > degT2(V). [:]

The center of star T is the central vertex v such that for all other vertices u in
T, dT(u, v) 1. If ITI 2, since there is only one center v in T, we can denote v
by center(T). Let Kn denote the complete graph of size n. The size of Mv,
provides some valuable information.

LEMMA 2.3. Let v be a leaf of T, then
1. if IMvl <_ 1, T is a star;
2. if IMvl 2, say My {x, y}, then xy e E(T);
3. if lM >_ 3, (v, center(M))e E(T).

Proof. For part 1, either IMI 0 meaning T K2 or IMI 1, where again, T is
a star. For part 2, let M. {x, y}. Since v is a leaf, Lemma 2.1 showed that (N:(V))T
is a star. Since INT:(V)I _> IMI 2 meaning IN:(v)l >_ 3, center((N:(v)T) is
well defined. Further, center((N:(v)T) Lv. So, without loss of generality, we
can let x be the center of (N:(V))T. Again, since (N(V))T is a star, y must
be connected to x. So xy e E(T). For part 3, IMvl >_ 3. Since (NT2(V))T is a
star and v is the center, we know that center((NT:(V)lT center((M}T). Clearly,
(v, center((NT(V))T)) e E(T). [:]

Given a tree T, we can delete all the leaves of T resulting in a smaller tree TI.
This trimming operation defines a function trim(T) TI. The trimming operation
can be repeated until the remaining subgraph T is empty. Since each vertex v in T
will eventually be trimmed, we can associate an integer with v specifying the number
of trimming operation taken before v becomes a leaf. This function from V(T) to
[0..[(n- 1)/2J] is recursively defined as follows:

level(v) { 0 if v is a leaf of T
k if v is a leaf of trimk(T)

Lemma 2.1 shows that a leaf has the lowest degree in its neighborhood. The following
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lemma shows the opposite direction. A vertex having the lowest degree in its neigh-
borhood is not always a leaf but we can easily distinguish a low-degree internal node
from a leaf.

LEMMA 2.4. Let T be a nonstar tree and v a nonleaf vertex of T. If degT2(V <_
min{degT. (u) u E NT2 (v) }, then level(v) > 2 and for all x NT2 (v), NT2 (v)

_
N:(x).

Proof. Since v is not a leaf, level(v) >_ 1. Suppose level(v) <_ 2, then there
must exist a u, a leaf of T, such that uv E(T2). By Lemma 2.2, we know that
degT (u) < degT: (v), a contradiction. Let x NT2 (v). The second part has two
cases:

Case 1. dT(x, v) 1. Since T is not a star and level(v) > 2, there exists a path
(x, v, y, z)in T. Now, z e NT.(v) but z N.(x).

Case 2. dT(x, v) 2. Since v is not a leaf, there must be a path (x, y, v, z) in T.
Again, z e NT.(v) but z N.(x).

LEMMA 2.5. Given a tree square T2 (V, E), we can identify all leaves of T by
examining T2 in a total time of O(IEI) time.

Proof. Assume that the graph T2 is given in form of adjacency lists. Let IVI n
and IEI m. First, we can calculate the degree of each vertex totally in O(m) time.
Also, we will maintain a boolean array B, indexed by the vertices V, with size n,
and initialize it by all zeros in O(n) time. Then, for each vertex v of T2, first we
will check whether v has the lowest degree among its neighborhoods in O(degT. (v))
time. If not, v cannot be a leaf in T; otherwise, we can mark B 1 for each
u in NT(V) within O(degT(V)) time, and choosing u such that u has the lowest
degree in NT(V), we can check whether NT2(V) C NT.(u) in O(degT(U)) time, by
polling each elements of NT. (u) in By. If this condition does not hold, by Lemma 2.5,
no vertex of N(v)is a leaf; otherwise, v and those vertices in NT(V) with same
degree as v are all leaves of T. Note that the total time spent on admitting leaves is
bounded by Eevel(v)e{0,1} degT (v). Also note that, since we are picking u, the lowest
degree vertex in NT2(V), the time spent on asking NT(V) C NT(U) for those failed
(nonleaf) v is bounded by degT(X for any vertex x NT(V). Further, if Vl and vl
both failed this test, it implies that dT(Vl, v2) 2, and, for each leaf y of T, both
d(y, Vl) and dT(y, v2) are greater than two. That is, the amount of time failing the

NT (v) NT (u) test is bounded by Eeg degT. (u)+ degT (v) for some F C E(T),
where F is an independent set of edges, i.e., a matching. It follows that the total time
is bounded by E.eT degT.(v) or O(IEI).

THEOREM 2.6. The tree square root of a graph can be found in O(m) time, where
m denotes the number of edges of the given tree square graph.

Proof. Let the given graph be G (V,E) with IVI n and IEI m. Now
assume that there is a tree T such that G T2. By Lemma 2.5, we can identify all
leaves of T in O(m) time. Then we repeat the following procedures.

Let LF(T) denote the set of all leaves of tree T. Trimming T2 by removing all
vertices in LF(T) results in a proper induced subgraph of T2, say T2. This process
takes O(’eLF(T dega(v)) time. For all leaf v, we can partition its neighborhood
into two sets L and My totally in O(EvLF(T degG(v)) time. If for all v, M < 2,
we will conclude that T is a star and terminate the process. Else, if for all v, M > 2,
then G is not a square of a tree; otherwise, we have some v LF(T) such that
M {x, y}, a set of size two. According to the second part of Lemma 2.3, we can
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report that edge xy contains in T. Further, we claim that

LF(T’) U M.
vELF(T)AIMvl--2

To prove this claim, assume that p is a leaf of Tr, meaning there exists exactly one
vertex, say q, in T such that pq E T. Since p is a leaf, there must be a leaf v in T
adjacent to p; otherwise, p will be a leaf of T meaning p T, a contradiction. That
is, {p, q} My. Our claim is proven.

Our claim means that we can find all the leaves of T in O(]LF(T)]) time by
Lemma 2.4, since we will now only need to check which vertex of {p, q} has lower
degree. Treat T as T and repeat the process above until Tr2 becomes a complete
graph, implying T a star. Each pass takes O(-vELF(T degG(v)) to identify the
leaves of T and establish the set of possible leaves of T. If G is a tree square,
eventually each vertex v of G becomes a leaf during the trimming process. That
is, we will spend O(-ev(a)degc(v)) or O(rn) total time finding all internal edges
(those edges which are not adjacent with leaves) of T.

At this point, only the original leaves have not yet been linked to other vertices.
This problem can be solved by recording the internal nodes, M, of each original leaf
v of T. Along with the trimming process, the trimmed level of each vertex v of T,
level(v), is recorded. In detail, we maintain a counter, say k, initialized by zero. Every
time the trimming process is repeated, k is increased by one. Each time a vertex v
is eliminated from the tree, we will record level(v) as k. Note that this fulfills our
definition of level function and takes a total of O(n) time.

Recall that the structure of the internal tree has already been determined at this
point. If G is complete, T is just a star, which we have already dealt with when
we tried to find the leaves. Now we may assume that G is not complete, meaning
IMI _> 2. More precisely, the size of My can be as follows.

Case 1. IMI 2 or My {x, y}. If level(x) level(y) 1, there will be exactly
two set of leaves, say L1 and L2, and we can either link x to L1 and y to L2 or y to
L1 and x to L2. Otherwise, exactly one of x and y is in the level 1. Without loss
of generality, we say level(x) 1, then v and x are linked. This case takes constant
time.

Case 2. IMI _> 3. By Lemma 2.3, we shall link v to center(M). Now we show
how the center(M) is found. First choose two arbitrary x, y from M. If xy T,
pick another z from My, and since (Mv}T, is a star, z is adjacent to, say, x. That is,
x is the center, if xy T. Keep picking z from M and eventually, since (My}T, is a
star, we will find a z such that zx and zy T. z is the center and the search takes

IMvl or O(degc(v)) time.
The process of linking the leaves of T to T’ takes O(eLF(T dega(v)) also

bounded by O(rn). After the tree T has been found, we will now double check whether
G T2. This can be done by examining each vertex v of T and seeing whether

JNT NT(u)UNT(v) NG(v) in O(degG(v)) time, since the time needed for finding

JeNT NT(U) is bounded by 2dega(v using a boolean array, as we have shown in
Lemma 2.5. So totally, it will take O(m) time to finish the last check.

Now we have completed the analysis and description of the algorithm. In sum-
mary, it takes O(m) time to identify all leaves of T, and another O(m) time to trim
the tree and find the structure of T. Finally, to make sure T is indeed the square root
of G, it needs another O(m). We now conclude that the tree square root of a square
graph can be found in linear time.
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3. Square roots of planar graphs. In this section, we present an O(n) algo-
rithm for finding the square root of a given planar graph based on the characterization
of planar squares found by Harary, Karp, and Tutte [16] and the linear time tricon-
nected components algorithm given by Hopcroft and Tarjan [18].

A vertex v is an articulation vertex (or cut point) of a connected graph G if the
removal of v from G results in a disconnected graph. A bridge of a connected graph G
is an edge e E E(G) whose removal disconnects G. A block or biconnected component
of G is a maximal connected induced subgraph of G without articulation vertices. An
n-connected graph G is a graph with at least n + 1 vertices such that the removal of
any n- 1 vertices does not disconnect G [26]. Note that the complete graph Kn is
(n- 1)-connected but not n-connected. A graph is biconnected (triconnected) if it is
2-connected (3-connected.)

THEOREM 3.1 (Harary, Karp, and Tutte [16] ). A graph G has a planar square
if and only if

1. every point of G has degree less than or equal to three,
2. every block of G with more than four points is a cycle of even length, and
3. G does not have three mutually adjacent articulation vertices.

The following discussion concerns the definition of triconnected components given
by Hopcroft and Tarjan [18]. Let G (V, E) be a biconnected graph. A pair of
vertices {a, b} in G is called a separation pair of G if the removal of {a, b} disconnect
G. Let S {Hi Hi is a connected component of (V- {a, b}}}, and {Gi
(V(Hi) U {a,b}/a with ab linked: for each Hi E S}. Each element Gi of 8 is called
the split graph of G with respect to {a, b}. The newly added edge ab, called virtual
edge, is not necessarily in G. Given a biconnected but not triconnected or complete
graph G, we can find one of its separation pairs, {a, b} and split it into split graphs.
If any split graph Gi of G is not triconnected or complete, the splitting process
is repeated until each split graph is either triconnected or complete. The ultimate
split graphs are called the split components of G. The split components are not
necessarily unique. Given a set of split graphs, partition it into two classes" 4 {Gi
Gi a triconnected split component} and T {G G a split component and G
K3}. Merge those split components in T that share edges into a polygon. Let P
denote the collection of the resulting in components. 4 U P is called the triconnected
components of G. Triconnected components are unique and the following theorem
applies.

THEOREM 3.2 (Hopcroft and Tarjan [18] ). The triconnected components of a
graph can be found in O(m + n) time.

An endline of G is an edge uv of G such that either u or v is a leaf. A burr of
G is a maximal connected (induced) subgraph of G in which every bridge is an end
line. By removing all leaves of a burr B in G, the remaining subgraph B is called
the central block of B. Since B does not contain inner bridge, B must be a block or
a single vertex. As shown in Theorem 3.1, if G2 is a planar graph, then for each burr
B of G, either of the following cases is true.

Case 1. The central block B is an even length cycle with more than four vertices.
Let Cn denote a chordless cycle of length n. That is, B C2, for some n greater
than 2. Further, each vertex of B is adjacent to at most one endline.

Case 2. The central block B is a block of size at most four. Each vertex of B
can be linked with at most one leaf, providing it does not violate the conditions of
Theorem 3.1. Such kind of burr has at most eight vertices. That is, a burr consists
of a central block C4 with each vertex adjacent to exactly one leaf.
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Case 3. The central block B consists of a single vertex v, which can be adjacent
to at most three other leaves. That is, B is a star of size at most four.

LEMMA 3.3. The square of a burr is triconnected or complete. Further, each
triconnected component of a planar square G2 is the square of a burr in G.

Proof. Given a graph G (V, E), U C V, v E V, and x V, let G- U denote
(V- V}c and G [2 ax denote the graph (V [2 {x},E t2 ax). First we prove that the
square of a burr is triconnected or a complete graph with at most four vertices. Given
a burr B, we analyze the cases of different burrs based on the size of its central block
g" Case 1. B is a block of size greater or equal to three. We claim that:
(1) B’2 is triconnected orK3. If IB’] 3, B’2 K3. If ]B’ 4, B’2 K4 is
triconnected. Otherwise, B C2n for some n > 2. Consider each pair of vertices,
{u, v}, of C2n. If uv E(C2n), then C2n- {U, V} is still connected. If uv E(Cn),
without loss of generality, let C2n (Pl,u, P2,v), where P1 and P2 represent two
different paths in C2n. Note that in C22n, there exists at least one edge that connects
P1 and P2. That is, C {u, v} is connected or B2 is triconnected.

(2) For each end line vx of B, (B’ [2 xv)2 is triconnected. Let x be the leaf of B
meaning v B’. For each w e B’, delete {x, w} from (B’ xv)2. This results in
a graph B’2 {w}, which is still connected. Otherwise delete {u, v} c V(B’) from
(B’[2 xv)2. B’2 {u, v} is still connected as shown in (1). Note that x is adjacent to
at least three vertices in B’2. So there must exist another vertex w V(B’) {u, v}
that is adjacent to x at the (B [2 vx)2.

By claims (1) and (2) stated above, we can easily see that if B K3, B is
triconnected. The only case we have not mentioned is picking the vertices pair {u, v}
such that both of them are the leaves, but clearly B {u, v} is still connected.

Case 2. The central block is a single vertex. Such a burr must be a star of size
at most four. The square of stars are complete as shown in Lemma 2.1.

Now we proceed to prove that each triconnected component of (2 is the square
of a burr. First we note that vertex {u, v} of (2 is a separation pair of G2 if and
only if uv is the nonendline bridge of G. So the split process will be repeated until
the resulting graphs are triconnected or complete graphs with at most three vertices.
Suppose there is a triconnected component H2 in (2, such that H is not a burr of
G. By the definition of burr, there exists a nonendline bridge uv in H. Because
the removal of vertices pair {u, v} disconnects H2, which means that the splitting
process has not completed, we conclude that H2 is not the triconnected component of
G2

Theorem 3.2 shows that O(m+n) time suffices to find all triconnected components
of a given graph. For our case of planar graph, because the number of edges m _<
3n- 6, we can find all triconnected components in O(n) time.

For G2 to be planar, each large burr in G must be an even-length cycle plus some
endlines in general. Otherwise, the central block will just be a finite graph with size
less than five. The following lemma characterizes the leaves of a large burr.

LEMMA 3.4. Given a planar square graph G2 and a burr B ofG such that IBI > 5,
v is a leaf of B if and only if degs(v 3.

Proof. Since IBI > 5 and B2 is planar, the central block B must have at least
four vertices. Otherwise the condition of Theorem 3.1 will be violated. First we show
that for each nonleaf v of B, degB(V > 3. If B is an even-length cycle C2n such
that n >_ 3, then degs(V _> 4. Otherwise, the central block is a block of size four.
There are at least two leaves outside this size-four block. Again, degs (v) _> 4.
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C Root 1 Root 2 Root 3 Root 4

FIG. 2. Four different roots of C3.

Now we show the each leaf v E B has degree three in B2. Let uv B meaning
u B’. Since B2 is planar, degu(u _< 3. Since B’ is a block, degB,(U _> 2, meaning
degu(u) _> 3. Since degu(u)- 3, degB2(V 3. 13

Now we show that we can efficiently find the original burr by given its square.
LEMMA 3.5. Given a planar graph B2, where B is a burr, the structure of B can

be computed in O(IBI) time.

Proof. Consider various sizes of
Case 1. IBI > 5. By Lemma 3.4, we can identify all leaves of B within

time by examining the degree of each vertex. Let L be the set of leaves in B. There
can be two possibilities.

Case 1.1. ILl 0. Then B- C2n for some n_> 3. If B- C6, there are four
distinct labeled graphs whose square is equal to C3 as shown in Fig. 2. For n > 3, the
identification of C2n is unique since edge uv C2n if and only if INcn(u) ANn(v)I
3. In linear time we can trace the exact labeling of C2n

Case 1.2. ILl > 0. Choose an arbitrary vertex v from L and delete all vertices
L- {v} from B. The resulting graph will just be a graph of structure (v U C2n)2

for some n _> 2. Since we know that the vertex v is its leaf, one of vertices NB(V)
{a, b, c} is adjacent to v in B. It is easy to verify that av B if and only if INB.(a)
NB.(b)l INB.(a) NB.(c)I- 3. Say av B, meaning ab and ac B. Since for
x : v or c and x NB.(b), bx B if and only if ax B, once we know ab, ac B,
we can trace the cycle out by this scheme. This process can be repeated until the
whole structure of B is revealed. It can be done in

Case 2. IBI- 5. For this finite graph, all possible structures of B are as follows.
Case 2.1. B (C4 plus an endline). This case there are six possible arrangements

of vertices to constitute B as shown in Fig. 3.
Case 2.2. B (K3 plus two endlines). Again, there are six possible arrangements

of vertices to constitute B as shown in Fig. 4. One thing interesting about this case is
that there is only one possible (up to isomorphism) square burr for size five. We have
shown it has 12 distinct labeled roots and two different (up to isomorphic) roots.

Case 3. IBI 4. All possible structures of B are a star with size four and possibly
adding any edges or Ca.

Case 4. IBI- 3. B is a path of length two or K3.
Case 5. IBI

_
2. B is K1 or K2.

It has been shown that for a large burr, the structure of B can be revealed in
O([BI) and for the finite size of B, the structure of B can be found in constant time.
We conclude the structure of B can be determined in O(IBI) time. 13
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(Ca -t-e) 2 Root 1 Root 2 Root 3

Root 4 Root 5 Root 6

FIG. 3. (C4 + e) and its six different roots.

Given a square burr B2, we have just shown that the structure of B is not neces-
sarily unique. Also note that not all combinations of arbitrary burr roots constitute
the root of G2. So to complete the determination of the square root of G2, we must
identify all inner bridges of G. The following lemma shows that it can also be done
efficiently.

LEMMA 3.6. Given G2 a planar graph, all inner bridges of G can be found within
O(n) time.

Proof. Without loss of generality, we assume that G is connected. Say G2 consists
of k square burrs, B/, 1 _< <_ k. By Lemma 3.3 and Theorem 3.2, these square burrs
can be identified in O(n) time. If k 1, then there is no inner bridge in G. We will
now only consider the case that k > 1.

B2 2 2Let/-{By’BiisaburrofG}and$-{( i,Bj)’[B/NBj[-2}. We claim
(B,$) defines a tree. Note that (B,$) is connected. Suppose there exists a cycle
(BI,B,... ,B) in (B,$) where m is the length of the cycle. Then UI<i<,Bi is a
burr, which violates the assumption that Bi is a burr. Therefore (/,t) must be a
tree. It implies that k _< n.

Recall that, for each two burrs Bi and Bi of G, either B/ N B 0 or B/ N
2 Otherwise,B {u, v}, which implies uv is the inner bridge between B/ and B.

2[B/ N B]- 1, and there is an intermediate burr By, which is either a Ka or K4, such
that IB By ]B B] 2. Now, repeat the following process for each B/.

First, for each burr B, insert the number to each of its vertices, v. Note that
each vertex can be associated with at most four burrs since the degree of each vertex
in the root can be at most three. Denote the list of burrs associated with vertex v by
nv.

Now, for each vertex v, if the number of square burrs associated with v is at least
two, visit every vertex u in the neighborhood of v. If [{A Av} {i, j}[- 2, then
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(C3 + 2e)2 Root 1 Root 2 Root 3

Root 4 Root 5 Root 6

FIG. 4. (C3 + 2e) and its six different roots.

we can claim that uv is the inner bridge between two burrs Bi and Bj.
The first step of the strategy just mentioned can be done in O(IBiI) for each B/2.

Recall that, for each v in G, IAvl _< 4. Thus the second step can be done in constant
time for each vertex v. Totally, we will need -l<<k IBI + -v 1, which is exactly
O(n + 2k 2) + O(n) O(n) operations (remember that (B, $) is a tree). This
completes our proof.

THEOREM 3.7. The square root of a planar graph G2 can be found in O(n) time.

Proof. By Lemma 3.3, the square burrs of G2 can be found in O(n) time. By
Lemma 3.6, the inner connection between those square burrs can be found in O(n)
time. By Lemma 3.5, the structure of each burr B can be found in O(IBI) time.
Since we have shown in Lemma 3.6 that -i IBI < 3n, the result follows.

4. Inversion of total graphs. Given a graph G (V, E), its total graph [15],
T(G), has vertex set V U E with two vertices of T(G) adjacent whenever they are
neighbors in G. If uv is an edge of G, and w not a vertex of G, then uv is subdivided
when it is replaced by two edges uw and wv. If every edge of G is subdivided, the
resulting graph is the subdivision graph S(G) [15]. Behzad [2] showed that, given a
graph G, the total graph T(G) is isomorphic to the square of subdivision graph S(G).
Behzad and Radjavi [3] showed that the two graphs G, H are isomorphic to each other
if and only if T(G) - T(H). We give a polynomial time algorithm for the inversion
of total graphs by reducing it into finding square roots of the squares of subdivision
graphs. Recently, we have learned of a similar result by Gavril [12].

Given a graph G (V, E) and its subdivision graph S(G), we call the set of
newly added vertices W, such that V(S(G)) V U W. By Behzad’s result, we
know that T(G) IS(G)] 2. Given v E V, we call I(v) Ns(a)(v) C W, the inner
neighborhoods of vertex v, and O(v) NG(v) C V, the outer neighborhoods. Note
that NT(G)(v) N[s(G)].(v) I(v) U O(v). We observe the following.
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FIG. 5. I(v)= NT(G)(v N NT(G)(w --{u} in total graph.

LEMMA 4.1. Let uv be an edge of G and w the subdivided vertex of uv implying
uw, wv E S(G). Then

(i) I(v) NT(G)(v) N NT(G)(w) {u}.
(iN) For each pair (w’, u’) I(v) O(v), w’u S(G) if and only if

Proof. (i) Since, for each x O(v) {u}, ds()(w, x) 3, it follows that I(v)
NT(G) (v) N NT(G)(w) {u} as illustrated in Fig. 5.

(iN) The only if part is trivial by (i). Now assume that {u’} NT(G)(w’)
NT(G)(v)- I(v). Note that ds(G)(u’, w’) _< 2 and d(G)(u’, v) 2. It follows that
u’v’ S(G).

Given a graph G, recall that a maximal clique of G is an induced complete sub-
graph of G, such that no other vertex in G cnn be added in to form a larger clique.
We find a way to tell whether an edge uv is in the square root graph by examining
these maximal cliques in the square containing both vertices u and v.

PROPOSITION 4.2. Given a graph G (V, E) and an edge uv of G, there are at
most two maximal cliques of size three containing both u and v in G2.

Proof. Let K {u, v, w} be a maximal clique in G2. Note that it is not possible
that da(u, w) dG(v, w) 2 in G because that will imply that K is not maximal.
So, without loss of generality, we can assume that uw is an edge of G. Note that
v nd w are the only vertices allowed to be adjacent to u, since otherwise K will
not be maximal. It is possible that v can be adjacent to a vertex w = w such
that YG(v) {u, w’} implying {u, v, w’} also being a maximal clique, but that is all
possible maximal cliques of size three we can have containing both u and v.

PROPOSITION 4.3. Given a graph G (V, E), an edge uv of G, and w the
subdivided vertex of uv in S(G), then degT(G)(V 2, and degT(G)(w degT(a)(u)+
degT(( (u) both u and v in G2.

Proof. The proof of this proposition is based on the fact that T(G) IS(G)] 2,
and we will leave it to the reader.

THEOREM 4.4. The inversion of total graphs can be done in O(m2) time where
n and m denote the number of vertices and edges of the given graph, respectively.

Proof. Given a graph H, our goal is to present an algorithm for finding a graph
G such that H T(G) IS(G)]2 in O(IE(H)I2) time. Without loss of the generality,
we will assume H, and thus G, is connected. Our strategy is to pick a triple{u, v, w}
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in H such that vw and wu are in S(G), so that we can use Lemma 4.1 to trace the
structure of S(G), which is the square root of H, and then the graph G is easily found
from S(G).

Assume that H contains n vertices and m edges. First we can construct the
adjacency matrix of H in O(n2) time. Now consider the graph G we are looking for.
By Proposition 4.3, if a vertex v has the lowest degree in G, so does v in T(G), that is,
the given graph H. So we begin by sorting all vertices of H according to their degrees
in H. Since the maximum degree of all vertices in H is bounded by n, by using the
bucket sort method, the sorting process can be done in O(m). Denote the lowest
degree of all vertices in H by 5. It is clear that some vertex v in H with degree 5 will
be also a vertex of G (with degree 5/2), and there is at least a vertex w NT(G)(V)
such that vw is also in S(G).

Let a denote the number of degree 5 vertices in T(G). It is clear that the number
of possible candidates of vw in T(G) will be a5 O(m). To apply the result of
Lemma 4.1, we also need to find a vertex u in T(G) such that vw and wu are all in
G. Fortunately, Proposition 4.3 assures us that the number of candidates of such u
is at most two. To find all maximal cliques of size three containing vw in T(G), we
can examine the set n NT(G)(V) C NT(G)(W) in 0(5) time and eliminate any pair
{x, y} C A from it resulting a smaller subset A’ if xy E T(G), which can be done in

0(52) time, which is still bounded by O(m). Again, note that the size of A’ is at most
two by Proposition 4.3.

Now we have a triple {u, v, w} forming a maximal clique in T(G) and suggesting
that vw and wu are two edges of S(G). So we can apply Lemma 4.1 to trace the
structure of S(G) in O(m + n) time by a breadth-first-searching method described as
follows. First, for each vertex w in the inner neighborhoods, I(v) that can be found
in degT(a)(v time, we know that vw’ E(S(G)) by part (i) of Lemma 4.1. Also,
for each u’ e NT(a)(w’), we know that u’w’ e E(S(G)) if u’ is also in NT()(v) but
not in I(v), which we can tell in O(degT(c)(w’)) time. By propagating this procedure
to each vertex in T(G) by using a breadth-first-search method, it takes a total of

O(,eT(C O(degT()(v))) O(m) time.

To avoid estimating an incorrect {u, v, w} triple, we will need to double check
whether H IS(G)] 2. This can be done by examining each vertex v of S(G) and see
whether [-JeNs(G) NS(a)(u)U Ns(()(v)= NH(V) in O(degH(v)) time, since the time

needed for finding gs(G) N,()(u) is 2deg(v) if v G, or degG(x) + deg(y) if
v is the subdivided vertex of an edge xy of G, as shown in Proposition 4.3.

Now we have completed the analysis and description of the algorithm. In sum-
mary, it will spend at most O(m) time for each possible triple {u, v, w}, whereas the
number of candidate triples is bounded by O(ah). Since we need the time to initialize
the adjacency matrix of H, the total time bound will be O(n2 + ohm). In the worst
case, it will take O(m2) time, although in most of the cases that a5 will be much
smaller than m thus the time complexity will collapse into O(n2).

5. Optimization problems on power graphs. Here we present a number of
our results concerning the square, and more generally, the powers of graphs. In 5.1,
we give a linear time algorithm for finding a Hamiltonian cycle in cubic graphs. In
5.2, we prove the NP-completeness of finding the maximum cliques in powers of
graphs by transformations from the general maximum cliques problem. In 5.6, we
prove the chordality of powers of trees by showing that they have the intersection
model of subtrees of a tree.
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V

FIG. 6. Finding a Hamiltonian cycle in a cubic tree.

5.1. Hamiltonian cycles in powers of graphs. Fleischner [8] proved that
the square of a biconnected graph is always Hamiltonian. Harary and Schwenk [17]
proved that the square of a tree T is Hamiltonian if and only if T does not contain

S(K1,3) as its induced subgraph. Here S(K1,3) denotes the subdivision graph of the
complete bipartite graph K1,3 or the size four star.

A graph G is Hamiltonian connected if every two distinct vertices are connected
by a Hamiltonian path. Sekanina [24] proved G3 is Hamiltonian connected if G is
connected. It implies that if the size of G is greater or equal to three, then G3

is Hamiltonian. However, we have found no analysis of the complexity of finding
Hamiltonian cycles in cubic graphs in the literature. Here we present a linear time
algorithm (in terms of the vertices and edges number of G) for finding a Hamiltonian
cycle in G3 if G is given.

THEOREM 5.1. Given a connected graph G (V, E) with size at least three and
an integer k >_ 3, we can find a Hamiltonian cycle in Gk within O(IV + [E[) time.

Proof. We will prove this theorem by giving a linear time algorithm for finding a
Hamiltonian cycle of Gk. First, we will find a spanning tree, T, of G while linear time
suffices by using a simple depth-first-search algorithm, assuming the given graph, is
represented in form of adjacency lists. Our goal is to find a Hamiltonian path h in T3;
it follows that uv + h will be a Hamiltonian cycle of T3 and thus a Hamiltonian cycle
of G3. Since E(Gi) c E(G+1) for any positive integer i, uv + h is also a Hamiltonian
cycle of Gk.

We start by selecting an arbitrary edge uv of T. After deleting uv from T, we
separate T into two smaller trees, T1 and T2, containing u and v respectively, as shown
in Fig. 6.

If u is also adjacent to some vertex u in T1, we proceed to find a Hamiltonian
path P1 from u to u in T1, by recursively applying the algorithm; otherwise, u itself
is the Hamiltonian path we want. The same procedure will be applied in T2, only this
time we construct a Hamiltonian path P2 from v (a vertex adjacent to v in T2) to v.
Since the last vertex of P1 (u or u) has distance at most three from the first vertex
of P2 (v or v), it follows that P concatenating with P2 is a Hamiltonian path from
u to v in T3.

To demonstrate that this algorithm can be done in linear time, we must show
that the deletion of uv from T can be implemented in constant time. Note that
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the conventional adjacent lists representation might take O(n) to delete an arbitrary
edge, thus resulting an O(n2) algorithm. Therefore, we use a double linked list N(v),
forming a ring, to represent the set of all neighbors of each vertex v in T. Each element
of N(v) has a pointer that points to an edge e uv, for some u. For each vertex v
of T, we use a cell containing a pointer that pointing to the double-linked list N(v).
For each edge e uv, we use four pointers pointing to u, v, N(u), and N(v). Thus,
to delete an edge e uv, we start from e, following its link to locate the position of
e in N(v), delete it in constant time, then locate v, and link it to any element of this
newly modified N(v). The part of u and N(u) can be handled symmetrically.

Let ITI IYl n, ITll nl, and IT21 n2, and let time(T) define the time
needed to perform our algorithm. Since n nl + n2 and

time(T) time(T1) + time(T2) + constant time for deleting uv,

by induction, time(T) time(T1)+ time(T2.)+ c O(n)+ O(n2)+ c O(n). So we
now conclude that finding a Hamiltonian cycle in a cubic (or higher powers) graph
can be done in linear time.

5.2. Maximum cliques of power graphs. Recall that a clique in a graph G
is maximum if it is the largest induced complete subgraph of G. Here we prove that
finding maximum cliques in powered graphs is NP-hard by transformation from the
general problem of finding the maximum cliques in arbitrary graphs.

THEOREM 5.2. Let G (V, E) be a graph. Then, for any fixed integer k > 1,
finding the maximum clique of Gk is NP-complete.

Proof. Note that, for the case of k 1, this problem is to find the maximum
clique in G, which is NP-complete as shown in [10]. Let IE(G)I- m. Now we will
prove the theorem for the case that k > 1. We divide the problem depending upon
whether k is even or odd.

Case 1. k 2p+2, for somep > 0. Construct a graph G according to the
following transformation. For each edge uv E E, construct a set of 2p + 1 new

vertices, Vv {[uv]0, [UV]l,..., [UV]2p}. Let W UuvEEVuv, the new vertices in
Gp. Link these vertices of Vv with u and v to form a path by adding the edges
Eu, {([uv]i, [uv]i+l) 0 < < 2p} U {(u, [uv]0), ([uV]2p, v)}. Note that [UV]p is
the unique center vertex in Eu. Link these center vertices in G by defining C
{([UV]p, [u’V’]p)" for all uv, u’v’ e E}. Figure 7 illustrates this transformation.

Now construct the graph G- (V, E) by defining

V’ VUW,
E’ UuveEEuv U C.

Since, for each pair of vertices x V, y V,.,, the path from x to [UV]p, to [u’V’]p,
and, finally, to y has length at most 2p + 1 k- 1. It follows that for each pair
v V and w W, dc,(v, w) < k, implying that W U v forms a clique in (pk for any
v E V. Also notice that, for each two vertices, u and v, of V, uv E if and only if
dc,(u, v) k. Thus, a subset of V, Q of size q, is a clique of G if and only if X U W
is a clique of (G)k. That is, G has a clique of size q if and only if Gk has a clique
of size (k 1)m + q. Since clearly G can be constructed in polynomial time, finding
the maximum clique in (k is NP-hard for the case of even k.

Case 2. k 2p+ 1, for some p > 1. The construct of the graph G is similar to the
even case except that we now add an additional kernel vertex c to Gp. For each edge
uv e E, construct a set of 2p new vertices, Vuv {[uv], [uv],..., [uV]2p}. The new
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FIG. 7. The transformation of even powers of a graph.

FIG. 8. The transformation of odd powers of a graph.

vertices in G will be W U,6EVuv U {C}. Link vertices of Vuv with u and v to form a
path by adding the edges Buy {([uv]i, [uv]i+l)" 1 _< < 2p}U{(u, [uv]0), ([uv]2p, v)}.
Note that [UV]p and [UV]p+i are two center vertices in Euv. Link these center vertices
with the kernel c by defining C- {(c, [uv]i)" for all uv E E, 9,p + 1]}. Figure 8
illustrates this transformation.

Again, construct the graph Gt- (W, E) by defining

V’-VoW,
E U,eEE U C.

Since for each pair of vertices x Vu, y V,v, the path from x to y defined by
concatenating the shortest path from x to c and from c to y has a length at most
2p k- 1, it follows that, for each pair v G V and w W, da,(v, w) <_ k, implying
that WUv forms a clique in Gk for any v E V. Also notice that, for each two vertices,
u and v, of V, uv E if and only if da,(u, v) k. Thus, given X, a subset of V, X is
a clique of G if and only if X U W is a clique of (Gt) k. That is, G has a clique of size
q if and only if Gk has a clique of size (k 1)m + 1 + q. It is not difficult to verify
that G can be constructed in polynomial time; thus, the problem is NP-hard for the
case of odd k.
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Since the problem is clearly in NP, we now conclude that the problem of finding
the maximum clique of Gk is NP-complete for any fixed integer k > 1.

5.3. Maximum independent sets of power graphs. Given a graph G and
a positive integer k > 1, the transformed graph G described in the previous proof
is uniquely defined. We can denote this transformation by G (G, k). The most
interesting property of this transformation is that, for every two distinct vertices u, v
of G, we have

(1)

and

uv G d(G,k)(u,v) k + 1

(2) uv E G ,===v d(G,k) (u, v) k.

Further, for every two new vertices x, y E W of (I)(G, k) and each original vertex
v of G, we have

(3) d(G,k) (V, X) _< k and d(,k)(x, y) < k

Thus, O(G, k) k, the kth power of the transformed graph (I)(G, k), still contains
the information of the original clique. That is, assuming Q c V(G), Q is a clique in
G if and only if Q is a clique in (I)(G, k) k. This observation essentially constitutes the
proof of Theorem 5.2. Interesting enough, we will find that (I)(G, k) k also contains
information of the original independent set. Formally, we have the following theorem.

THEOREM 5.3. Let G (V, E) be a graph. Then, for any fixed integer k > 1,
finding the maximum independent set of Gk is NP-complete.

Proof. For the case of k 1, this problem is to find the maximum independent set
in G, which is NP-complete as shown in [10]. Otherwise, we can reduce the problem
of finding the maximum independent set in arbitrary graphs to this problem for any
fixed k > 1.

Given an arbitrary graph G (V, E), we can construct the graph O(G,k) in
polynomial time as shown in the proof of Theorem 5.2. We will now show that G
has an independent set of size a if and only if (I)(G, k) has an independent set of
size a. Let I, III= c be an independent set of G. By equation (1), I is clearly an
independent set of(I)(G, k) k.

On the other direction, let I, III= a, be an independent set of o(G, k) k. Without
loss of generality, we can assume c > 1. By equation (3), I can not contain any new
vertex (W); thus I c V. Again, by equation (1), I is an independent set of G.

5.4. Coloring and cliques partition of power graphs. Given a graph G, a
clique partition of G is a partition {V1,..., Vk } of the vertices of G such that each V/,
1

_
i _< k, is a clique in G. The minimum clique partition of G is a clique partition

with the smallest possible k. A vertex coloring of G is a partition {V1,..., Vk} of
the vertices of G such that each V, 1 _< _< k, is an independent set in G. The
minimum vertex coloring of G is a coloring with the smallest possible k. Once again,
the transformation (I) can be used to prove the the hardness of finding a minimum
clique partition or finding a minimum coloring of in a power graph.
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THEOREM 5.4. Let G (V, E) be a graph. Then, for any fixed integer k >_ 1,
finding the minimum clique partition of Gk is NP-complete.

Proof. For the case of k 1, this problem is to find the minimum clique partition
in G, which is NP-complete as shown in [10]. Otherwise, we can reduce the problem
of finding the minimum clique partition in general graph to this problem for any fixed
k>l.

Given an arbitrary graph G (V, E), we can construct the graph (I)(G,k) in
polynomial time as shown in the proof of Theorem 5.2. We will now show that G has
a clique partition of size _</ if and only if (I)(G, k) k has a clique partition of size _</.
Let P {V1,..., V}, a _</, be a clique partition of G. By equation (2), for each
V E P, 1 _< _< a, V is again a clique in O(G, k) k. Further, by equation (3), V1 U W
is still a clique. Thus (I)(G, k) k has a clique partition of size a _</.

On the other direction, let P {V1,..., V}, a

_
/, be a clique partition of

(G, k) k. For each vertices subset V/, 1 _<

_
c, let V/ V/N V. For each i, clearly

V’ (if not empty) is still a clique in (G, k) k. Further, by equation (2), V/’ is also a
clique in G. It follows that {VI,..., V} is a clique partition of G. That is, G has a

clique partition of size _</.
THEOREM 5.5. Let G (V, E) be a graph. Then, for any fixed integer k >_ 1,

finding the minimum vertex coloring of Gk is NP-complete.
Proof. For the case of k 1, this problem is to find the minimum vertex coloring

in G, which is NP-complete as shown in [10]. Otherwise, we can reduce the problem
of finding the minimum vertex coloring in general graph to this problem for any fixed
k>l.

Given an arbitrary graph G (V, E), we can construct the graph (I)(G,k) in
polynomial time as shown in the proof of Theorem 5.2. Let w IWI denote the
size of the newly added vertices of (I)(G, k). We will now show that G has a vertex
coloring of size a if and only if (I)(G, k) k has a vertex coloring of size a + w. Let
C {V1,..., Va} be a vertex coloring of G. By equation (1), each V E P, 1 _< _< a,
is again an independent set in (I)(G, k)k. For each v W, singleton {v} certainly
constitutes an independent set. Thus {VI,..., V, {v}vew} is a coloring of size a +w.

In the other direction, let C {V,..., V+w} be a vertex coloring of O(G,k)k.
By equation (3), each new vertex v W is adjacent to every other vertex in (G, k)k.
Thus each vertex v W must form a singleton in the coloring C. Deleting those
singletons from C, we have C’- C \ {{v} v W}. Note that IC’I a, and C’ is
a vertex coloring of G since each vertex set of C is still an independent set in G by
equation (1). That is, G has a vertex coloring of size a. V1

5.5. Minimum dominating sets of power graphs. Given a graph G
(V, E), a dominating set, D, is a subset of vertices of G such that for each ver-
tex v E V\D, there is some vertex u D such that uv E. In other words,
UvED N+ (v) V. A minimum dominating set is a dominating set with the smallest
cardinality. It would be nice if the same transformation can also be used to prove
that the minimum dominating set problem in (k is also NP-complete. Unfortunately,
since the size of the minimum dominating set in (I)(G, k) k is always 1, we must use
another technique.

THEOREM 5.6. Let G (V, E) be a graph. Then, for any fixed integer k >_ 1,
finding the minimum dominating set of Gk is NP-complete.

Proof. For the case of k 1, this problem is to find the minimum dominating
set in G, which is NP-complete as shown in [10]. Otherwise, we can reduce the problem
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FIG. 9. Adding a length k- 1 tail to a vertex v.

of finding the minimum dominating set in arbitrary graphs to this problem for any
fixed k > 1.

Given k and an arbitrary graph G (V, E), we will construct the following graph,
denoted (G, k), in polynomial time. For each vertex v of G, we will attach a tail of
length k- 1 to it. That is, for each v E V, let

Uv {[vii,..., Iv]k_1},
By {v[v]l} U {[v]i[v]i+l e [1..k 2]}.

Figure 9 illustrates this transformation. Now we can define (G,k) (V’,E’) as
follows:

V U,vV,, U V,
E U,vE, U E.

Note that (G, k) has kn vertices and rn + (k- 1)n edges. (C, k) can certainly
be constructed in polynomial time. Note that graphs G and (G,k) are related by
the following equation. For v,x V, [1..k- 1],

(4) dv(a,k) (v, Ix]i) dG(v, x) + i.

We will now show that G has a dominating set of size a if and only if q(G, k)k has
a dominating set of size (. Let D {Vl,..., v} be a dominating set of G. That is,
for each x V\ D, there exists a v D such that riG(v, x) 1. By equation (4), for
each [x] V \ D, da(v, [x]) _< k since [1..k- 1]. That is, D is still a dominating
set of (G, k) k.

In the other direction, let D {v,,...,v} be a dominating set of (G,k)k.
Without loss of generality, we can assume that D C V. Otherwise, for each [v] E D,
replace [v]j by the vertex v. Call the modified set D’. By equation (4), D’ is still a
dominating set of (G, k) k. We claim that D is also a dominating set of G. Suppose
D is not. Then there must be a vertex v in G such that for each x D, dc(v, x) > 1.
By equation (4), that means for each x D’, d,(G,k)(v, x) > k, but it is contradicted
by the fact that D is a dominating set of @(G, k) k. Since D is a dominating set of
G and D has the same cardinality of D, it follows that G has a dominating set of
size c. El

5.6. The chordality of powers of trees. A graph in which every simple cycle
of length strictly greater than three possesses a chord is called a chordal graph. In the
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FIG. 10. A chordal graph and its nonchordal square.

literature, chordal graphs have also been called triangulated, rigid-circuit, monotone
transitive, and perfect elimination graphs [6], [19], [9], [22]. Rose, Tarjan, and Lueker
[22] presented an algorithm for recognition of a chordal graph in linear time. Along
with their algorithm, the maximum clique of a chordal graph can also be found in
linear time. Walter [28], Gavril [11], and Buneman [4] proved that a graph G is
chordal if and only if G is the intersection graph of a family of subtrees of a tree.
Observe that the square of a chordal graph is not necessarily chordal, as shown in
Fig. 10. However, we will show that any arbitrary powers of trees are always chordal.

THEOREM 5.7. Powers of trees are chordal.

Proof. Let T be a tree. We want to prove that Tk is chordal for any positive
integer k. Let S(G) be the subdivision graph of a graph G as defined in 4 and N(v)
denote the set {u E G: d(u, v) < k} where d(u, v) is the distance between vertices u

k kand v in G. Note that uv Gk if and only if Ns(G)(u)3 Ns(G)(v) # 0, implying that

Gk is the intersection graph of the family S {N(G)(v)" for all v G}. It follows

that Tk is the intersection graph of the family { kN(T) (v)" for all v T}. Since S(T)
is a tree and k(Ns(T)(V))(T) is a subtree of S(T) with center vertex v and radius k,
Tk is the intersection graph of a family of subtrees of the tree S(T). Thus Tk is
chordal.

6. Conclusions. We have presented efficient algorithms for finding the square
roots of graphs in three interesting special cases: tree squares, planar graphs, and
subdivided graphs. Sarther, we have studied the complexity of several optimization
problems on powers of graphs. Two interesting open problems remain.

Let A be the adjacency matrix of a graph, made reflexive by adding a self-loop
to each vertex. Given A2, can we determine one of its (0, 1)-matrix square
roots in polynomial time? This problem is potentially easier than finding the
square root of a graph, since we are also given t..e number of paths of length
at most two between each pair of vertices.
What is the complexity of recognizing the squares of directed-acyclic graphs
(DAGs)? Clearly, the square of a DAG is a DAG. All square roots of a DAG
G2 contain the transitive reduction of G2 as a subgraph. The time complexity
of finding both the transitive closure and reduction of a digraph is equivalent
to boolean matrix multiplication [1].
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Abstract. The relative power of determinism, randomness, and nondeterminism for search
problems in the Boolean decision tree model is studied. It is shown that the gaps between the
nondeterministic, the randomized, and the deterministic complexities can be arbitrarily large for
search problems. An interesting connection of this model to the complexity of resolution proofs is
also mentioned.
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1. Introduction. Ramsey’s theorem asserts that every graph on n vertices has
either a complete graph or an independent set of size 1/2 log n. A natural search problem
associated with this theorem is to find such a subgraph. Many other problems, like
the ones below, have a similar flavor. Given an assignment of n pigeons into n- 1
pigeon holes, find two pigeons assigned to the same hole. Given a k-chromatic graph
and a coloring of its nodes with fewer than k colors, find two neighbors that have the
same color. Given an unsatisfiable 3-CNF formula and an assignment to its variables,
find a clause that is not satisfied.

How hard is it to solve such search problems? The answer depends of course
on their representation and the computational model. We assume that the input
is encoded in binary, and that we are only allowed to probe input bits. This gives
the familiar Boolean decision tree model, adapted to solving search problems rather
than computing Boolean functions. We study the relationship between the standard
nondeterministic, probabilistic, and deterministic variants of this model and discover
that it is drastically different from the case of function computation, where all three
measures are polynomially related (see [2], [7], [19], [14]). In all the examples just
listed it is easy to guess and verify the solution; hence the nondeterministic decision
tree complexity is small (a constant or polylog). If the decision tree was computing a
function, this would imply that both the randomized and deterministic complexities
are small, because the deterministic complexity (and thus the randomized too) is at
most the square of the nondeterministic complexity [2], [7], [19]. It turns out that for
search problems these gaps can be arbitrarily large.

Our investigation is partly motivated by a similar study of search problems in
the communication complexity setting in the work of Karchmer and Wigderson [11]
and Raz and Wigderson [18], where a similar phenomenon occurs but not to the
same extent. Another study of search problems was carried out by Papadimitriou [15]
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where complexity classes defined by search problems were investigated. Some of our
examples are inspired by this work and [8], [10].

The examples above may remind the readers of resolution proofs. Indeed, res-
olution proofs viewed top down yield Boolean decision trees to the search problems
above (this fact seems to be folklore and is elaborated in the Appendix).

Thus, the exponential length lower bounds on resolution proofs (see, e.g., [4])
provide linear deterministic lower bounds even when the nondeterministic complexity
is a constant. However, the distinction between the resolution and the decision tree
points of view becomes clear when trying to make sense out of the probabilistic model.
In resolution, one proves simultaneously that every assignment falsifies spme clause
in an unsatisfiable formula. This has no natural probabilistic analogue. The decision
tree approach, where one must find for a given input assignment a clause that it
falsifies, has a natural randomized version. Indeed, we will be primarily concerned
with the power of probabilistic computation for such problems.

We prove that the probabilistic complexity can be at both ends of the spectrum.
We give an explicit search problem for which the probabilistic (and nondeterministic)
complexity is constant, but the deterministic is linear. On the other hand we provide
two explicit problems for which there is a large gap between the nondeterministic and
probabilistic complexities: one in which the first is constant and the second is (n ),
and another in which the first is O(log n) while the second is nearly linear. Finally,
we present an explicit problem for which there is a simultaneous exponential gap
between the nondeterministic versus the randomized and the randomized versus the
deterministic complexities. This last example uses an upper bound due to Irani [9] on
online coloring algorithms to provide a lower bound on the deterministic complexity.
We note here that as far as we know, no such simultaneous gaps are known for any
other model of computation.

The special case of nondeterministic complexity 2 deserves a special interest. It
corresponds to unsatisfiable 2-CNF formulae. We characterize the deterministic com-
plexity by the structure of the formula and note that it can never exceed 1 + log n.
We show that here too the gap between the randomized complexity and the nondeter-
ministic and the gap between the randomized complexity and the deterministic can
be arbitrarily large.

The paper is organized as follows. In 2 we give the formal definitions of search
problems and decision trees and show that the CNF search problem is "complete" for
all the variants of decision trees. In 3 we construct search problems with a large gap
between the deterministic and the randomized complexity, randomized and nondeter-
ministic complexity, and simultaneous nondeterministic--randomizedmdeterministic
complexity gaps. In 4 we discuss the special case of nondeterministic complexity 2.
The exact relationship to the resolution problem appears in the Appendix.

2. Definitions. A search problem is specified by n variables and a collection of
"witnesses." In addition, this collection must have the property that every assignment
to the n variables is associated with at least one witness. Given an input string which
is an assignment to the n variables, the goal is to find a witness consistent with it.
We state the definition formally.

DEFINITION 2.1. A search problem on n variables is a relation F ci {0, 1}n W,
such that x E {0, 1}n, 3w W for which (x, w) F. W is a finite set, called the
set of witnesses. The goal of the search for input x {0, 1}n is to find a w W such
that (x, w) F (we call such a w a valid witness for x).

A special class of search problems comes from DNF tautologies. A monomial m
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is a conjunction of literals (over the variable set X). A DNF tautology g with a set of
monomials M is a Boolean formula g k/mEum and so g is true for every assignment
to the variables, g naturally defines a search problem on (0, 1X M. Each input (a
truth assignment to the variables) is associated with all monomials rn E M that are
satisfied by it.

The class of search problems defined by DNF tautologies is quite general. Indeed
as we shall see, every search problem F gives rise to a search problem on an associated
DNF tautology, g(F), that will turn out to be equivalent to F.

With every monomial rn we associate the subcube Cm of all the points in (0, 1i
that are consistent with m (i.e., evaluate to "1" on rE).

DEFINITION 2.2. Let F C_ {0, 1} W be a search problem. The set of monomials
associated with F, denoted by ME, is defined by rn MF if 2w W such that Vx
Cm, (x, w) F. In words, m MF if all inputs x that are consistent with m share
a mutual witness w.

CLAIM 2.3. Let F C_ {0, 1}n W be a search problem and let g(F) be the formula
defined by g(F) /mEMrn, then g(F) is a DNF tautology.

Proof. Every input x has a witness in W. In particular, the subcube that contains
the single point x defines a monomial rn MF that is satisfied by x.

Thus g(F) defines a valid DNF search problem F C_ {0, 1}n ME, where F’
is the set of pairs (x, m) such that x satisfies rn. It will be convenient though, for
historical reasons, to consider f(F) g(F) which is an unsatisfiable CNF formula
with the associated search problem. For each input (an assignment to the variables)
find an unsatisfied clause. Observe that there is a natural correspondence between
witnesses of F and F.

2.1. Decision tree complexity for search problems. Let F C_ {0, 1}n W
be a search problem. A deterministic decision tree for F is an algorithm that may
query the value of an input bit at each step. The goal is to find a consistent witness.
Formally, such an algorithm is a rooted binary tree in which every internal node is
labeled by a variable and the two outgoing edges are labeled by the two possible values
to that variable. Each leaf is labeled with a witness w W. Every assignment of the
variables determines a path from the root to a leaf in a natural way. The tree is a

valid decision tree, if for every assignment this path ends in a leaf labeled by a valid
witness.

The deterministic complexity of F, D(F), is the minimum depth of any decision
tree for F.

The nondeterministic complexity of F, N(F), is the minimum number of variables
that must be probed in order to find a valid witness for the worst case input. Alter-
natively, it is exactly the maximum size, over all inputs x, of the smallest monomial
in ME that is satisfied by x.

A randomized decision tree for F is a distribution over deterministic decision trees
for F. The complexity of a randomized decision tree is the expected path length for
the worst case input. The randomized complexity of F, R(F), is the minimum over
all randomized decision trees for F.

Facts. 1. Let F C_ {0, 1}n W be a search problem and F’ C_ {0, 1}n ME
the associated search problem. Then D(F) D(F’), R(F) R(F) and N(F)
N(F). Furthermore, there is a natural correspondence between any decision tree for
F (deterministic, randomized, or nondeterministic) and a (corresponding) decision
tree for F. Thus F and F are indeed restatements of essentially the same problem.
Throughout the paper we will not distinguish between F and its associated F.
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2. For every decision problem F: N(F) <_ R(F) <_ D(F).
An observation of Chvatal and Szemerdi [5] is that for a search problem F, lower

bounds on the (regular) resolution process for the unsatisfiable formula f(F) imply
lower bounds on the deterministic decision tree complexity for F. We elaborate on
that point in the Appendix.

3. The relative power of determinism and randomization versus non-
determinism. In this section we present some explicit search problems for which
there are large gaps between the different decision tree complexity measures. Our
main task is to construct search problems for which N(F) << D(F), R(F) << D(F),
or N(F) << R(F) << D(F) simultaneously. Another parameter to consider in each
case is D(F) versus the number of variables n, which is the obvious upper bound for
all the three measures of complexity.

3.1. Gaps between R(F) and D(F). We present here an explicit search prob-
lem for which R(F) O(1) and D(F) t(n). Note that the existence of such a
problem follows from [4] by probabilistic arguments.

Let G(U, V, E) be a bipartite graph. Define the search problem DEG(G) on
variables in the following way. Each 0-1 assignment to the variables is interpreted as
a subgraph G of G, defined by those edges that are assigned "1." The search problem
is to find a vertex r whose degree in G is not one. Clearly if the sides of the graph
are not equal (IYl = IUI) such a vertex exists for every subgraph G’; thus as long as
the sides are not equal, DEG(G) is a valid search problem.

LEMMA 3.1. Let G (U, V, E) be a bipartite graph with maximum degree d and

IVl 2n, [VI n, then N(DEG(G)) <_ d, and R(DEG(G)) <_ 2d(d + 1).
Proof. The nondeterministic complexity N(DEG(G)) _< d since for every input

(subgraph G) one must only check the incident edges of the guessed vertex.
Consider the following random decision tree. Pick at random a vertex u E U and

independently a vertex v E V and ask for all edges that are incident to each of the
two vertices (i.e., 2d edges are being checked). If u or v produces a witness you should
stop; otherwise repeat this process until done.

We claim that the probability that a witness is discovered in each iteration is
2rid edges in the subgraph G defined by theIf there are more thanat least -4-"

n of the vertices in V are of degree at least 2. In this case"l"-edges, then at least
the fact that v V is chosen at random proves the claim. If, on the other hand,

2n of the vertices in U are of degree 0 inG has less than 2rid edges, then at least
G. Thus, the fact that u U is chosen at random proves the claim in this case. We
conclude that the expected number of iterations is d + i; in each of them 2d edges are
probed which yields the above upper bound.

We will show now an infinite sequence of bipartite graphs for which the deter-
ministic complexity is t(n).

Let G (U, V, E) be a bipartite graph with maximum degree d, IUI 2n, IVI n
as before, and with the additional "expansion" property: for every S
n/4 IN(S)I >_ 2131 (N(S) {v (u,v) e E and u e S}).

Such a graph exists for large enough d and infinitely many n’s and can be effi-
ciently constructed using expander graphs [13] (d can be taken to be 30).

THEOREM 3.2. Let G be a graph as defined above then R(DEG(G)) O(1) and
D(DEG(G))

Proof. The fact that R(DEG(G)) 2d(d + 1) O(1) was already proved in

Lemma 3.1.
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We show an adversary strategy that is going to cause any deterministic decision
tree to probe gt(n) edges. The adversary will be limited to produce a subgraph for
which Vv E V, degc, (v) 1 and Vu U, degc, (u) <_ 1. Thus, the answer the decision
tree has to find is a vertex in U.

We need some definitions. For any S C U and subgraph G of G, N,(S)
{v e V (u,v) e G’,u e S}. For stage (after edges were probed) let E
{ele was assigned "0" } and E {e e was not probed and 3e’ e’ assigned "1" and
e q e’ : }. Define Gi G- (E t3 E.’ ). In words, G contains all the edges that are
still possible for the adversary to use in its final subgraph without violating the above
limitation.

For each S c U, define N(S) N(S). For any subgraph G’ of G, define
S c U to be unmatchable if N,(S) < ISI. Let S, denote a minimum cardinality
unmatchable set in G. Finally call S Si a minimal unmatchable set in step i.

By the above limitation on the adversary, at step the subgraph G contains a
partial matching from U to V. Thus the decision tree cannot know the answer as long
as there is no isolated vertex in G. Obviously such a vertex is, by itself, a minimum
unmatchable set. Initially, by the definition of the graph, ISI >_ n/4. The strategy
of the adversary is to make sure that the minimum unmatchable set size does not
decrease too fast. Formally, in step an edge e (u, v), u U, v E V is probed. The
adversary computes the following.

1. S(e) S*(Gi- e), i.e., the minimum unmatchable set that occurs on "0"
answer on e.

2. Sl(e)= S*(G- {f (x,v)l f was not probed and x e U}), i.e., the
minimum unmatchable set that occurs on "1" answer on e.

He then chooses the answer on e so as to make S+ the larger of S(e), S (e).
The heart of the argument is the following claim.
CLAIM 3.3. If IS+II s then there is a minimal unmatchable set S with

IS l <_
Proof. Assume e is asked in step i+ 1. By the above strategy, [S*+11- mx([S(e) I,

ISl(e)l). It is easy to see that S S(e)L)S(e) cannot be matched into V in

G. Thus, S contains an unmatchable set for step of cardinMity no more than
[S(e) U Sl(e)l _< 2. max(]S(e)[, [Sl(e)[) 2s. [:]

We can now complete the proof of Theorem 3.2 by the following argument. At
the beginning IS[ >_ n/4, at the end ISl 1 and by the claim the cardinality of the
minimal unmatchable set does not decrease by more than a factor of 2. We conclude
that at some step j, n/16 G [S;[ <_ n/8, with IYj(S;)l < IS;l. However, by the
expansion property of G, ]Nc(S;)[ >_ 21S[. Since at each step N(S) can drop by at
most d for any set S, at least IS][/d f(n) edges were probed up to step j. [:]

3.2. Gaps between N(F) and R(F). In this section we construct two search
problems for which the randomized complexity is large while the nondeterministic
complexity is small. The nondeterministic complexity of the first problem is constant
while its randomized complexity is f(n). The second problem has O(log n) nonde-
terministic complexity and its randomized complexity is gt(n/log n). The proof of the
lower bound on the randomized complexity of the first problem is by proving a lower
bound on the distributional complexity. (Yao [21] has shown that this is sufficient.)
The proof for the second is by an indirect reduction to a communication complexity
game.

3.2.1. A problem with N(F) 3 and R(F) E Y2(n). Let GRID be the
following problem on n m2 1 variables. Consider an (m + 1) x (m + 1) matrix
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where the entry at the bottom left corner contains a one and the top row and rightmost
column are all zero. The n input bits determine the rest of the entries of the matrix.

For any 0-1 assignment to the rest of the matrix, the goal is to find an entry that
is one and its upper and right neighbors are zero. It is not hard to see that such a
configuration always exists.

This example is inspired by the lower bound argument of Hirsch, Papadimitriou,
and Vavasis [8] for finding Brouwer fixed points and discussions with Noga Alon on
extending it to the random case.

THEOREM 3.4. N(GRID) 3, R(GRID) (n), and D(GRID) O(v/-).
Proof. The fact that N(GRID) 3 is clear. The theorem is established by the

following lemmata.
LEMMA 3.5. R(GRID) f(n).
Proof. A basic result of Yao [21] asserts that in order to prove .lower bounds

on randomized decision tree complexity it is sufficient to show a distribution on the
inputs such that any deterministic algorithm requires a high expected number of
queries. The distribution for which we claim the lower bound is defined as follows: a
random upward and rightward path starting from the bottom left corner of the matrix
and ending at the top row or right column is picked uniformly from all such paths.
The entries along the path receive the value "1" and the rest receive the value "0."

We claim that any deterministic algorithm requires t(m1/2) (n) queries on
the average to discover the end point of the path, which is the only point where the
desired configuration occurs. We need the following claim.

CLAIM 3.6. Let A,B,C,...,Ck be points in the matrix such that B is of
Manhattan distance at least d from A in the downward and left direction, and each
C, 1 <_ <_ k is of Manhattan distance at least d from B. For the above distribution
on paths and 1 <_ k <_ -, the probability that a path passes through A given that it

2passes through B and avoids C,..., Ck is at most -.
Proof. Let ,4 be the event that the path passes through point A, B the event that

it passes through B and C, 1 _< _< k the event that it passes through C.

Prob(A C ClCl,..., Ck[B) Prob(AlB)
Prob(AIB C,... C)

Prob(Cl, C’IC[B)
<

..., 1 Prob((CU,...,t.JCk)113)

Prob(A[B) 2
1 k maxl<i<k{(Prob(CilB)}

<
1 4-d

(Prob(c4lB) and Prob(CilB are bounded by @dd since they correspond to maxl<j<d,

We continue now with the proof of Lemma 3.5. Let T be any deterministic decision
tree for GRID. We will give additional information to queries of T. At any stage
we provide T with a prefix of the pth. InformMly, the intuition is the following: at
each stage a contiguous initiM segment of the path will be known to T. If the next
query is to a point of distance not too far from that known prefix, we provide T with
an additional segment of the path, a segment that is long enough to make sure that
knowing it will determine the vlue of the query. Thus, the conditional probabiliW
of future queries will not depend on the answer to that query. If on the other hand,
T queries point "far way" from the prefix of the pth that he already knows, then
there is a good chance that he will get a "0" answer and learn very little (by Claim
3.6).
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Formally, at each stage we provide T with the prefix of the path of length jim2/3,
i.e., with all the points on the path up to Manhattan distance jim2/3 from the origin
(the bottom left corner). The length of the prefix is determined as follows. We start
with jo 0. If by the ith stage g >_ 0 is the largest number such that there exists a set
of t queries q, q2,..., q so that for all 1 <_ h <_ qh is to a point of distance Dh with
(ji-1 + h- 1)m2/3 + 1

_
Dh

_
(ji- / h)m2/3 from the origin, then we provide all

the points on the path up to distance (j_ + g)m2/3 and set j to be j-i + I. In such
a case we say that q,..., q contribute to j. Note that each query can contribute to
qr for at most one r. It follows that for all we have that ji _< i.

Consider now what happens whenever an execution of T discovers the end point
of the path with less than 1/4m1/3 steps. There must be the first step k for which the
kth query is at distance larger than (jk-1 + 1).m2/3 and was answered "1." Let B be
the end point of the prefix at stage k- 1 (i.e., of distance jk-l" m2/3 from the origin),
let A be the kth query and let C, <_ k- 1 be all the previous queries that were
answered by "0" and were to distance further than (jk-1 + 1). m2/3. By Claim 3.6,
we have that for any 1 <_ k <_ 1/4m1/3 the probability that such an event will occur
is at most 2 2 Therefore the probability that such an event will occur forVm2/3 mll3

some 1 _< k _< 1/4m1/3 is at most .1/2 and therefore the expected number of queries
is at least (m/3). [:]

By replacing the grid with an expander we can get a problem with sharper bounds.
Let G be a 3-regular expander with n edges and let u be some node in G. Associate
the n inputs with the edges of G. Thus every assignment to the inputs defines
subgraph G by the edges that are assigned "1." The problem ODD is to find a node
other than u with an odd degree in G or find that u has even degree in G.

ODD is a valid search problem by the fact that every graph has an even number
of nodes with odd degree. Therefore N(ODD) 3. Using the fact that expanders are
rapidly mixing, i.e., that a random walk in an expander gets to a node that is almost
random after O(logn) steps, we can show that R(ODD) is t(n1/2). The intuition is
that as in the grid, we concentrate the probability on walks of length n2/3 that start
from u. A query to a "far enough" point is unlikely to be on the walk, thus the
tree would have to ask many vertices along the walk in order to find its end. The
advantage here is that "far enough" becomes quite small (O(log n) due to the mixing
property).

We conjecture however that R(ODD) is O(n).
LEMMA 3.7. D(GRID) O(m) O(x/).
Proof. There is a deterministic decision tree of complexity O(m) that solves the

problem. It asks all entries in the [m]_row. If there is any "1" entry, there must be2
an answer in the upper half of the matrix. Otherwise, there must be an answer in
the lower part of the matrix. The decision tree probes next the relevant half of the
[J-column and recurses respectively. [:]

LEMMA 3.8. D(GRID)
Proof. There is a simple adversary strategy that can force any deterministic

algorithm to query at least m- 1 locations. The adversary maintains a contiguous
path of l’s from the bottom left location (initially this path contains just the bottom
left point). It also maintains a direction for the path which is either horizontal or
vertical. Given a query, if it is not in the same row or column as the end point of the
path or it is on the same row (column) and the direction is vertical (horizontal), the
adversary answers 0. If it is, say, in the same row as the end point of the path and the
direction is horizontal, then if in all the columns between the end point and current
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query point a query has been made, then the adversary answers 1 and gives away l’s
for all the locations between the end point and query point. If not, he answers the
query by 0, finds the first column in which a query has not been yet made, fills the
row with l’s up to that point and switches the direction to vertical. The other case
is treated similarly.

It is easy to see that this strategy maintains the invariant that, at any step,
the current path can be augmented to the top row or right column. Moreover, the
adversary answers 1 in a row (column) only if all columns (rows) between the current
end point and the query have points that had already been queried. So, every 1 in
(i, j) position is discovered after at least max(i, j)- 1 steps.

This concludes the proof of Theorem 3.4.

3.2.2. A problem with N(F) O(logn) and R(F) (n/logn). Our
next example is of nondeterministic complexity O(log n) and randomized complexity
of (n/log n). The lower bound on the randomized complexity is based on a reduction
from a problem in communication complexity.

Let K3, be the complete graph on 3m vertices. Let Pm be the set of all m-
matchings in K3m, i.e., the set of all m pairwise disjoint edges. Let Qm denote the
set of all (m- 1)-subsets of vertices of K3m. Note that for every member p E P, and
every member q Qm there is an edge e p such that e N q q}. Our search problem
is essentially to find such an edge on an input (p, q) Pm x Qm. However, we use
some Boolean encoding of the problem.

We encode the sets by permutations (as explained below) and permutations by
permutation networks. A permutation network is a graph that "realizes" permuta-
tions. Formally, let G be a directed acyclic graph with k sources called input nodes,
k sinks, called output nodes, and some other nodes called switches. Each input node,
has one out-going edge and each output node has one in-going edge. Each switch has
two in-going and two out-going edges and can be assigned to select one of the two
permutations that map the two in-going edges to the two out-going edges. Clearly,
a setting to each switch defines k paths in G, each from an input node to an output
node. Thus it defines a mapping from the k inputs to the k outputs. It is easy to see
that this mapping is always a permutation.

Let Sk be the symmetric group on k elements. A graph G as above is called
a "k-permutation network" if for every zr Sk there is a setting to the switches so
that the mapping defined by it is r. For details of construction of some permutation
networks see [12], [16].

Factl For every k, a k-permutation network of size O(k log k) and depth O(log k)
can be constructed efficiently (e.g., the shuffle-exchange network is a simple construc-
tion).

We can formally define now our n variables search problem MATCH" let k 3rn.
Fix two disjoint k-permutation networks and let n be the total number of switches
(n O(m log m)). The input is an assignment to the switches of each network,
interpreted as two permutations rl, r2 on k elements. The first permutation encodes
an m-matching p; rl (i) is matched to rl (i + m) for every 1 _< _< m. The second
encodes a set q of size m- 1 by q {r2(1),..., r2(m- 1)}. The search problem is to
find an edge as above.

THEOREM 3.9. N(MATCH) O(log n) and R(MATCH) t(n/log n).
Proof. N(F) O(log rn) since all one has to do is to "guess" and find j, r such

that (i) j, (i + m) r (this is an edge in p). In addition, check that j, r q by
"guessing" s, t > rn- 1 such that r2(s)= j, r2(t)= r. This takes O(logrn) probes.
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The lower bound on the randomized complexity follows from (i) the result of Raz
and Wigderson [18] on the complexity of the problem of finding the desired edge in the
communication complexity setting where one party has p E Pm as its input and the
other party has q E Qm as its input. They showed that f(k) bits must be transmitted.
(ii) The fact that any lower bound in the communication complexity model is also a
lower bound in the decision tree model, since the players can simulate the decision
tree for each other (transmit the current bit being probed). We don’t give a detailed
definition of the communication complexity model here. For further information see

[11], [18], and [1]. [1

3.3. Simultaneous large gaps; N(F) << R(F) << D(F) In this section
we construct a problem with simultaneous exponential gaps among N(F), R(F), and
D(F). We remark here that the deterministic lower bound is based on an interesting
application of an upper bounds for an online coloring algorithm.

Let r be an integer. Let G (V, E) be an m vertex graph that is not r-colorable
and n m logr. The r-coloring search problem for G, denoted by COLt(G), is
the following n variable problem: every assignment of the n m log r variables is
interpreted as an r-coloring of G. The goal is to find two neighbors with the same
color. Clearly such a configuration always exists; we call such a configuration a
"monochromatic edge."

THEOREM 3.10. Let r (logm)2, d 16r2, and let G (V,E) be a d-regular
m-vertex Ramanujan expander as constructed by Lubotzky, Phillips, and Sarnak [13].
The?

1. N(COLr(G)) O(log r) O(log log m)
2. R(COL(G)) a() and R(COL(G)) O(rlogr)
3. D(COL(G)) a(2v) a(ml/6)

Proof. We first have to show that the search problem is indeed valid, that is, to
prove that G is not r-colorable. This as well as the rest of the proof will follow from
the lemmata below.

LEMMA 3.11. For every r-coloring ofG there exist at least 8.r.m monochromatic
edges.

Proof. For aset S c_ V let E(S) {(u,v)l u,v S}. Let Si, 1 _< _< r be
the color classes under a coloring of V with r colors. The number of monochromatic

i=redges is thus Yi=l IE(Si)I However, by the expansion properties of G, for every

S’ c V, IE(S’)I >_ d’tS’12 2x/IS’ I. Thus, the number of monochromatic edges is at
m

least

2v lS l >_ IS, 2 2v m
i=1

m m
\i=1

d dm
> Is l)
mr r

LEMMA 3.12. R(COLr(G)) O(r logr) and R(COL(G)) a(V).
Proof. The upper bound follows from Lemma 3.11. There are at least 8. r. rn

"monochromatic" edges for every r-coloring; thus selecting an edge at random and
probing the 2 log r bits that define its end points’ colors results in a witness with
probability at least 8mr/din gt(1/r). Therefore we get that the expected number
of queries is O(r log r).

The lower bound follows by showing a "hard" distribution (as in Yao [21]). The
distribution is uniform on all r-colorings. It is easy to see (by the "birthday paradox" ),
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that any deterministic tree must probe t least x/7 vertices in order to hit the same
color twice with constant probability (in particular to find two neighbors with the
same color). 71

2 lOgd_ m. For every integer s, every induced subgraphLEMMA 3.13. Let k -G of G on at most t sk- vertices has a vertex of degree at most s.

Proof. By [13] G has no cycles of length less than 2k - lOgd_ m. Let G’ be
the smallest subgraph for which every vertex has degree at least s + 1. For a vertex
v G’ let So {v}andS {ul(u,v) G’, andv S_}. Everyu S, < k
hasjust one neighbor in S_ and no neighbors in S since otherwise G has a cycle
of length smaller than 2k. However, since the degree of every such u is at least s + 1
we get that SI _> s. S_I for all < k which gives that G’ contains at least sk-

vertices.
LEMMA 3.14. D(COLr(G)) t(2v) (ml/6).
Proof. Let s x/. By Lemma 3.12 every induced subgraph G of size at most

t sk-1 t(2v) has a vertex of degree of at most s. It follows that it can be online
colored by s. log t < r colors, since Irani [9] has shown that the greedy algorithm has
this performance. This means that as long as the decision tree probes no more than
t nodes, the adversary can correctly online color the induced subgraph of the probed
nodes so that no monochromatic edge occurs. 71

This concludes the proof of Theorem 3.10 71

4. The case of N(F) 2. In this section we investigate decision problems for
which N(F) 2, i.e., those which correspond to unsatisfiable 2-CNF formulae. It
turns out that in that case the situation is different from the general case. Namely,
D(F) can be nearly characterized. It follows also that for n-variable problems D(F)
O(log n) for any such F. However, R(F) may still be small in comparison to D(F).

Let f be an unsatisfiable CNF formula. We say that a subformula f of f is
critical if it is unsatisfiable but deletion of any clause makes it satisfiable.

THEOREM 4.1. Let F be an n-variable search problem represented by a 2-CNF
formula f(F). Let f be a critical subformula with minimum number of clauses. Let k
be the number of variables in f’ and m be the number of clauses in f’. Then k >_ m/2
and log m _< D(F) _< 2 + log m.

Proof. Let T be a decision tree for F. Look at the set of clauses in its leaves.
Every input reaches one of those clauses and falsifies it. So, the subformula F defined
by the clauses of the tree is unsatisfiable, i.e., it has at least m clauses. We conclude
that the size of T is at least m and its depth is at least log m which proves the lower
bound on D(F).

To prove the upper bound define for any unsatisfiable 2-CNF formula F the
(standard) directed graph G(F), associated with F V(G) is the set of 2n literals.
For every clause (c /), ( - ), and (/ --, a) are edges in E(G(F)). For every
single variable clause x, ( --, x) is an edge of G(F).

CLAIM 4.2. For any unsatisfiable 2-CNF formula F let G(F) be its graph, then
there is a variable x such that there is a directed path from x to -2 and a directed path
from - to x in G(F).

Proof. The proof is by induction on the number of variables of F. The claim is
easily checked for 2 variable formulae. Assume F is unsatisfiable. Choose any variable
x in F and for any possible two clauses (x/y), (5/z) produce the "resolvant" (y/z).
The formula F1 obtained by deleting every clause that contains x or and adding the
new clauses is unsatisfiable. By induction hypothesis there is some y such that G(F1)
has a path P1, from y to and a path P2, from to y. However, every edge (u, v) in
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G(F1) is either an edge in G(F) or is the result of resolving two clauses of the form
(x V ) and (5 V v). But then, the associated edges (u, x), (x, v) are a path from u to
v in G(F). Thus every path from a to b in G(FI) has a corresponding path from a to
b in G(F), in particular so do P, P2.

Let f be a critical subformula of F and let G(f) be its associated directed graph.
By the claim there is a variable x for which there is a directed path P from x to 5 and
a directed path P2 from 5 to x. This leads to the following decision tree for F. First
x is probed. If x 1 the decision tree will find an edge in P which is directed from
"1" to "0" by binary search along P. If x 0 it will do the same thing on P2. Such
an edge (u, v) corresponds to a clause ( V v) which is falsified (since u 1, v 0).
Every clause contributes two edges to the graph so the length of each of the paths is
no more than 2m. We get the bound of 2 + log m on the number of probes in the
binary search.

We may take P1, P2 above to be simple paths, in particular the length of the
paths is bounded by k too. So, one gets an upper bound of 1 + log k as well, and so
k >_ m/2 by the lower bound. This concludes the proof of Theorem 4.1.

COROLLARY 4.3. For every 2-CNF search problem F on n variables, D(F)
O(log n). [:]

We show now that the randomized complexity can be much smaller than the
deterministic, and in other cases the largest possible.

Let G be a constant degree Ramanujan expander on n vertices of the type
constructed by [13]. COL2(G) is the 2-coloring search problem as defined in 3.3.

THEOREM 4.4. N(COL2(G))= 2, R(COL2(G))= O(1), D(COL2(G))=
t(log log n).

Proof. If indeed G1 is not two-colorable then clearly N(COL2(G1)) 2 from the
definition of the problem. The fact that G1 is not two-colorable and R(COL2(G))
O(1) follows from the same arguments as in the proof of Lemmas 3.11, 3.12 with r 2.
The proof that D(COL2(G1)) t(loglogn) follows from Theorem 4.1 above since
a critical subformula for COL2(G) corresponds to the edges of a nontwo-colorable
subgraph of G (in particular it must contain an odd cycle). However the cycles of
G are of length (log n) [13].

Let G2 be an odd cycle of length n.
THEOPEM 4.5. N(COL2(G2)) 2, R(COL2(G2)) gt(logn).
Proof. N(COL2(G2)) 2 is obvious. Following Yao’s technique, the distribution

will be uniformly concentrated on the n different inputs coloring, the ith being the
one that colors correctly all edges except the ith edge.

A deterministic tree of average depth d must have at least 1/2 of the inputs
reaching leaves of depth no more than 2d (from our special set of n inputs). Since
there are no more than 22d leaves of depth 2d, at least .a+l inputs arrive at the same
leaf. However, no two inputs from our special set can arrive at same leaf since every
such input has a different witness. So, n _< 22d+l or d (log n). [:]

5. Appendix.

5.1. The connection to the resolution problem. Here we present an obser-
vation of V. Chvatal and E. Szemerdi [5] that relates the complexity of the resolution
process for an unsatisfiable formula F and its deterministic decision tree, via a gen-
eralization of decision trees (branching programs).

A resolution for an unsatisfiable CNF formula F is a process that proves that the
formula is unsatisfiable. It generates additional clauses which should be satisfiable if
F is satisfiable until a contradiction is obtained (the empty clause). The resolution
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process was first defined by Blake [3] and became popular as a theorem-proving tech-
nique by Robinson [17] and Davis and Putnam [6]. Formally, let F be an unsatisfiable
CNF formula with clauses C {C1,..., Cm}. The resolution is a straight line pro-
gram. In each step l, a clause C is produced if either C E C or there exist i, j < l,
with C (x V c), Cj (5 V ), and C (a V/) where a and are disjunctions of
literals. In that case we say that C was obtained by resolving on x. The resolution is
indeed a proof for F if it ends with the empty clause. The size of the resolution is the
smallest number of steps to reach the empty clause, denoted here by RES(F). The
resolution process for F may be described as a directed acyclic graph G of in degree
0 or 2. The vertices are the clauses that are generated by the resolution process. If
Ci, Cy are resolved to obtain C then the two corresponding nodes are connected by
directed edges into C. The "output" node is the empty clause.

A resolution is said to be regular if in every directed path form input to the
output node, every variable is resolved at most once.

THEOREM 5.1 ([6]). For every unsatisfiable CNF formula F there is a finite
regular resolution that proves F.

We denote by RRES(F) the minimum size of a regular resolution for F.
A branching program for an unsatisfiable CNF formula F is a directed acyclic

graph G with outdegree 0 or 2 and a special source vertex s. Each vertex of out
degree 2 is labeled by a variable. The two out-going edges are labeled by the two
possible values the variable can take. Every 0-1 assignment of the variables defines a
path from the source to a sink in a natural way. Each sink is labeled by a clause of
F such that for every assignment of the variables, the path from the source ends in a
sink labeled with a clause that is unsatisfied by the assignment.

The size of branching program for an unsatisfiable CNF formula F, BP(F), is the
smallest size (number of vertices) of a branching program for F.

A branching program is said to be read-once (ROBP) if in any source-sink path
every variable appears at most once. Ths size of the smallest ROBP for F is denoted
by ROBP(F).

Note. A decision tree for F is also a ROBP for F.
THEOREM 5.2 ([5]). Let F be an unsatisfiable CNF formula, then RRES(F)

ROBP(F).
COROLLARY 5.3. D(F) >_ log(RRES(F)).
We will present here the ideas of the proof of Theorem 5.2 for the sake of com-

pleteness.
Proof. Assume first that T is a ROBP for F. We will associate a clause to every

vertex of T such that T becomes a resolution graph for F. A vertex v labeled by a
variable x will be associated with a clause C(v) with the property that every input
that reaches v in T falsifies C(v). We associate clauses inductively from the sinks
backwards. To each sink we associate the clause it is labeled with by T. Let v be the
next vertex to be associated with a clause, v is labeled with a variable x in T and has
edges (v, u0) for x 0 and (v, ul) for x 1. We assume, by induction, that u0, (ul)
is labeled with Co, (C) respectively.

CLAIM. C0 does not contain and C does not contain x.
We conclude that either Co (x V c), C (5 V ), or one of Co, C does not

contain x, at all. In the first case label v with C(v) (a V ). In the second case
label v with the clause that does not contain x, 5.

By the definition of the labeling, it is clear that the source node is labeled by
the empty clause (since every input reaches it). Thus, the tree represents a regular
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resolution process for F (possibly with some redundant steps that correspond to the
second case of the labeling above).

Assume now that we have a resolution graph G for F. G can be transformed to
be a branching program for F by reversing the direction of the edges, and labeling
each node by the variable used to resolve the clause it is associated with (except the
sinks which are labeled by their clauses).

It can be seen that this gives a branching program for F by asserting the follow-
ing property. For every node v originally associated with a clause C(v), all inputs
that arrive to v (from the root) falsify C(v). Furthermore, if G represents a regular
resolution, then it results in a ROBP since along a path each variable appears at most
once.

Note that the above also proves BF(F) <_ RES(F). We remark that in general
there can be an exponential gap between these two measures (since any unsatisfiable
CNF has a BP of the size of F while RES(F) might be exponential). It is an interesting
question to find a concrete model of computation that is polynomiMly equivalent to
resolution.
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SEQUENTIAL AND SIMULTANEOUS LIFTINGS OF MINIMAL
COVER INEQUALITIES FOR GENERALIZED UPPER BOUND

CONSTRAINED KNAPSACK POLYTOPES

HANIF D. SHERALIt AND YOUNGHO LEE:

Abstract. A family of facets for the GUB (Generalized Upper Bound) constrained knapsack
polytope that are obtainable through a lifting procedure is characterized. The sequential lifting pro-
cedure developed herein computes lifted coefficients of the variables in each GUB set simultaneously,
in contrast with the usual sequential lifting procedure that lifts only one variable at a time. Moreover,
this sequential lifting procedure can be implemented in polynomial time of complexity O(nm), where
n is the number of variables and m(_< n) is the number of GUB sets. In addition, a characterization
of the facets obtainable through a simultaneous lifting procedure is derived. This characterization
enables us to deduce lower and upper bounds on the lifted coefficients. In particular, for the case
of the ordinary knapsack polytope, a known lower bound on the coefficients of lifted facets derived
from minimal covers was further tightened.

Key words. GUB knapsack polytope, minimal GUB covers, reformulation-linearization
technique, lifting, facets
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1. Introduction. Consider the GUB (Generalized Upper Bound)-constrained,
or multiple-choice, knapsack problem defined as follows:

(GKP) minimize { jENECjXj EiMyN,E ajxy >_ b, jN,E xj <_ I V E M,

xj (0,1) VjN},
where the data are all integers, N { 1, n}, M { 1, m}, and where UiEMNi
N, with Ni n Nj for i, j E M, # j. Johnson and Padberg [7] show that any
GUB knapsack problem with arbitrarily signed coefficients b and aj, j E N, can be
equivalently transformed into a form with b > 0 and with 0 < aj <_ b 4 j N, and they
relate facets of the transformed problem with those of the original problem. Hence,
without loss of generality, we will also assume that b > 0 and that 0 < aj <_ b V j E N.
Note that if INil i V E M, then problem GKP is the ordinaryO-1 knapsack problem.

There are many useful applications of model GKP. As suggested in Sinha and
Zoltners [13], this model is appropriate for capital budgeting problems having a sin-
gle resource and where the investment opportunities are divided into disjoint subsets.
Balintify et al. [3] identify another application in menu planning for determining what
food items should be selected from various daily menu courses to maximize an indi-
vidual’s food preference, subject to a calorie constraint. More importantly, model
GKP frequently arises as a subset of large-scale real-world 0-1 integer programming
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problems. As demonstrated in the results of Crowder, Johnson, and Padberg [4] and
Hoffman and Padberg [6], even a partial knowledge of the polyhedral structure of ordi-
nary and GUB-constrained knapsack polytopes can significantly enhance the overall
performance of branch-and-cut algorithms. Moreover, Martin and Schrage [8] and
Hoffman and Padberg [6] present logical implications that can be derived from GUB-
constrained knapsack polytopes in the context of coefficient reductions for 0-1 integer
programming problems. In the same spirit, model GKP can also be used to generate
classes of valid inequalities for certain scheduling polytopes (see Lee and Sherali [12]
and Wolsey [14]) to tighten their underlying linear programming relaxations. In this
regard, Wolsey [14] defines a "GUB cover" inequality for problem GKP and presents
some implementations of GUB cover inequalities for solving machine sequencing prob-
lems, generalized assignment problems, and variable-upper-bounded flow problems
with GUB constraints. He also shows that for a special case of a GUB-constrained
knapsack problem, this class of inequalities is sufficient to describe the entire convex
hull. However, we will be concerned in this paper with the polyhedral properties of
the convex hull of feasible solutions to problem GKP through an extension of the
well-known minimal cover inequalities for the ordinary knapsack polytope. Johnson
and Padberg [7] also briefly treat a partial characterization of the facets defining the
convex hull of feasible solutions to GKP. In particular, they identify conditions under
which facet coefficients would be zero, ordered in magnitude within sets, or have the
same magnitude within sets. We will, however, be concerned with the actual genera-
tion of facets via a lifting process, and we will provide a complete characterization of
facets obtainable in this fashion.

In 2 below, we present a class of valid inequalities for problem GKP obtained by
a generalization of the minimal cover inequalities for the ordinary knapsack polytope.
We also develop a necessary and sufficient condition for such an inequality to define a
facet of a lower dimensional polytope. Subsequently, in 3, we develop a sequential lift-
ing procedure to obtain a family of facets. The sequential lifting procedure developed
herein computes lifted coefficients of the variables in each GUB set simultaneously, in
contrast with the usual sequential lifting procedure that lifts only one variable at a
time. Moreover, we show that this sequential lifting procedure can be implemented in
polynomial time of complexity O(nm). In 4, we use the reformulation-linearization
technique of Sherali and Adams [11] to easily characterize facets obtainable through
a simultaneous lifting procedure. This characterization enables us to derive lower
and upper bounds on the lifted coefficients. Finally, in 5, for the special case of the
ordinary knapsack polytope, we use this analysis to further tighten a known lower
bound on the coefficients of lifted facets derived from minimal covers.

2. Valid inequalities from minimal GUB covers. Denote the constraint set
of model GKP as

X_ {xE(O, 1)n. E Eajxj _b, Exj_lViEM}.ieMjeNijeNi

We start by introducing some notation. For K C_ N let MK {i M "j Ni for
some j K}. Also, for k E N, we denote M{k simply as Mk. For each G M, define a
key index j(i) such that j(i) argmaxjN(aj). Similarly, given any B C_ N, for each

MB, define a key index jB(i) such that jB(i) argmaxjNnB(aj). For A C_ M,
denote A+ {j(i)" A}. Similarly, for B C_ N, denote B+ {jB(i)" i MB},
and let B_ B- B+.



LIFTINGS FOR GUB CONSTRAINED KNAPSACK POLYTOPES 135

Let us suppose that for each k E N

(1) ak + E aj(i) >_ b.
iE(M-Mk)

Otherwise, xk 0 in every feasible solution to X. Denoting the convex hull
operation by conv (.), let GUBKP conv(X), and let dim(GUBKP) be the dimension
of GUBKP, which is the maximum number of affinely independent points in GUBKP
minus one.

PROPOSITION 2.1. dim (GUBKP)= n- IMol, where Mo- {i M" pE(M-i)
a.() < b}.

Proof. By the definition of M0, we must have EjNi Xj 1 for each M0.
Hence, it follows that dim(GUBKP) _< n- IM01. To prove that dim(GUBKP)
n- IM01, it suffices to show that there exist n- IM01 + 1 affinely independent points
in GUBKP.

For each (M- M0), we construct a set of feasible points in GUBKP as
follows. For each k Ni, construct x(k,i) {Xk 1, xy 1 forj j(p), Vp
(M-i), xj 0 otherwise}, and let x(#) {xj 1 for j j(p), V p e (M-i), xj
0 otherwise}. Similarly, for each M0, we construct a set of feasible points in
GUBKP as follows. For each k Ni, construct x(k’i) {Xk 1, xj 1 for j
j(p), V p M i, xj 0 otherwise}. Then, the total number of distinct feasible

points thus constructed is n- M01 + 1. Let X be the set of these distinct points
xY, indexed by j 1,..., n- IM01 + 1. Without loss of generality, let Xn-IMI+I --{xj 1 for j N+, xj 0 otherwise}. Construct a matrix D whose row vectors
are x xn-IMl+l, j 1,..., n- IM01. Then the matrix D can be readily seen to
possess a block-diagonal structure, with the rows corresponding to each block being
linearly independent. Hence, xj, j 1,..., n- IM01 + 1, are affinely independent.
This completes the proof. [

Now, if dim(GUBKP) is less than n, then by writing each inequality constraint
E M0 as an equality constraint and using this equation to eliminate the variable that

has the smallest aj coefficient, we get a full-dimensional subpolytope of dimension of
n- IM01. Hence, without loss of generality, we can assume henceforth that GUBKP
is a full-dimensional polytope. The following results are readily evident.

COROLLARY 2.2. For a given H C_ N, define X(H) XC{x (0, 1) Zj(i) 1,
V MH}. Then, for any A c_ M, dim(conv(X(UieANi))) --I[.Jie(M-A) Nil.

PROPOSITION 2.3. For each j N_, the inequality xj > 0 is a facet of GUBKP.
PROPOSITION 2.4. The GUB constraints EjNi Xj

_
1, M, are facets of

GUBKP.
Balas [1] discusses the well-known classes of minimal cover inequalities for the

ordinary knapsack polytope, along with its tightened variants, namely the extended
and the strong minimal cover inequalities. We generalize these definitions and derive
related results for the GUB-constrained knapsack polytope below. In addition, an
alternate tightened variant that is peculiar to the GUB-constrained situation is de-
rived. Note that these inequalities are different from the valid inequalities treated by
Wolsey [14].

We will say that a set K UiEQNi, for some Q c_ M, is called a GUB cover of X,
if -iM_aj(i)

_
b- 1, where K N- K. A GUB cover K is called a minimal GUB

cover of X if -iM_aj(i) -- minieMK(aj(i)) _> b. Accordingly, we define a minimal
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GUB cover inequality as the valid inequality

(2) E xj >_ 1.
jEK

For a minimal GUB cover K, we define R- {j E K" aj >_ maxjEK(aj)}.
An extension of the minimal GUB cover K of X, denoted by E(K), is defined as

E(K) K 2 S, where S UieMRNi.
PROPOSITION 2.5. IfK is a minimal GUB cover of X, then the inequality defined

a8

(3) E xj >_ 1+ IMRI
jE(K)

is a valid inequality for GUBKP. Moreover, this inequality dominates the minimal
GUB cover inequality if R .

Proof. The validity of (3) follows by verifying that if a binary satisfies the
GUB constraints and is such that jE(K)-2j <_ [MR[, then X. The dominance
statement is evident by rewriting (3) as -jeg xj >_ 1 + -iEMR (1 EjeN x). This
completes the proof.

The idea of using strong minimal covers to generate nondominated extensions as
for the case of the ordinary knapsack problem (see Balas [1]) can be. readily extended
to the GUB-constrained situation as follows. We will call a minimal GUB cover K
strong if either E(K) N, or else no set of the form S tie(MK Ml)u{p}Ni for
any p ME(K) is a cover, where jl argmaxjK(aj). That is, a set K c_ N is a

strong minimal GUB cover of X if K is a minimal GUB cover for which, if E(K) N,
then ajl + ’i(M--- p) aj(i) >_ b p ME(K). Hence, a minimal GUB cover K is

strong if there exists no minimal GUB cover of the same size as K whose extension
strictly contains that of K.

We now consider another strengthening procedure for the minimal GUB cover
inequality.

PROPOSITION 2.6. If K is a minimal GUB cover and (K1,K2) is a partition of
K with K2 such that

max (aj) + E aj(i) < b,E jENiMK2
MK

then the inequality

(4) E xy >_ 1
jKI

is valid for GUBKP and dominates the minimal GUB cover inequality EjK Xj

_
1.

Moreover, if minEK(aj) + -iM_aj(i) k b, then the inequality (4) is a facet of
conv(X(K2, K)) where X(K2, K) X C {x e (0,1)n’xj =0 V j e K2, xj(i) 1
/ E M-K}.

Proof. It is readily shown that the inequality (4) is valid for GUBKP. Since
minjeK (aj) + ieM_ aj(i) >_ b, the unit vectors ej, for j KI, are feasible to
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conv(X(K2, K)), and moreover, they satisfy (4) as an equality and are linearly inde-
pendent. Hence, the inequality (4) is a facet of conv(X(K2, K)). This completes the
proof.

Furthermore, if no such partition with K2 05 exists, i.e., if minjK(aj) +
EiM--ff aj(i) -- b, then we have the following result.

PROPOSITION 2.7. For a minimal GUB cover K, the minimal GUB cover in-
equality is a facet of conv(X(K)) if and only if minjK(aj) + EiM_aj(i) >_ b.

Proof. The proof follows easily by examining the IKI linearly independent unit
vectors ej, one for each j E K, which belong to conv(X(K)), and which satisfy the
minimal GUB cover inequality as an equality.

Moreover, canonical facets of GUBKP are related to inequalities (4) as follows.
PROPOSITION 2.8. If for some H C_ N, the inequality YjeH xj >_ 1 is a facet

of GUBKP, then K [-JiMH Ni

_
H is a GUB cover such that within K, H is a

minimal set satisfying iM maxye(N_H)(aj) + eM_aj(i) < b.

Proof. SinceHxy _> 1 is valid for GUBKP, we have that ye+ aj <_ b- 1,
which can be restated as (M-M) aj() + --eM, maxj(N_H)(aj) _< b- 1. Since

Ei(M--MH) aJ(i) -- b- 1, K [_JiMHNi is a. GUB cover set that contains H and
satisfies the condition of the proposition. If H is not minimal, then there exists
an s E H such that H’ H- s satisfies the condition of the proposition. Then,
by Proposition 2.6, jeH’ xj >_ 1 is valid for GUBKP. Since jeH’ xj >_ 1 strictly
dominates EjH xj

_
1, we have a contradiction, and this completes the proof.

Example 2.1. Consider the following example, where X {x (0, 1)s Xl +
5X2 -- X3 - 5X4 -- X5 -- 3x6 + x7 + 3Xs _> 9, Xl - X2

_
1, X3 -- X4

_
1, x5 + x6 _< 1,

x7 + Xs _< 1}.
Since for all M, ,(M-i) aj(p)

_
9, the convex hull of X is a full-dimensional

polytope by Proposition 2.1. A GUB cover is given by K {1, 2, 3, 4, 5, 6}, where

K+ {2,4,6} and K_ {1,3, 5}. A minimal GUB cover is given by K {1, 2,3,4},
and a minimal GUB cover inequality is Xl + x2 + x3 + x4 _> 1. This minimal GUB
cover does not admit any extension. However, consider a partition of K such that
K1 {2,4} and K2 {1,3}. Then a strengthened minimal GUB cover inequality
of the form (4) is x2 + xa >_ 1, which is a facet of conv(X(K2, K)), where X(K2, K)
X {x (0, 1) s Xl x3 0, x6 xs 1}. Note that the foregoing minimal

cover is not strong, since an extension of the minimal GUB cover K {3, 4, 5, 6} is
E(K) { 1, 2, 3, 4, 5, 6} { 1, 2, 3, 4}, and the extended inequality of the type (3) is

Xl+X2+X3 +x4+x5+x6 >_ 2. This minimal GUB cover K {3, 4, 5, 6} can be verified
to be strong. Moreover, since minjg(aj) + -ieMaj(i) 9- b, by Proposition

2.7, the corresponding minimal GUB cover inequality x3 + x4 + x5 + x6 >_ 1 is a facet
of conv(X()) X Cl {x e (0, 1)s x2 1, xs 1 }.

Remark 2.1. In concluding this section, we remark that within the context of
0-1 programming problems that contain GUB constraints, given a fractional solution
to the continuous relaxation, one can set up a separation problem using individual
problem constraints along with (a subset of) the GUB constraints to possibly generate
a minimal GUB cover that deletes this fractional solution. Such an approach would
be similar to that used by Crowder, Johnson, and Padberg [4] (also, see Hoffman
and Padberg [6]), except that this separation problem would be a GUB-constrained
knapsack problem. Note that the transformation suggested by Johnson and Padberg
[7] can be used to put this GUB-constrained knapsack problem in the standard form
considered herein. Having generated such a minimal cover, this can either be tightened
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using the foregoing discussion, or it can be possibly lifted into a facet of GUBKP as
discussed in 3 below.

3. Sequentially lifted facets from minimal GUB covers. We now consider
a polynomial-time strengthening procedure that sequentially lifts a given minimal
GUB cover inequality. For the case of the ordinary knapsack polytope, Balas and
Zemel [15] exhibit that the sequential lifting procedure of Padberg [10], which lifts
one variable at a time, obtains a facet when applied to a minimal cover inequality
that is a facet of a certain lower-dimensional polytope. However, as we shall show, in
the presence of GUB constraints, we need to lift all the variables in Np for each GUB
constraint p E M- simultaneously, where K is a minimal GUB cover of X, to obtain
a lifted inequality. In particular, if the condition of Proposition 2.7 holds, then we
show that the resulting inequality is a facet of GUBKP. Moreover, in the spirit of the
procedure proposed by Zemel [16], we show that this type of a sequential-simultaneous
lifting can also be conducted in polynomial time.

Let us begin our analysis by defining some notation. For a given p E M, define

7t, for t- j(p), as

?t=Iin{Exj.xX,jEK Xj "--0 VjNp}
(5) --min {ieMKE XJ(i) E aj(i) xj(i) - b-

and define -s, for each s (Np

S=min{ExJjeK "xX, xs-1}

iMK ie(M-ff p)

xj(i) E (0,1) ViMK/,
--j(p)) (Np t), as

aj(i),

Since K is a minimal GUB cover of X and GUBKP is full-dimensional and by condi-
tion (1),notethat l <_ r <_ IMKI and l <_ s <_ rt V s (Np t).

PROPOSITION 3.1. (i) For a given minimal GUB cover K of X, the following
inequality, defined for any particular p M-ff as

+
jK sE(Np t)

CtsXs na CttXt >_ 1 +

where t j(p), is a valid inequality for GUBKP for any at <_ r 1 and for any
as>-{S+ct+lVs(Np-t).

(6) min { ieMKE Xj(i) ieMKE ai(i)xi(i) >- b-as- ie(M-E- p)
ai(i),

xj(i) E (0, 1) V MK.
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(ii) Moreover, if at -7t- 1, a8 -7t- 8 V s e (Np t) and minjK(aj) +
EeM_a() >_ b, then the inequality (7) is a facet of conv(X(K- Np)).

Proo (i) Since the minimM GUB cover inequMity is valid for GUBKP and (7)
coincides with the minimal GUB inequMity when xt 1 and x 0 V s (Np t), it
is sufficient to show for establishing the validity of (7) that if X and has 2 1
for any s (Np-t), or if2 X and has 0 Vj Np, then suchand 2
satisfy (7). That is, eK2 +a 1 + at, andK 1 + at. By the definition
of the quantities at and a, in the first case, we have, using (6), that yeK 2y + a
s _s +at + 1 1War, and in the second case, we have, using (5), that jeK 2

t 1 + at. Hence, the inequality (7) is valid for GUBKP.
(ii) Since the minimM GUB cover inequality is a facet of conv(X(K)) by Propo-

sition 2.7, and since conv(X(K)) is of full dimension ]K by Corollary 2.2, there exist

K] linearly independent vertices of conv(X()), indexed by xj, j 1,..., K, that
satisfy the minimal GUB cover inequality as an equality. Since x 1 for M,()
j 1,..., [K, these vertices also satisfy the inequMity (7) as an equality and more-
over, these vertices belong to X(K- Np). Now, for each s (Np t), let 2 be a
solution of (6) such that Eje 2. Note that 2 X(K-Np). Also, for t j(p),

and note that 2 X(K Np).let 2 be a solution of (5) such that t jeK xj,
Moreover, 2 and 2 stisfy the inequality (7) as an equMity when a t , and
t _t 1.

By Corollary 2.2, we have that dim(conv(X(K- Np))) -[K Np]. Let X
{(xY, 1) for j 1,..., ]K[, (2t, 1), (2, 1) for s (Np t)} be the set of vectors
obtained by adding a new component having value 1 to each vector xj, 2t, and 2 in
the collection as shown. Let us show that the vectors in X are linearly independent.
On the contrary, suppose that these vectors are linearly dependent. Then there exists
a set of multipliers {(Aj for j 1, [K]), St, ( for s (Np t))} 0 such that

(8) EAJxj+St2t+ E #828=0and E)j+St+ E #8=0.
j--1 s(Np-t) j--1 se(Np-t)

^8 1, it followsSince for each s E (Np t), xs^t O, x 0 for j 1, [K[, and x
that #8 0 V s (Np- t). Now, if 5t 0, then by the linear independence of xy,
j 1,...,IK[, we would have Aj 0, V j 1,...,[K[, a contradiction. Hence,
without loss of generality, suppose that 5t -1, so that (8) becomes 2t K AjxJ
and ,K, Aj 1 Now, since 2 0, x 1 for j 1, K[ it follows thatj=l

Aj 0, which is a contradiction. Hence, the vectors ((xj, for j 1,..., [K]),
t, ( for s e (Np t))} are affinely independent. This completes the proof.

PROPOSITION 3.2. Let K be a minimal CUB cover such that the corresponding
minimal CUB cover inequality gives a facet of conv(X(K)). Let M (il,...,ik}
be arbitrarily ordered, where k M]. Let M(q) {il,...,iq) M, and let
N(q) UieM(q)Ni for q 1,...,k. For q 0, let M(q) N(q) . Let q
(0,... ,k- 1) and suppose that jegN(q)jXj 0 i8 valid for GUBKP and is a

facet of conv(X(K N(q))). Consider iq+l. Denote t j(iq+l), and compute

(9) t(q)_ min { E
jKUN(q)

ajx x X, xj 0 4 j Niq+l }
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Also, for each s N(iq+l) -t, compute

(10) ( (q) min { E
it(N(q)

OjXj X E X, x 1

Then

(11) E o5xi + E
jKt2N(q) s(Nq+ -t)

(t(q) (q))x + (t(q) ao)Xt >_

is (i) valid for GUBKP, and (ii) is a facet of conv(X(K N(q + 1))).
The proof of Proposition 3.2 follows the same argument used in the proof of

Proposition 3.1. Note that if q 0, then t(q) t and 8(q) 8, as given by (5)
and (6), respectively. This proposition establishes an inductive sequential procedure
for generating facets for GUBKP from minimal GUB cover inequalities in the spirit of
Balas and Zemel [2] for the ordinary knapsack polytope, except that a simultaneous
lifting of the variables within each GUB constraint needs to be conducted in this case,
as mentioned earlier.

Now, examining (7) and (11), note that a sequentially lifted inequality obtained
from a minimal GUB cover inequality is of the form

E xj+ E ayxy- E ay(1-xy)>_l,
jEK je-- jE’-+

or

(12) ExJ + E ajxj + E ,jxj >_1+ E ai.
j K ie-- -+ j-+

The derivation of the coefficients aj of this lifted inequality requires the solution
of a sequence of GUB-constrained knapsack problems. Furthermore, the values of the
coefficients depend on the sequence in which the indices, E M are considered. For
each M, let aj denote the value of cU for j Ni when il, i.e., when is
taken to be the first index in M. In other words, (t t 1 for t j(i), and a
t s V s (Ni t). The subproblem that determines these initial coefficients has
a simpler structure than the subsequent GUB-constrained knapsack problems that
have to be solved to find the other coefficients of the sequence, and because of this
structure, the values of t and can be easily obtained, as shown in the following
propositions. (Some of the proofs are obvious, and are hence omitted.)

PROPOSITION 3.3. Let Kh be the index set of the h largest aj(i) for MK. For
a minimal GUB cover K and for all t +, we have by (5) that t h, where h is

defined by

E ak>-b- E aj(i)> E
kEKh i(M-ff- Mr) kKh-1

ak.

PROPOSITION 3.4. Let Kh be the index set of the h largest aj(i), for MK.
For a minimal GUB cover K and for any s K_, we have h in (6), where h is

defined by

E ak>-b-aS- E aj(i)> E
kKh i(M-ff- Ms) kEKh_

ak.
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Note that for a given p E M, jl _> j2 whenever ajl

_
aj2, for jl, j2 E NpN_.

COROLLARY 3.5. For a given p E M, iS r 1, then s 1 s (Np t),
where t j(p).

Proof. Follows from the fact that 1 <_ s <_ ?t
COROLLARY 3.6. Let tl argmaxeM-(aj(i)). If

(Ni -j(i)), M-, and ]J() 1 i M-.
Proof. From (5), it follows that 1 _< /J() _< T]tl V M. Using this fact along

with Corollary 3.5 establishes the required result.
The above results suggest a sufficient condition under which a minimal GUB cover

inequality would be a facet of GUBKP.
PROPOSITION 3.7. If the minimal GUB cover inequality is a facet ofconv(X(K))

(see Proposition 2.7), and if maxjeK(aj) + EiM-ff-
argmaxiM_(aj(i)), then the minimal GUB cover inequality is a facet of GUBKP.

Proof. Since maxjeK(aj)-+--ie(M_K_ Mt)aj(i) >-- b, we have that ?tl 1. By
Corollary 3.6, all the coefficients in the lifted inequality of the form (7) are zeros.
Examining (9), (10), and (11), we continue to obtain zeros for the lifted coefficients
in Proposition 3.1, and so the minimal GUB cover inequality is a facet of GUBKP.

We now show that the readily obtained coefficients aj, j E K, provide bounds on

the coefficients/j, j K, of arbitrary valid inequalities (not necessarily sequentially
lifted) that have unit coefficients for all j K.

PROPOSITION 3.8. If EjeK xJ nc j-_ jxj- -je-+ /j(1- xj) >_ 1 is valid

-(a-lt) V j K_ wherefor GUBKP, then j <_ ay’ V j K+, and 1 > aj
t j(p), p M-K, such that j Np.

Proof. Assume that for some t K+, /t > at. From Proposition 3.1, we have
that at t 1. Let 2 be an optimal solution for (5) such that r yje( 2y. Then

X, but

jeK_ j.K+

1 fit at’ + l fit < l,

and so, the inequality in the proposition is violated. Hence, fit <_ at’ V t -+.
For the case of flj, j K_, suppose that for some p M, and s Np, we have
fl < a’ (a fit) where t =_ j(p) s. Consider problem (6), and let X solve
this problem. Then, since a -a 1 we have that

E 2j+ E J2J- E J(1-2J)-4s+/s-t<s+as
jg je-_ j-+

l_ 1a

and so the inequality is again violated. This completes the proof. 1

We now consider the task of efficiently computing the coefficients aj for j ,
of a sequentially lifted facet (12). As mentioned earlier, the task of computing aj
for j E K involves the solution of a set of 0-1 GUB-constrained knapsack problems.
However, because of the special structure of these problems, we can easily obtain the
coefficients aj for all j K within a time complexity of O(nlMKI) by adapting the
procedure due to Zemel [16] that was proposed for the ordinary knapsack problem.
Toward this end, consider the following propositions. (The proofs are straightforward
and are hence omitted.)
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PROPOSITION 3.9. Suppose that -2 is an optimal solution to the following problem
with z , and with all data integer valued:

w(z)=max{Eajxj. Ecjxj<_z, Exj<_lViEM
jeN jeNi

xjE(O, 1) VjN}.
Then, -2 is an optimal solution to the following GUB-constrained knapsack problem

for all b satisfying w(- 1) < b
PROPOSITION 3.10. Let the function w(z) and the problem P(b) be as defined in

Proposition 3.9, for any integers z and b. Then, v(b) min{z w(z) >_ b}.
Now, examining (12), suppose that we have a (partially) lifted inequality of the

form

(13) E ajxj E cU(1 xj) >_ 1.
jeT_ jeT+

We want to find a lifting of (13) with respect to the variables xj, V j Np, for some
p (M- MT). By Proposition 3.2 and inequality (12), we have that for t j(p)
and s (Np- t),

at min / E xj + E ajxj E (j(1- xj)1+
jeK jeT_ yeT+

E ajxj >_b- E aj(i),
jeKt3T ie(M-l- MT p)

E Xj 1 V e M, xy e (0, 1) V j e N,
)

and

Let L -_- K t2 T, L N- L, and define

(14)

WL(Z) max {jeLE ajxj ExJ + E ojxj E CU(1-xJ) <_ z,
jeg jeT_ jeT+

E xJ <_ l V e M, xj e (O, 1) v j e g
)jeN
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By Proposition 3.10, we have that

l + at min { z wL(z) >_ b--

and

1 + at as min {z WL(Z) >_ b- as

Hence, we can efficiently obtain the coefficients aj for j E Np, by computing WL(Z)
efficiently for different pertinent values of z. Toward this end, consider the following
recursive equation for computing the function WL(Z). Note that

(15) wLugp(Z) max{ max [as + WL(Z + at as)I, [at + WL(Z)], [WL(Z + at)I}.
8e(gp-t)

Hence, we can compute the coefficients aj for j E K by using the recursive equation
(15). Consider the problem (14). Let be the smallest among the alternative optimal
solutions of maxz(WL(Z)). Then, it follows that WL(Z) WL() V Z >_ . For any
minimal GUB cover K, to begin with, since WK(Z) WK(IMK[) V Z >_ IMKI, we only
need to compute Wg(Z) for z 1,..., IMKI. Moreover, since at _> 0 and at -as _> 0
V s (Np-t), we have recursively that the value in (15), for each L and Np thereafter,
also remains a constant for z >_ IMKI. Therefore, each function WL(Z) needs to be
evaluated (recursively) via (15) only for z 1,..., IMKI. Hence, the time complexity
of computing the lifted coefficients ay for j

4. Simultaneously lifted facets from minimal GUB covers. We now con-
sider an implementation of the reformulation-linearization technique (RLT) (see Sher-
ali and Adams [11]) to characterize a class of valid inequalities (facets) of GUBKP,
obtainable via a simultaneous lifting of minimal GUB cover inequalities. Toward this
end, define a set F corresponding to feasible solutions for GKP as

F--{JC_N’Eay>_b,jJ ,JNNi,<_lViM} andlet--{JC_N’JF}.

Then, we can directly write conv(X) as a convex combination of all feasible solutions
to X by associating, for each J C_ N, a convex combination weight yj with a vector
that has ones in positions j J and zeros otherwise. Noting that feasibly requires
that yj --0 if J E F, we get

GUBKP- conv(X)

(16)

x’xj-- E yjjGN,
J: jJ

E yj- 1,
JCN

yg

_
0, J F, yg 0 Y J .
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Using the standard projection operation, the set of all x’s for which there exist corre-
sponding vectors y that yield a feasible solution to (16) is given by duality or Farkas’s
Lemma (see Nemhauser and Wolsey, [9]) as

EkGUBKP x" uj xj >_ uko
jEN

(17) where (, 0k), k- 1,... ,K, are the extreme directions of II}
where II {(r, u0)" EjeJ ry u0 _> 0 V J e F}.

We now consider the characterization of a family of valid inequalities of GUBKP
obtainable via a simultaneous lifting of the minimal GUB cover inequality. Recall that
the minimal GUB cover inequality --yeK xj _> 1 is a valid inequality for conv(X(K)),
and a facet for conv(X(K)) if min/eg(ay) + -ieMaj(i)

_
b. We are interested in

finding a lifted inequality, which is a facet of GUBKP, and is of the form jeK xj +
je- ujxj je+ rj2y _> 1 where 2j (1 xj) V j E N, and rj V j E K are
unrestricted in sign. This is of the form

(18) ExJ+ E x+ E uix_>l+ E uJ"
jeK j-_ j +

Motivated by (17) and the form of (18), consider a polyhedral set H, where H-g _-

{rj, j e K (u,r0) e H, uj 1 Vj e K, 0 l+-je+rj}. Let us now

proceed through a series of simplifications in characterizing H more precisely, and
then state our main result regarding this set and the validity of (18), in the same
spirit as that of (17). To begin, observe that H can be represented as follows, where

rK- {r’j e K}

(19) E_TrY->I+ E_ 7r: J Cl K V J E F}
jJCIK jEK+

Equivalently, we have,

j(K+ J) jJNK_

y <_ IJNKI-1, V J F}.
Note that we need to consider only those J F above, for which KJ =_ (K+ J)U
(J N K_) . Hence, we have that

(2o)
t je(K+ J) jJrnK_

F having KJ =fi .V J
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Furthermore, note that we need to examine only the most restrictive constraints in
(20). Toward this end, define GUB(K) {T C_ K ITg)Nil <_ 1 V E ME}. Now for
any T GUB(K), define the feasible extension of T as J(T) {J F" J J1 U T
for some J1 C_ K}, and let KT (K+ T) U (T N K_). Accordingly, define

FK {T GUB(K) J(T) , and KT }.

Then, we can restate (20) as follows.

(21) HE- {uE" E J- E
je(K+-T) j6TVIK_

VTFK}.
rj <_ min{IJ N K J 6 J(T)}- 1

We now consider an explicit representation of the minimization problem in (21).
Note that T FK if and only if (i) IT Nil _< 1 for ME, i.e., T GUB(K), (ii)
YjK+ aj + EjTaj >_ b, i.e., J(T) , and (iii) KT : . Hence, for each T FK,
we can represent the minimization problem in (21), denoted by AGUBKP(T), as
follows.

AGUBKP(T) minimize { E yj E ajyj >_ b_ E aj, yj 6 (O, 1) V j 6 K+ }j6K+ jeT

Note that 1 _< (AGUBKP(T)) <_ IMKI, where (P) denotes the optimal objective
value of the corresponding problem P. Of course, AGUBKP is an easy problem in
the sense that we can readily compute (AGUBKP(T)) for each T FK, using a
greedy procedure. Let b b- jTaj. If b is less than or equal to maxjg+(aj),
then (AGUBKP(T)) 1. Otherwise, if b is less than or equal to the sum of the first
two largest aj’s for j K+, then (AGUBKP(T)) 2, and so on. Hence the time
complexity of solving AGUBKP is O(IMI log IMI). Let N(T) (AGUBKP(T))- 1.
Then, we have

j(K+-T) jTNK_

PROPOSITION 4.1. For a minimal GUB cover K, the inequality (18) is a valid
inequality for GUBKP if and only if UE IIE, where 7E {7 j K}, and HE is
given by (22).

Proof. x >_ o is valid for GUBKP if and only if yej j _> u0 V J F, that is,
from (17), if and only if (u, 0) II. Hence, noting the form of (18) and the derivation
of (22), we have that (18) is valid for GUBKP if and only if u HE, where HE is
given by (22). This completes the proof.

PROPOSITION 4.2. Let K be a minimal GUB cover such that minjeK(aj)+
ieM_ay(i) >_ b, and let II- be given by (22). Then, the inequality (18) having

1 + j-+ rj > 0 is a facet of GUBKP if and only if (Trj, j K) is a vertex of HE
with 1 + j-d+ Try > O.
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Proof. As shown similarly in Sherali and Adams [11], it is readily verified that
rx >_ 1 is a facet of GUBKP if and only if r is an extreme point of H1, where

Hence, (18) with - r-- for j K is a facet of GUBKP if and only if the scaled
partitioned vector -, where

(24) - #- (l+Eye+y)’
j K #= (I+Ej+y)’

j

is an extreme point of (23).
Now, for each j K, the set J(j) {j} K+ F by the hypothesis of the

theorem, and the corresponding constraints of (23) are linearly independent and are
binding at the solution (24). The latter [K linearly independent equality constraints
appear as

(25) uy-1- t forjK,

tK+

and so determine j, j K, uniquely in terms of uy, j K+. Now, (24) is a vertex of
(23) if and only if it is feasible to (23) and there exist some ]K[ hyperplanes binding
from (23) that are linearly independent in combination with (25). This happens if
and only if {#j, j K} is an extreme point of the set obtained by imposing (25) on

(23), i.e., the set

(26) {’iI+,JKI(+t-1)
This holds if and only if (i, j K) is feasible to (26), and there exist some ]K
linearly independent hyperplanes that are binding at (, j K). Feasibility of # to
(26) requires from (24) that

jJK

That is, we must have

(27) i1+ t-]JDKYJF.
jJK t@K+

Note by (19) that (27) is equivalent to requiring that belongs to H. Moreover,
an inequality in (26) is binding at if and only if the corresponding inequality in (27)
is binding. Also, a collection of K] linearly independent equations from (26) give # as
the unique solution if and only if the corresponding ]K] equations from (27) give as
the unique solution, because from (24), there is a one-to-one correspondence between
# and according to

= (l+eN+)
VjeK and = (1-N+) Vje
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TABLE

T KT E.jeTaj
9 0

7 7, 9 1
8 8, 9

(AGUBKP(T)) Inequalities of H in (22)
2 r9<_l
2 71"9 r7 _< 1
2 7r9 rs <:

Hence, r is an extreme point of (26) if and only if is an extreme point of H
with 1 + EjE+ 71---j > 0, and this completes the proof. Cl

Example 4.1. Consider the following example to illustrate the above simultaneous
lifting procedure. Let X {x E (0, 1)9 Xl + x2 + 2x3 +x4 + x5 + 2x6+x7 + x8 + 3x9
_> 4, Xl+X2+X3 _< 1, x4+xh+x6 _< 1, xT+xs+x9 _< 1}. A minimal GUB
cover inequality is Xl + x2 + x3 +x4 + x5 + x6 >_ 1, which is a facet of conv(X(K)),
where K {7, 8, 9}. For this minimal cover, we have that FK {, {7}, {8} }, thereby
leading to the computations shown in Table 1.

The point (0, 0, 1) is the only vertex of H with 1 + -jE+ rj 2 > 0. Hence,
xl + x2 + x3 + x4 + x5 + x6 + x9 >_ 2 is the only facet obtainable from the minimal
GUB cover inequality by the lifting procedure.

Remark 4.1. In a spirit similar to Remark 2.1, the foregoing proposition can be
used in the context of a separation problem for generating a simultaneously lifted
facet of GUBKP, based on a given minimal GUB cover, that deletes a given fractional
solution to the continuous relaxation of a 0-1 problem. In this context, an additional
linear program would need to be solved over the polytope (22) to generate the cut
coefficients for j E K, where K is the minimal GUB cover being used. Note that if
such a strategy is being used as in Crowder, Johnson, and Padberg [4] and Hoffman
and Padberg [6] within an overall algorithm for solving a 0-1 integer program, then
if this problem is sparse, we might expect IKI and IMI to be manageably small
when employing a GUB-constrained polytope based on a single problem constraint.
Thus, the generation of the foregoing facetial cut would not be too computationMly
burdensome. In this type of an analysis, for further restricting a subset of the cut
coefficients a priori before employing a reduced sized set (22) along with Propositions
4.1 and 4.2 to generate the remaining coefficients defining strong valid inequalities, it
would be computationMly useful to have knowledge of lower and upper bounds on the
simultaneously lifted facet coefficients rj for j K in (18). This topic is addressed
next.

4.1 Lower and upper bounds on the lifted coefficient rj for jE K in
lifted inequality (18) under Proposition 4.2. To begin with, let us consider
the lifted coefficients rt for t K+. Since GUBKP is a full-dimensionM polytope, it
follows that for any t G K+, we have T (K+ t) FK, and from (22), we directly
have that 7rt <_ N(K+ -t). Hence, from (5), an upper bound UBt on 7rt is given by

UBt N(+ t) t 1 for each t E +.
Now, for given lower bounds LBs on rs V s (Np- t), where p- Mr, let us derive
a lower bound LBt on rt. Toward this end, examine any T FK such that t T.
Then, from (22), we have that

j(K+-T) jTKIK_

71"j N(T) V T Fk such that t T.
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From (28), since t e (K+ -T), we have that

(29) rt_<N(T)- [ _E rY E rJ] V T e Fg such that t C
jE(K+-T-t) jETCK_

Note that (29) is comprised of all the constraints ofH that contain t. Since at
any vertex of H, at least one of (29) must be binding, we have that

jG(K+-T-t)

For all T E Fk such that t T, define

j(K+-T) jeTOK_

Then equation (30) reads

E_ 7rj] "TEFiwithtT}.jTMK_

je(K+-T-t) jeTCK_

(31) 7rt min{N(T)- V(T)" T e FK with t T}.

For any T FK such that t T, if (T + t) FK, then we have that V(T)
u(T + t)_< N(T + t) by (28). On the other hand, if (T + t) FK, then there exists
some s e T N Np and V(T) ,(T + t- s) rs <_ N(T + t- s) 7rs. Hence, from (31),
we have

min IN(T) N(T + t- s) +7rt min{ min IN(T) N(T + t)],
TT2-TT1

where T1 {T E FK t T and (T + t) FK}, T2 {T FK t T and there
exists some s (Np t) T where p =_ Mt }. Hence, for given lower bounds LB on

7r for s (Np t), a lower bound LBt on 7vt, for t E K+, is given by

min IN(T) N(T + t- s) + LB]}.(32) LBt min{_TeTlmin IN(T) N(T + t)],
TET.

Next, let us derive lower and upper bounds on the lifted coefficients rs, for any
s e K_. From (22), we have that when T {s} U {K+- t}, where t j(M),
rt- r _< N(T). Hence, we have r _> rt N(T). Consequently, for a given lower
bound LBt on rt, t K+, a lower bound LB for any s K_ is given by

(33) LBs LBt N(K+ t + s) where t j(M).

Remark 4.2. Note that the lower bounds (32) and (33) are conditional bounds,
each being determined based on lower bounds of the other. These conditional bounds
are useful if we restrict the class of facets to have prescribed lower bounds on the 7rt
or the 7r coefficients. Otherwise, we need to derive unconditional lower bounds LBj

j K. Toward this end, we derive an unconditional lower bound of zero on 7rt,

V t E K+, as follows. By the transformation in Johnson and Padberg ([7], Prop. 2.1),
since the inequality (18) is a facet of GUBKP and [Mtc[ > 1 (otherwise, dim(GUBKP)
< n), it can be readily shown that the inequality

jK+ j-+ iM-ff j{Ni-j(i)}
(wj()- 7ry)zj < IMKI- 1



LIFTINGS FOR GUB CONSTRAINED KNAPSACK POLYTOPES 149

is a facet of the convex hull of the polytope

Z-conv zE (0,1)n" -djzj

_
b, zj <_ 1V E M

iEM jEN jN

where for all M, j(i) aj(i), j aj()-aj j {N-j(i)}, and b
b+jN+ aj. Since the constraints of the polytope Z have all nonnegative coefficients,
we have that all the coefficients of the facet (34) are nonnegative [5]. Accordingly, for
each t K+, we have

(35) rt >_ 0 and rt rs >_ 0 V s (Np t), where p- Mr.
From (35), we have a valid lower bound of zero on 7rt, V t E K+. Consequently,

from (33), we have that LBs -N(K+ t + s) V s (Np t), where p- Mr.
Finally, let us derive an upper bound UB for any given s K_. Note from (22)

that the collection of constraints defining II that contain the coefficient r is given
by

(36) rs _> E rj E rj N(T) V T FK such that s T.
j(K+--T) j(T--s)ClK_

Again, at any vertex of IIK, since at least one of (36) must be binding, we have
that

jE(K+-T) j(T-s)nK_

Now, in (37), if (T- s) e FK, we have from (22) that

E rj- E rj _< N(T- s).
j(K+-T) j(T-s)CK_

On the other hand, if (T-s) FK, then N(T-s) oc, and so the fore-
going inequality holds for all T FK such that s T. Furthermore, for any T
FK such that s T, we also have (T- s + t) E FK, where t j(M). Consequently,
from (22), the corresponding constraint for T’ =_ (T- s / t) G FK yields

E E E E
j(K+-T) jE(T-s)CK_ j(K+-T’) jT’CK_

(38) N(T’) + rt _< N(T’) + UBt.
Note that if KT’ (K+- T’)U (T’ CK_) , we simply have N(T’) 0 in that

case. Combining the last two inequalities, we may write for any T FK such that
s T, and t j(M),

E ry E 7rj _< min{N(T- s), N(T- s + t)+ UBt}.
je(K+.-T) j(T-s)NK_

Substituting this in (37) above, we obtain the following upper bound UB. on
for any s G K_.

(39) UB max {min{N(T- s), N(T- s + t) + UBt} -N(T)},
TEtV’: s_T
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where t j (Ms).
Example 4.2. Consider the following constraints of a GUB-constrained knapsack

problem, where X {x E (0, 1) 12 2xl + 5x2 + 2x3 + 3xa + x5 + 3x6 + x7 + 3xs +
2x9 + 2x10 + 2Xll -t- 2x12 >_ 16, xl + x2 < 1, x3 + x4 < 1, x5 + x6 <_ 1, x7 + xs < 1,
x9 < 1, xl0 < 1, xll _< 1, Xl. _< 1}. For a minimal GUB cover K={9, 10, 11, 12},
the minimal GUB cover inequality is x9 + x0 + x + x2 > 1, which is a facet of
conv(X(g)) by Proposition 2.7. Note that K+ (2, 4, 6,8} and K_ {1,3,5, 7}.
We now consider a facet of the form (18) with 7[j > 0 V j E K_. Let us derive lower
and upper bounds on the coefficient 7[2, where {2) +. Since 72 4, we have
that UP2 r/2- 1 3. Furthermore, the set T1 {T" T FK with {2) T
and (T + {2}) e FK}, is given by T1 {(3,6,8), (4,6,8)}. Also the set T2 {T"
T e FK with {2} T and {1} e T} is given by T2 {(1,4, 6), (1,4,8), (1,6,8),
(1,3,5,8), (1,3,6,7), (1,3,6,8), (1,4,5,8), (2,4,6,7), (1,4,6,8)}.Hence, by(32),
conditioned on LB1 -0, a lower bound LB2 can be computed as follows.

min IN(T) N(T + {2} {1}) + 0]} 1.LB2 min{_TETlmin IN(T) N(T + {2})],
TeT

Next, let us select { 1 } K_, and illustrate the computation of an upper bound on the
coefficient 711 in any lifted facet (18). The set T =_ {T" T FK with {1} T} is given
by {(1,4,6), (1,4,8), (1,6,8), (1,3,5,8), (1,3,6,7), (1,3,6,8), (1,4,5,8), (1,4,6,7),
(1, 4, 6,8)}. Since UB2 3, we have by (39) that

UP1 max{min{N(T- {1}) N(T- {1} + {2})+ 3} N(T)} 2.
TT’

Hence, we have that 0 _< 7[

__
2 and 1 _< 7[2 _< 3 in any lifted facet (18) having 711 _> 0.

Note that we can also compute an unconditional lower bound LB, taking LB2 O.
By (33), LBI 0- N(K+ {2} + {1}) -2. Hence, a set of unconditional bounds
on 711 and 7[2 are given by -2 _< 711 _< 2 and 0 < 7[2 < 3.

5. A special case: The zero-one knapsack polytope. Consider a special
case of GUBKP with INil 1 V i M, which represents the ordinary knapsack
polytope, denoted by KP. That is, KP conv{x E (0, 1)n jN ajxj >_ b} where
the data is all integer, N (1,...,n), b > 0, 0 < ay _< b V j N, and jckaj >_ b
for all k N. Recall that the minimal (GUB) cover inequality yeK x >_ 1 is a

facet of conv(KP(K)), where KP(K) KP V) {x (0, 1)n" xj 1, V j K). Our
interest is in characterizing a (simultaneously) lifted facet, as in Balas and Zemel [2],
of the form

(40)
j K jE’- j-where K is a minimal (GUB) cover of KP. Toward this end, in the spirit of (21) and

problem AGUBKP(T), we define

f(O) min { E YY" E ajyy >_ +0} 1,
jK jK

where b- b- Ejay.



LIFTINGS FOR GUB CONSTRAINED KNAPSACK POLYTOPES 151

By Proposition 4.2, we have that (40) is a facet of KP if and only if (j, j E K)
is an extreme point ofH with 1 + jeJ > 0, where

(41)
jE(K-T) jE(K-T)

and where FK {T C K ’jeKuTaj

_
b}.

This is precisely Balas and Zemel’s characterization of simultaneously lifted facets
obtainable from minimal cover inequalities. We now derive upper and lower bounds
on rj, j E K, for such facets of KP.

5.1. Upper bound UBt on rt, t E . From (41), by examining T -{t}
FK, we directly have that t <_ f(at). Hence, an upper bound UBt on t is given by

UBt f(at) for each t K.

Note that UBt is the same as Balas and Zemel’s upper bound on at, t K.
5.2. Lower bound LBt on rt, t E K. Balas and Zemel [2] derive the following

lower bound, denoted by LBBZt"

LBBZt h V t Sh,

where letting E(K) denote the extension of K as before, we have S0 E(K), and
Sh {t (E(K)- K) -jeKh aj

__
at < -jeKh+l aj}, where Kh is the index set

of the h largest ay for j K. Note that UBt LBBZt or LBBZt + 1.
We now construct a tighter lower bound on rt. Consider any t K, and let us

examine any T FK such that t T. From (41), we have that

j(K-T) je(K-T-{t})

rj V T FK such that t T.

But since at an extreme point of H, at least one of (42) must be binding, we have
that

j(K-T) je(K-T-{t})

given other j values. Consequently, we get

(43)
je(K-T) j(K-T-{t})

PROPOSITION 5.1. LBt >_ LBBZt V t K.
Proof. By the monotone increasing nature of the function f, it follows that LBt

_> 0 t G K. Since LBBZt 0 for t G E(K), the result holds trivially for this case.

Hence, suppose that t (E(K) K). Consider any T FK with t T, and examine
two cases.
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Case i. at jeKh aj. It follows that LBBZt h =_ f(at -b) + 1. But we have,

defining b EjT aj at > O, that

j(K-T) j(K-T-{t})

(44)

-min-{ jeKE YJ jeKE ajyj >_ [

_min{Eyj. jK
f(at- b)+ 1.

This implies from (43) that LBt >_ LBBZt.
Case ii. jeKh aj < at < jK+I aj. In this case, we have, LBBZt h

f(at- b). Let A be the amount that needs to be subtracted from at so that

at /k -jK aj. Then, using the monotone increasing nature of the function f
and following (44), we have that

(45)

f( aj)-f( aj)>_f( aj-A) f( E aj)
jE(--T) j(--T--{t} jE(--T) j(--T-{t}_

f(at A b) + 1 f(at b).

Hence from (43) and (45), we have that LBt >_ LBBZt. Therefore, the result
holds for any t E (E(K)- K) as well, and this completes the proof.

Example 5.1. Consider KP conv{x E (0, 1)4 3xl + 3x2 + 3x3 + 2x4 _> 7}. Let
K {1, 2}, so that E(K) {1, 2, 3} and b- 2. Consider t= {4} E(K). Note that
{T FK" t T} {3}. Hence, from (43), we have that LB4 f(a4)- f(0) f(a4)
UBa 1 > LBBZa 0. Note, however, that K is not a strong cover, as evidenced

by the (strong) minimal cover K’ {3, 4}.: .Otherwise, by the definition of a strong
cover, we would have had for any t E(K), if it exists, that VBt f(at) 0, and
so LBt 0 .=_ LBBZt as well.

Example 5.2. Consider KP conv{x (0, 1)4 3Xl - 3x2 + 3x3 + 4x4

_
7}.

The minimM cover K { 1, 2, 3} is a strong cover for KP. Since b 3, K {4}, and
for t {4} E (E(K)- K), we have that {T FK "t T} ; this gives LB4
f(a4)- f(O) f(a4) UB4 2. However, LBBZt 1 < LB4.
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PRESERVING AND INCREASING LOCAL EDGE-CONNECTIVITY
IN MIXED GRAPHS *

JORGEN BANG-JENSEN, ANDR/S FRANK:, AND BILL JACKSON

Abstract. Generalizing and unifying earlier results of W. Mader, and A. Frank and B. Jackson,
we prove two splitting theorems concerning mixed graphs. By invoking these theorems we obtain
min-max formulae for the minimum number of new edges to be added to a mixed graph so that the
resulting graph satisfies local edge-connectivity prescriptions. An extension of Edmonds’s theorem on

disjoint arborescences is also deduced along with a new sufficient condition for the solvability of the
edge-disjoint paths problem in digraphs. The approach gives rise to strongly polynomial algorithms
for the corresponding optimization problems.

Key words, mixed graphs, splitting theorems, edge-connectivity, augmentation, branchings,
network synthesis

AMS subject classifications. 05C40, 68R10, 90B

1. Introduction and preliminaries. Our main concern, the edge-connectivity
augmentation problem, is as follows: given a mixed graph M, what is the minimum
number (or, more generally, the minimum cost) 7 of new edges to be added to M so
that in the resulting graph M, the local edge-connectivity X(x, y; M) between every
pair of nodes x, y is at least a prescribed value r(x, y)?

Several special cases were solved earlier for directed and undirected graphs. First,
let M be undirected. When r 1, the minimum cost augmentation problem reduces
to a minimum cost tree problem. For r 2, the problem was solved independently by
Eswaran and Tarjan [4] and elesnik [22]. For this case, the minimum cost augmenta-
tion problem is already NP-complete.

The uniform case r _= k for an arbitrary integer k _> 2 was first solved by Watanabe
and Nakamura [24], who developed a polynomial time algorithm as well as a rain-max
relationship. Slightly later, Cai and Sun [1] also solved this special case. The algorithm
of Watanabe and Nakamura has been improved by Naor, Gusfield, and Martel [21].
Neither of these algorithms gives rise to a strongly polynomial time algorithm in the
capacitated case. The first such approach was given by Frank [6]. The same paper
includes a complete solution of the generalization to arbitrary (symmetric) demand
functions r(u, v).

For directed augmentation, the case r 1 was solved by Eswaran and Tarjan [4]
while the general uniform case r k(_> 1) was solved by Frank [6]. Another interesting
approach is by Gabow [9]. A related problem on augmentation was solved by Gusfield
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[12], who described a way of adding a minimum number of directed or undirected
edges to a mixed graph so that each edge belongs to a (possibly mixed) circuit with
no backward directed edge. (Note, however, that our general mixed augmentation
problem is not a generalization of Gusfield’s.) Finally, several degree-constrained and
node-cost variants were also solved by Frank [6].

On the negative side, for directed graphs the nonuniform demand problem was
shown to be NP-complete by Frank [6] even if r(u, v) 1 for every pair of nodes
u, v of a specified subset T C V and r(u, v) =_ 0 otherwise. In this light, relatively
little space is left for possible generalizations admitting good characterizations and/or
polynomial time algorithms. (This sentence may serve as an excuse in case the reader
feels that the hypothesis of the generalizations we discuss below is more technical than
necessary.)

In the present paper we show how the augmentation problem for mixed graphs
can be solved for certain demand functions that are more general than the.uniform one.
(By a mixed graph M we mean a graph that may have both directed and undirected
edges.) When the starting graph is mixed, one may wish to add both directed and
undirected edges. Unfortunately, we do not have anything to say about this general
case. Our results concern only the two extremes, when either only directed edges or
undirected edges are allowed to be added to the given mixed graph M.

Splitting offa pair of edges e us, f st means that we replace e and f by a new
edge ut. The resulting mixed graph will be denoted by MI. This operation is defined
only if both e and f are undirected (respectively, directed) and then the newly added
edge ut is considered undirected (directed). Accordingly, we speak of undirected or
directed splittings.

Two theorems of W. Mader concerning directed and undirected splittings are im-
portant tools in the proofs by Frank in [6]. Here we follow an analogous line, and
the basis for the present generalization is an extension of the existing splitting theo-
rems. When a splitting-off operation is performed, the local edge-connectivity never
increases. The content of the splitting-off theorems is that under certain conditions
there is an appropriate pair {e us, f st} of edges whose splitting preserves all
local or global edge-connectivity between nodes distinct from s.

An interesting by-product of our investigations is an extension of Edmonds’s
theorem on the existence of k disjoint arborescences [2]. A new sufficient condition
will also be deduced for the existence of k edge-disjoint paths in a directed graph
connecting specified pairs of nodes.

Given two elements s, t and a subset X of a ground-set U, we say that X is an
s-set if s E X, t X. X separates s from t (or s and t) if IX N {s,t}l 1. A family
{X1,..., Xt} of pairwise disjoint, nonempty subsets of U is called a subpartition.

Let G (U, E) be an undirected graph, dG(X, Y) denotes the number of undi-
rected edges between X Y and Y- X. de(X, Y) dc(X, U- Y)(= d6(U- X, Y)).
dG(X) stands for dG(X, U- X). Observe that dG(X, Y) d(U- X, U- Y). When
it will not cause ambiguity we shall leave out the subscript.

PROPOSITION 1.1. For X, Y C_ U,

(1.1a)
(1.1b)

dG(X) + d(Y) dG(X N Y) + da(X U Y) + 2da(X, Y),
de(X) + da(Y) dG(X Y) + da(Y X) + 2G(X, Y).

For a directed graph D (U,A), pD(X) denotes the number of edges entering
X, SD(X) pD(U- X), and D(X) min(pn(X),SD(X)). Note that D(X)
D(U- X). dD(X, Y) denotes the number of edges with one end in X- Y and one
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end in Y- X. do(X, Y):= do(X, U- Y)(= dD(U- X, Y). An out-arborescence F is
a directed tree in which every node but one has in-degree 1 and the exceptional node,
called the root, is of in-degree 0. (Equivalently, there is a directed path from the root
to every other node of F.)

PROPOSITION 1.2. For X, Y C_ U,

(1.2a) pD(X) + PD(Y) pD(X N Y) + pD(X U Y) + dD(X, Y).

If 5D(X f3 Y) pD(X Ci Y), then

(1.2b) pD(X) + PD(Y) pD(X Y) + PD(Y X) + dD(X, Y).

If 6D(X tJ Y) pD(X t_J Y), then

(1.2c) pD(X) -t- PD(Y) 5D(X Y) -- hD(Y X) -- dD(X, Y).

If 5D(X f3 Y) pD(X Y) or 5D(X U Y) pD(X U Y), then

(1.2d) D(X) + D(Y) >_ D(X Y) + D(Y X) + dD(X, Y).

Proof. Equation (1.2a) follows by showing that each edge has the same contribu-
tion to the two sides. A similar argument shows that pD(X)+ PD(Y) pD(X- Y)+
PD(Y X) + dD(X, Y) + (pD(X N Y) 5D(X N Y)) holds for any digraph D from
which (1.2b) follows. The derivation of (1.2c) is analogous.

Let us prove (1.2d). The two cases are clearly equivalent: Substitute U- X for
X and U Y for Y. So assume that 5D(Z Y) pD(X Y). If D(X) pD(X)
and D(Y) PD(Y) then by (1.2b), D(X) + D(Y) pD(X) + PD(Y) pD(Z-
Y) + PD(Y X) + do(X, Y) >_ D(Z Y) + D(Y X) + dD(X, Y). The case when
D(X) 5D(X) and D(Y) 5D(X) is analogous. Finally, suppose that D(X)
pD(X) and D(Y)= 5D(Y). Let Y’ := U- Y. Then, applying (1.2a) to X and Y’ we

get D(X) + D(Y) pD(Z) + PD(Y’) pD(Z Y’) + pD(Z t2 Y’) + dD(X, Y’)
pD(X Y) + 5D(Y X) + dD(X, Y) >_ D(X Y) + D(Y X) + dD(X, Y).

Let M (U, A tJ E) be a mixed graph composed a8 the union of a directed
graph D (U,A) and an undirected graph G (U,E). Let pM(X)"-- pD(X)--
dG(X), 6M(X) 6D(X) + dG(X), and tiM(X)"= min(pM(X), 5M(X)). We say that
a node v of a M is di-Eulerian if pD(v) 6D(V). M is called di-Eulerian if every node
of M is di-Eulerian.

By combining Propositions 1.1 and 1.2, we obtain the following proposition.
PROPOSITION 1.3. For X, Y C_ U,

(1.3a) pM(X) -t- PM(Y) pM(X CI Y) -k- pM(X tJ Y) -t- dD(X, Y) -t- 2da(X, Y).

If 5D(X Cl Y) pD(X Cl Y), then

(1.3b) pM(X) -k- PM(Y) pM(X Y) -k- PM(Y X) + dD(X, Y) + 2d((X, Y).

If 5D(X U Y) pD(X U Y), then

(1.3c) tiM(X) + PM(Y) M(X Y) -}- M(Y X) -}- d-D(X, Y) + 2a(X, Y).

If 5D(X f3 Y) pD(X Y) or 5D(X t_J Y) RD(X U Y), then

(1.3d) [M(X) + M(Y) >_ [M(X Y) + IM(Y X) + dD(X, Y) + 2dG(X, Y).
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By a feasible path (or simply path) of a mixed graph M we mean a sequence
{vo, VOVl, Vl, VlV2, v2,..., Vn-1, Vn--lVn, Vn}, where each ViVi+l is a directed or undi-
rected edge of M. The local edge-connectivity/(s,t; M) /k(s,t) from s to t is in
the maximum number of edge-disjoint paths from s to t. By a version of Menger’s
theorem, this is equal to the minimum of 6D(S) + da(S) over all s[-sets S. Note that
A(s, t) can be computed by a max-flow min-cut (MFMC) computation.

Let U be a set and r(x, y)(x, y E U), an arbitrary symmetric, nonnegative func-
tion. Define a set function R as follows. Let R() R(U) 0, and for X C U
let

(1.4) R(X) max(r(x, y) x, y e U, X separates x and y).

Clearly, R(X) R(U- X).
LEMMA 1.1. For arbitrary X, Y C_ U, at least one of the following two inequalities

holds:

(1.5a) R(X) + R(Y) <_ R(X N Y) + R(X ( Y),
(1.5b) R(X) + R(Y) <_ R(X Y) + R(Y- X).

Proof. First observe that if Y is replaced by U- Y, then (1.5a) and (1.5b) trans-
form into each other. Let (z, z’) be a pair that maximizes r(z, z’) over all pairs which
are separated by at least one of the sets X and Y. By symmetry we may assume that
z X and z’ U- X. By replacing Y by U- Y, if necessary, we may also assume
that z Y.

If z’ Y, then r(z, z’) R(X) R(Y) R(X-Y) R(Y-X), and hence (1.5b)
holds (actually with equality). If z’ Y, then r(z, z’) R(X) R(X U Y) R(X-
Y). Clearly, R(Y) <_ R(X Cl Y) or R(Y) <_ R(Y- X). Accordingly, (1.5a) or (1.5b)
holds. [:]

Let M (U, A U E) be a mixed graph with a specified node s satisfying pM(8)
5M(S). Throughout this paper we will use the notation V := U- s. Let

(1.6) T(M) :-- {X e Y’pM(x) (M(X)}

be the set of non-di-Eulerian nodes. Observe that pM(T(M)) 5M(T(M)) and hence
T(M) never consists of one element. Let k be a positive integer and assume that

(1.7) /k(x, y; M) >_ k for every x, y T(M).

Suppose that r(x, y) satisfies

(1.Sa) r(x,y) <_k for everyx, yU, and

(1.Sb) r(x, y) k for every x, y T(M).

For X C_ V define q(X)"- R(X)- M(X).
LEMMA 1.2. For X, Y C U, at least one of the following two inequalities holds:

(1.9a)
(1.9b)

q(X) + q(Y) <_ q(X V) Y) + q(X U Y) (2dG(X, Y) + dn(X, Y)),
q(X) + q(Y) <_ q(X Y) + q(Y X) (2d(X, Y) + dn(X, Y)).

Proof. Since q(X) q(U- X), the inequalities in (1.9) transform into each other
when X is replaced by its complement U-X. Therefore, we can assume that M(X)
pM(X)

_
5M(X) and/M(Y) pM(Y)

_
5M(Y).
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If R satisfies (1.5a), then by subtracting (1.3a) from (1.5a) we obtain (1.9a).
Now assume that R does not satisfy (1.ha). Then at least one of T(M) N X N Y and
T(M)-(XJY) is empty, otherwise (1.4)and (1.8)would imply that R(X)= R(Y)=
R(X Y) R(X [2 Y) k, and hence (1.ha) would hold. Therefore (1.3d) holds.
Furthermore, by Lemma 1.1, R satisfies (1.5b). Subtracting (1.3d) from (1.hb)we
obtain (1.9b).

For x, y E U, let us define

(1.10a) rM(x, y) min(k, A(x, y; M)) if x, y e V,

(1.10b) rM(x, y) 0 if s e {x, y}.

Note that rM depends on M, s, and k and satisfies (1.8).
LEMMA 1.3. rM(X, y) rM(y, x).
Proof. This clearly holds if A(x,y; M) A(y,x; M) and, by (1.10b), s e {x,y}.

Assume that x, y V and A(x, y; M) < /k(y, x; M). There is an x-set X for which

5M(X) A(x, y; M). We cannot have A(x, y; M) < k since at least one of the sets
X and U- X, say X, is then disjoint from T(M). But then pM(X) 5M(X) and
hence A(x,y; M) 5M(X) pM(X) >_ A(y,x; M), a contradiction. Therefore, k
A(x, y; M) < A(y, x; M), that is, rM(x, y) k- rM(y, x) as required.

Define

(1.11) RM(X) max(rM(x, y) X separates x and y).

Note that by (1.10) RM(X)= RM(V- X) for every X c_ V.
LEMMA 1.4. For any subset X C V separating nodes x, y V,

(1.12a) (x) > R,(X) > (x, v).

Moreover, if A(x, y; M) <_ k, then there is a subset Xo of V separating x and y for
which

(1.12b) Z.(x0) (x, ).

Proof. By symmetry we may assume that x
A(x, y; M) <_ 6M(X) and rM(y,x) <_ A(y,x; M) <_ pM(X). From this and Lemma 1.3
we get tiM(X) >_ rM(X, y). This, in turn, along with the definition of RM(X), implies
(.e).

If A(x, y; M) _< k, then A(x, y; M) rM(x, y) and, by Menger’s theorem, there
is a subset X0 c V separating x and y for which flM(Xo) A(x, y; M) and (1.12b)
follows.

Let sM(X) := M(X)- RM(X). By Lemma 1.4, sM(X) >_ 0 for every X C_ V.
We call a nonempty set X c_ V tight (dangerous) if sM(X) O(sM(X) <_ 1). We
may distinguish between the two possible types of .tight (dangerous) sets by use of
the prefix "in" or "out." Note that V is not tight if pM(s), 5M(S) > 0. Lemma 1.2
immediately provides the following lemmm

LEMMA 1.5. For X, Y C_ V, one of the following inequalities holds:

(1.13a) sM(X) + sM(Y)

_
sM(X f Y) + sM(X U Y) + 2dG(X, Y) + do(X, Y),

(1.lab) sM(X) + SM(Y) >_ sM(X Y) + sM(Y X) + 2dG(X, Y) + dD(X, Y).
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We are going to prove two splitting theorems for M. In 2 each edge incident to
s is directed, while in 3 the edges incident to s are all undirected.

2. Directed splitting. When a splitting operation is carried out, the local edge-
connectivity may drop. There are theorems for directed graphs stating that global or
local edge-connectivities may be preserved by an appropriate choice of edges to be
split off. One is from Mader [20].

THEOREM 2.1. Let D (V + s,A) be a directed graph for which (x, y; D) >_ k
for every x, y E V and p(s) 5(s). Then, for every edge f st there is an edge e us
such that A(x, y; Ds) >_ k for every x, y V.

The next theorem was proven by Frank [5] and Jackson [13].
THEOREM 2.2. Let D (V + s, A) be a directed Eulerian graph, that is, p(x)

5(x) for every node x of D. Then, for every edge f st there is an edge e us such
that X(x, y; Des) (x, y; D) for every x, y V.

Our first result is a common generalization of these two theorems. (Recall the
definition of function rM(x, y) in (1.10).)

THEOREM 2.3. Let M (V + s,A U E) be a mixed graph, satisfying (1.7). As-
sume that s is incident only with directed edges and pM(S) 5M(S) > O. Then, for
every edge f st, there is an edge e us such that

A(x, y; MS) >_ rM(x, y) for every x, y V.

If M D is a directed graph and A(x,y;D) >_ k for every x,y V, then
rM(x,y) k and we are back at Theorem 2.1. If M D is directed Eulerian
graph and k := max(A(x, y; D) :x, y e V), then we are back at Theorem 2.2.

We call a pair {e, f} satisfying (2.1) splittable. This is equivalent to requiring
that

rM (x, y) >_ rM(x, y) for every x, y E V.

Repeatedly applying Theorem 2.3 pM(S) times, one obtains the following theorem.
THEOREM 2.4. Let M (V + s,A U E) be a mixed graph satisfying (1.7). As-

sume that s is incident only with directed edges and pM(S) 5M(S). Then the edges
entering and leaving s can be matched into pM(S) disjoint pairs so that A(x, y; M+) _>
rM(x,y) for every x,y V, where M+ denotes the mixed graph arising from M by
splitting off all these pairs.

Proof of Theorem 2.3. We may assume that every edge of M is directed since
replacing each undirected edge with a pair of oppositely directed edges does not affect
the local edge-connectivities. (Incidentally, this means that having a mixed graph in
Theorem 2.3 rather than a directed one is not a big thing; the point is that Theorems
2.1 and 2.2 can be combined into one.) Note that for edges e us, f st, one has
]MeI (X) M(X) 1 if u, t E X and MeI(X) M(X) otherwise.

CLAIM 2.1. A pair {e us, f st} is splittable in M if and only if there is no
tight set X containing u and t.

Proof First suppose that X is a tight set containing u and t. Then M$ (X)--
1 M(X) RM(X). There are nodes x X,y V- X such that RM(X)
rM(x,y). By applying (1.12) to MS we obtain rM$(x,y) <_ /3M(X) < 3M(X)
RM(X) rM(x, y), that is, {e, f} is not splittable.

Conversely, suppose that {e, f} is not splittable. Then there are nodes x, y E V
such that A(x, y; MS) < rM(x, y) <_ k. Then rM (x, y) (x, y; MS), and by apply-
ing Lemma 1.4 to MS we see that there is a set X c V separating x and y for which
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FIG. 1. Here k 2, T consists of three nodes, and there are no two edge-disjoint
out-arborescences rooted at z with both containing every element of T. Observe that
p(x) < 5(x) 2 holds for the only node x not in T.

Mes(X) rMeS(x,y). Using (1.12a) we have M(X)- 1
rM(x,y)- 1 <_ RM(X)- 1 <_ M(X)- 1. Hence equality follows everywhere. In
particular, M(X) RM(X), that is, X is tight. Also, M(X)- 1 Mz(X), that
is, u, t E X.

CLAIM 2.2. There are no two maximal tight t$-sets.

Proof. Assume, indirectly, that X and Y are such sets. Apply Lemma 1.5. If
(1.13a) holds, then we have 0 + 0 sM(X)
do(X, Y)

_
O, from which sM(X Y) 0, contradicting the maximality of X and Y.

If (1.13b) holds, then we have 0 + 0 sM(X) + sM(Y) >_ sM(X Y)+ sM(Y-
X) + riD(X, Y) >_ 0 + 0 + do(X, Y). Hence do(X, Y) O, which contradicts the
existence of the edge st.

If there is no tight t$-set, then choose an arbitrary edge e us of M. If there
are tight t$-sets, then by Claim 2.2 there is a unique maximal one denoted by X. We
claim that there is an edge e us with u X. Assume this is not the case. Then the
existence of the edge st and the fact that pM(S) 5M(S) imply that 5M(V-X) < p(X)
and pM(V- X) < 5(X), that is,/M(V- X) < M(X). This is impossible, however,
since M(V X)

_
RM(V- X) RM(X) --/M(X). By Claim 2.1 the pair {us, st}

is splittable.
Mader [20] showed how his Theorem 2.1 implies the following basic result of

Edmonds on edge-disjoint arborescences.
THEOREM 2.5 [2], [3]. In a digraph D (U,A) with a special node z there are

k edge-disjoint spanning out-arborescences of root z if and only if p(X) >_ k holds for
each subset X C_ U- z of nodes (or, equivalently, there are k edge-disjoint paths from
z to every other node of D.)

The following possible generalization naturally emerges. In addition to z, we are
given a subset T C_ U- z so that p(X) >_ k for every subset X c_ U- z, X
Is it true that there are k edge-disjoint out-arborescences rooted at z so that each
contains every element "of T? The answer is yes if T U- z (by Edmonds’s theorem)
or if ITI 1 (by Menger’s theorem). But Lovz [15] found the example in Fig. 1
which shows that such a statement is not true in general. In this light, the following
result might have some value.

THEOREM 2.6. Let D- (U, A) be a digraph with a special node z called a root,
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and let T’ {x E U- z p(x) < 5(x)}. Assume that A(z,x;D) >_ k(>_ 1) for every
x T. Then there is a family jz of k edge-disjoint out-arborescences rooted at z so
that every node x e U belongs to at least r(x) min(k, ,(z, x; D)) members of

Proof. The theorem is trivial if IUI 2, so suppose that IUI >_ 3. We may assume
that there is no edge in D entering z. Now U- T z is nonempty; otherwise p(x)
5(x) would hold for every node of D, which is not possible since p(x) IAI

Let s U- T- z be a node for which r(s) is minimum. By the hypothesis made
on T’, r(s) <_ r(x) for every x e U. Extend D by adding p(x)- 5(x) parallel edges
from x to z for each x U- T z, and k parallel edges from x to z for each x E T.
Let D denote the resulting digraph.

Clearly, T(D’) c T’ 4- z. We claim that (1.7) holds for D’. This is equivalent to
saying that pD,(X)

_
k, and 5D,(X) >_ k holds for every subset X c V- z for which

X h T is nonempty. The first inequality follows from the hypothesis. The second
one follows from the fact that D’(X) pD’(X) -(flD’(X) D’(X) X

>_
We can apply Theorem 2.3, which implies that there are edges e us, f st

such that A(z, x; D1) >_ r(x) holds for every x E U- s, where D1 denotes the digraph
arising from D’ by splitting off e and f. It is also clear that ,k(z, s; D1) _> r(s) 1.

By induction there is a family " {F1,..., Fk} of k edge-disjoint out-arbor-
escences in D rooted at z such that each node x belongs to at least r(x) members of
$" for x E U- s, and s belongs to at least r(s) 1 members of ’. Let a ut denote
the edge of D1 which results from the splitting of f st and e us.

Suppose first that one member of ’, say F1, contains a. If (i) s is not contained
in F, define/1 := F a 4- e 4- f. If (ii) s is contained in F1, let P denote the unique
subpath of F from z to s with its last edge h ws. If P does not use a, define
F1 := F a + f. If P uses a, define F1 F a h + e + f. Finally, if no member
of " contains a, define/ := F.

By these constructions F1 is an out-arborescence of D containing each node be-
longing to F1 plus, possibly, node s. Hence we have a family " {F1, F2,..., Fk } of
k out-arborescences of D so that each node x other than s belongs to at least r(x) of
them, and s belongs to at least r(s)- 1 of them. If s belongs to at least r(s) members
of ’, then this family satisfies the requirements of the theorem. If (i) occurred, then
we are surely in this case.

Suppose s is contained in precisely r(s) 1 members of $’. Then (ii) occurs and
by the choice of s, r(x) >_ r(s) for every x E U. Hence every node x is in strictly more
members of fi" than s is. Therefore, there is a member F of $" containing x but not
s. By the construction of fi, at least one of the edges e us and h ws is not
used by the out-arborescences of 9. Accordingly, choose x to be u or w. We conclude
that by replacing the out-arborescence F by F + xs in $’, we obtain a family of k
out-arborescences satisfying the requirements.

Clearly, if in Theorem 2.6, A(z,x; D) >_ k holds for every x E U, then we are
back at Edmonds’s theorem. Another special case may also be worth mentioning.
Call a digraph D (U,A) with root z a preflow digraph if p(x) >_ (x) holds for
every x E U- z. (The name arises from an MFMC algorithm of Karzanov [14] and
Goldberg and Tarjan [11], where a preflow was defined as a function on the edge-set
of a digraph so that the in-sum is at least the out-sum at every node except the root.)
An easy, well-known fact from network flow theory is that any flow from the source
to the terminal may be decomposed into path-flows. The following corollary may be
considered as a generalization.
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FIG. 2. Here k 2 but the example can easily be generalized to arbitrary k. In fact, we can

have arbitrarily many paths between si and tj (i,j 1, 2,..., k) and still not have the edge-disjoint
paths.

COROLLARY 2.1. Ilt a preflow digraph D (U, A), for any integer k(>_ 1) there is
a family jz of k edge-disjoint out-arborescences of root z such that every node x belongs
to min(k,A(z,x;D)) members of Jz. In particular, ilk :- max(A(z,x;D) x e U-z),
then every x belongs to/(z, x; D) members of.

Y. Shiloach [23] pointed out that Edmonds’s theorem immediately implies the fol-
lowing pretty result. Given k pairs (Sl, tl),..., (sk, tk) of nodes in a k edge-connected
digraph D, there are edge-disjoint paths from si to ti (i 1,..., k).

Using Theorem 2.6 we have the following generalization.
COROLLARY 2.2. Let (Sl,tl),...,(Sk,tk) be k pairs of nodes in a digraph D

(U, A) such that for every node x with p(x) < (x) or x tj there are edge-disjoint
paths from si to x (i 1,..., k). Then there are edge-disjoint paths from si to ti (i
1,... ,k).

Proof. Extend the digraph by a new node z and an edge zsi for each 1,..., k.
By Theorem 2.6 there are k edge-disjoint out-arborescences rooted at z such that
each contains every ti. Since there are k edges leaving z, each edge zsi belongs to
one of these out-arborescences denoted by Fi. Now Fi includes a path Pi from si to
t (i 1,..., k), and these paths satisfy the requirements. [:]

Note that if we only impose the condition in Corollary 2.2 on the vertices ti,
1, 2,..., k, then D may not have edge-disjoint paths from si to ti (i 1, 2,..., k). This
can be seen from the example in Fig. 2.

3. Undirected splitting. Generalizing erlier results of Lovsz [16], [17] (see
also [18]), Mader proved the following powerful theorem on undirected splitting. For
a short proof, see Frank [7]. In what follows U V + s will denote the node set of the
graph in question. We will use the terms RM, rM, M, PM, and/M introduced in 1.

THEOREM 3.1 [19]. Let G (Y + s,E) be a (connected) undirected graph in
which 0 < dG(s) 3 and there is no cut-edge incident to s. Then there exists a pair

of edges e su, f st such that (x, y; G) (x, y; Gel) holds for every x, y E V.
The main result of this section is an extension of Mader’s theorem to mixed
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graphs. Let M (V + s, A k E) be a mixed graph composed from a digraph D
(V + s, A) and an undirected graph G (V + s, E) so that s is incident only with
undirected edges. By a cut-edge of a mixed graph M we mean an edge e E E such
that M- e is disconnected (in the undirected sense).

THEOREM 3.2. Suppose that in M (V + s, A t2 E), node s is incident only with
undirected edges, 0 < dM(s) 3, and

(3.1) there is no cut-edge incident to s.

Let k >_ 2 be an integer satisfying (1.7). Then there is a pair of edges e su, f st
such that

A(x, y; Mel) >_ rM(x, y) for every x, y e V.

We call a pair {e, f} satisfying (3.2a) splittable. Inequality (3.2a) is equivalent to
the following:

(3.2b) rMS (X, y) >_ rM(X, y) for every x, y V.

In order to make repeated splittings, the following lemma is useful.
LEMMA 3.1. If {e, f} is splittable in a mixed graph M satisfying the hypothesis

of Theorem 3.2, then Mef satisfies (3.1).
Proof. Let x and y be two neighbours of s. We claim that A(x, y; M) _> 2. Indeed,

A(x, y; M) _> 1 since xs, ys E by the assumption. If A(x, y; M) 1, then there is
an x-set X with 5D(X) 0 and dG(X) 1. Let h denote the unique edge of G
between X and V + s- X. Then h is either xs or ys. Since k >_ 2, one of the sets X
and Y + s- X is disjoint from T(M). By (1.7), pD(X) 5D(X)(= 0), showing that h
is a cut-edge incident to s. Thus A(x, y; M) >_ 2. By (3.2a), A(x, y; Mf) >_ 2 for every
two neighbours x, y of s. This implies the claim. [

A closely related form of Theorem 3.2 is as follows.
THEOREM 3.3. Let M (V + s, A U E) be a mixed graph with a node s such that

s is incident only with undirected edges, d(s) is even, and (3.1) holds. Let k >_ 2 be an
integer satisfying (1.7). Then the set of edges incident to s can be matched into d(s)/2
disjoint pairs so that A(x, y; M+) >_ rM(X, y) for every x, y V, where M+ denotes
the mixed graph arising from M by splitting off all these pairs.

This theorem is analogous to Theorem 2.4 except that Theorem 3.3 does not hold
for k- 1 (see Fig. 3).

CLAIM 3.1. Theorems 3.2 and 3.3 are equivalent.
Proof. First assume the truth of Theorem 3.2 and let {e, f} be a splittable pair.

By Lemma 3.1, Theorem 3.2 can be applied dG(s)/2 times. Theorem 3.3 follows by
observing that a pair splittable in Mf is splittable in M as well.

Conversely, assume that Theorem 3.3 is true. If da(s) is even, then there is
nothing to prove, so assume that d(s) is odd. Then d(s) _> 5. Let M’ denote a
mixed graph arising from M by adding a new node x and three parallel undirected
edges between x and s. Property (3.1) holds for M and hence Theorem 3.3 applies
to M’. Since de(s) >_ 5, among the (dc(s) + 3)/2 splittable pairs in M’ provided by
Theorem 3.3, at least one pair {e, f} must consist of original edges. Clearly, {e, f} is
splittable in M, as well.

Proof of Theorem 3.3. By Lemma 3.1 it suffices to prove that there is one split-
table pair. We may suppose that every undirected edge h of M is incident to s,
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FIG. 3. There is no way to match the edges at s so that the mixed graph remains strongly
connected.

otherwise we could replace h by two oppositely directed edges. Let M denote a coun-
terexample in which every edge not incident to s is directed and the total number
of nodes and edges is minimum. It is clear that M is connected (in the undirected
sense). Note that for X C_ V and edges e su, f st one has MeI(X) M(X) 2
if u, t e X and/M (X) /M(X) otherwise. D

CLAIM 3.2. A pair (e, f} of edges e su, f st is splittable if and only if there
is no dangerous set X containing t and u.

Proof. First suppose that X is a dangerous set containing u and t. Then
M(X) + 2 M(X) <_ RM(X) -t- 1. There are nodes x E X,y E V- X such
that RM(X) rM(x, y). By applying Lemma 1.4 to Mef, we obtain rM(x y)
M(X) M(X) 2 <_ RM(X) 1 rM(x, y) 1, that is, (e, f} is not splittable.

Conversely, suppose that (e, f) is not splittable. Then there are nodes x, y V
such that A(x, y; Mef) < rM(x, y) <_ k. Then rMe (x, y) A(x, y; MI), and by
applying Lemma 1.4 to Me$ we see that there is a set X C V separating x and y,
for which M(X) rM(x,y). Using (1.12a) we have M(X) 2 <_ M(X)
rM(X, y) <_ rM(X, y)- 1 <_ RM(X) 1 <_ M(X) 1. Hence M(X)

__
RM(X) -t- 1,

that is, X is dangerous. Furthermore, M(X) > M(X), that is, u, t
CLAIM 3.3. Let X C_ V be a tight set. A pair (e su, f st} of edges is

splittable in M if the corresponding pair (e, f) is splittable in the contracted mixed
graph M MIX.

Proof. For a subset Z of nodes of M for which either Z C_ V- X or X C_ Z,
let Z denote the subset of nodes of M corresponding to Z. For such a Z, clearly
RM,(Z) >_ RM(Z) and pM,(Z) pM(Z). Therefore, if Z is dangerous in M, then
is dangerous in M. This fact and Claim 3.2 imply that

(.)
there is no dangerous set Z in M containing u and t

such that X C Z or Z c V-X.

By claim 3.2, if (e, f} is not splittable in M, there is a dangerous set Y containing
u and t. If (1.13a) holds for X and Y, then 0 + 1 _> sM(X) + sM(Y) >_ su(X
sM(X [2 Y) >_ su(X U Y), that is, Z X U Y is dangerous, contradicting (*).

If (1.13b) holds, then 0 + 1 _> su(X) + su(Y) >_ su(X- Y)
2dG(X, Y) >_ sM(Y X)+ 2dc(X, Y). Hence su(Y X)_< 1 and dG(X, Y) O,
in particular, u, t X N Y. That is, Z Y X is dangerous and contains u and t,
contradicting (*)

We call a tight set X trivial if IXI 1. Since M is a minimal counterexample,
Claim 3.3 shows that

(3.3) in M every tight set is trivial.
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CLAIM 3.4. For every u, v E V,

(3.4) ru(u, V) min(/M(U),/M (V), k).

Proof. By (1.123), min(/3M(U), M(V))

_
rM(t, V), SO if A(u, v; M) _> k, then (3.4)

follows. If A(u, v; M) < k, then by Lemma 1.4 there is a set X c V separating u and
v, such that M(X)- RM(X)- rM(u, v). That is, X is tight and by (3.3), IXI- 1,
from which the claim follows.

CLAIM 3.5. V- T(M) as nonempty.
Proof. Let Y {v e Y’pD(v) > 5D(V)},X := {v e Y’pD(v) < 5D(V)}. If the

claim is false, then X and Y form a partition of V. By the definition of X and Y there
is a directed edge h xy from X to Y.

Let M’ M- h. Then T(M’) C_ T(M) and, since k >_ 2, (3.1) is valid for M’.
Since PM(Y) > 5M(y)

_
k, the set {y} is not in-tight. Similarly, {x} is not out-tight.

Using this fact and (3.3) we get that h does not enter any in-tight set. Therefore,
(u, v; M)= (u, v; M’) for every u, v V. Since T(M’) C_ T(M), (1.7) holds for M’.
Because of the minimality of M, M is not a counterexample and there is a pair {e, f}
of edges splittable in M’. Hence {e, f} is splittable in M as well, a contradiction.

Let to V- T(M) be a node for which

(3.5) M(tO) is minimum.

We distinguish between two cases.
Case 1. dG(s, to)

_
1.

In order to be consistent with the notation in earlier claims, for Case 1 let us
rename to by t. That is, dG (s, t) >_ 1.

CLAIM 3.6. For every t-set X(X y {t}),

(3.6) RM(X- t)

_
RM(X).

Proof. There is a pair of nodes x, y such that x e X, y E V X, and RM(X)
ru(X, y). If x : t, then RM(X t) >_ rM(x, y) RM(X) and (3.6) follows. Assume
that x t and let u X-t be an arbitrary node. By (3.4) we have RM(X)
rM(t, y) min(M(t), M(Y), k) and RM(.X t) >_ rM(u, t) min(M(U), M(t), k).
Hence (3.6) follows if M(U) >_ u(t) or if/M(U) >_ k. So assume that U(U) < U(t)
and M(U) < k. By (3.5), u must be in T(M). Since T(M) never consists of a single
node, (1.7) implies that M(U) >_ k, a contradiction. V1

CLAIM 3.7. If X C_ V is dangerous, then dG(s,X) <_ riG(s, V X).
Proof. Let a := da(s,X) and := da(s, V- X), and assume that X is, say,

in-dangerous. We have RM(V- X) RM(X + s) RM(X) >_ pM(X) 1
5M(V X) + a l >_ RM(V X) + a l, from which a _< + l follows.
However, we cannot have equality, otherwise d(s) 2+ 1 would follow, contradict-
ing the hypothesis of the theorem that dG(s) is even. [:]

Let S denote the set of neighbours of s. Since no pair {su, st} is splittable in M,
Claim 3.2 implies that every element of S belongs to a dangerous t-set. Let /2 be
a minimal family of such dangerous sets so that U(X X )

_
S. By Claim 3.7,

I1 _> 2. We may assume that the members of are maximal dangerous t$-sets.

CLAIM 3.8. I[ _> 3.
Proof. By Claim 3.7, I1 _> 2. Assume that has just two members, X and Y.

Since S c_ X t2 Y, by Claim 3.7 we have da(s,Z) <_ da(s,V- X) < da(s,Y) <_
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do(s, V- Y) < dG(s, X), a contradiction. Here the two strict inequalities hold since
S C XUY and t E SOXOY.

CLAIM 3.9. For every two members X, Y of, IX-YI IY-XI 1, dD(X, Y)
0, and G(X, Y) 1.

Proof. If (1.135) holds for X and Y, then 1 + 1 _> sM(Z)+ sM(Y) >_ sM(Z-
Y) + sM(Y X) + 2d-a(X, Y) _> 0 + 0 + 2, and hence riG(X, Y) 1 and both X Y
and Y- X are tight. By (3.3) the claim follows.

If (1.13b) does not hold, then (1.13a) does. Since X and Y are maximal dangerous
sets, sM(X U Y)
0 + 2. Therefore, sM(X V Y) 0 and by (3.3) IX N YI 1, that is, X N Y {t}. By
Claim 3.6, RM(X- t) >_ RM(X) and RM(Y- t) >_ RM(Y). Therefore, RM(X) +
RM(Y) <_ RM(X t) + RM(Y t) RM(X Y) + RM(Y-- X). That is, (1.55)
holds for RM.

Since X N Y {t}, (1.3d) holds and, therefore, (1.135) holds, a contra-
diction.

Let X1, X2, X3 be three members of and Z X1 NX2 N X3. By the minimality
of :, each Xi has an element xi not in any other member of . By Claim 3.9 it follows
that Xi- Z + x (i- 1,2,3) and d-D(X,Xj)- O,G(X,Xj)-- 1 for (1 _< < j _< 3).
Hence only one edge leaves or enters Z, namely, the edge st. That is, st is a cut-edge,
contradicting (3.1). This contradiction shows that Case 1 cannot occur.

Case 2. dG (s, to) O.
Since M is connected, pM(tO M(tO) > O. Let ato and rob be arbitrary edges in

M so that, if possible, a b. Note that a b only if to has just one neighbour in M.
Let M denote the mixed graph arising from M by splitting off ato and rob.

Clearly, T(M) T(M’) and (t0, v; M’) >_ (t0, v; M)- 1 holds for every v
V to. Moreover, we claim that A(u, v; M’) A(u, v; M) for every u, v V to. This
is straightforward if a b, and follows from (3.3) and Claim 2.1 if a b. Therefore,
we have

(3.7a) rM,(to, V) >_ rM(tO, V) 1 for every v V- to,

(3.7b) rM, (U, V) rM(U, V) for every u, v V to.

CLAIM 3.10. M’ satisfies (3.1).
Proof. If (3.1) is not true for M, there is a set C c_ V separating to from a and b

with pM(C) 6M(C) 2 such that there is just one undirected edge h sz entering
C and one of the edges ato and tob enters C while the other one leaves C.

Let h su be another undirected edge of M. Then u z and we claim that
A(u,z;M) >_ 2, otherwise there is a zfi-set X with pM(X) 1. Since da(X)

_
1, pD(X) O. Since k _> 2, X cannot separate any two members of T(M) and hence
5D(X) pD(X) 0. But then h or h’ is a cut-edge violating (3.1).

A(u,z; M) _> 2 and pM(C) 2 imply that C is tight. By (3.3), ICI 1, that
is, C {z} {to}. The existence of edge h contradicts the assumption that
da(s, to) O.

By the minimality of M, M is not a counterexample of Theorem 3.3. Since (3.1)
holds for M, there is a pair {e su, f := st} of undirected edges splittable in M.
Since we are at Case 2, t to.

CLAIM 3.11. {e, f} is splittable in M.
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Proof. By claim 3.2, if the pair {e, f} is not splittable in M, then there is a
dangerous set X c_ V containing u and t. By (3.7), RM,(X) >_ RM(X)- 1. Using the
fact that X is not dangerous in M’, that is, M,(X) > RM,(X) + 2, we obtain

M(X) >_ M,(X) >_ RM,(X) / 2 >_ RM(X) / 1 >_ M(X).

Hence equality follows everywhere, in particular, RM,(X) RM(X)- 1. This
and (3.7) imply that RM(X) rM(tO, y) for some y E V, which is separated from to
by X, and

(3.9) >

for any x E V, which is separated from y by X.
If to X, then choose x t, an element different from to. If to G V- X,

then there must be an element x V- X- to; otherwise, V- X {to}, from
which M(X) >_ /M(tO) + 2 follows. Using (3.4) we have RM(X) rM(tO, y)
min(/U(y), M(tO), k)

_
M(tO) <_ M(X)- 2, contradicting the hypothesis that X

is dangerous.
In both cases, from (3.9) and (3.4) we have min(M(t0), M(Y), k).- rM(tO, y) >

rM(x,y) min(M(X),M(y),k), which implies M(X) < /M(tO) and M(X) < k.
The first inequality shows, by (3.5), that x e T(M), while the second one implies, by
(1.7), that x T(M), a contradiction.

Claim 3.11 contradicts the fact that M is a counterexample. Thus Case 2 is also
impossible and the proof of Theorem 3.3 is complete.

We mention two special cases. In the first, ru(x, y) k is assumed, while the
second concerns mixed graphs with all di-Eulerian nodes.

COROLLARY 3.1. Suppose that in a mixed graph M (V + s, A U E), node s is
incident only with undirected edges, 0 < d(s) 3, and there is no cut-edge incident to
s. Let k >_ 2 be an integer such that A(x, y; M) >_ k for every x, y V. Then there is
a pair of edges e su, f st such that A(x, y; MeY) >_ k for every x, y V.

COROLLARY 3.2. Suppose that in a mixed graph M (V + s, A U E), node s is
incident only with undirected edges, 0 < d(s) 3, there is no cut-edge incident to s,
and pU(V) 5M(V) for every node v V. Then there is a pair of edges e su, f st
such that A(x, y; MeY) A(x, y; M) for every x, y V.

Note that this corollary is already a generalization of Mader’s Theorem 3.1.
We close this section by pointing out that for a mixed graph M (V + s, A U E),

one cannot always split away a pair of edges incident to s in such a way that for every
pair of vertices x, y V min((x, y; M), (y, x; M)) is preserved. Such an example is
given in Fig. 4.

4. Increasing edge-connectivity. This section is offered to exhibit two new
edge-connectivity augmentation results according to whether only directed or undi-
rected edges are allowed to be added. We will formulate the results for mixed starting
graphs, but these forms are clearly equivalent to the cases when the starting graph
is a directed graph. Therefore, our first theorem is basically a directed augmentation
theorem in which both the starting graph and the new edges to be added are directed,
while in the second theorem the starting graph is directed and the new edges are
undirected.

In both theorems we have the same requirement for the demand function r,
namely, r(x, y) is symmetric, not larger than a specified positive integer k, and pre-
cisely k for pairs of non-di-Eulerian nodes x, y. An interesting phenomenon in the case
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FIG. 4. Here and + 1 denote the multiplicity of the arcs. It is not diJficult to see that

min(,k(x, y; M),)(y,x; M)) 2+ 1 for any choice of x, y E Z, and none of the two possible splittings
at s preserves this.

of undirected augmentation is that for k 1, the necessary and sufficient condition is
different from the one given for k > 1.

Our proof method strongly follows that of Frank [6], which had two ingredi-
ents. The first was the splitting theorems of W. Mader, while the second was an
observation that the set of degree vectors of possible augmentation forms a so-called
contrapolymatroid, a matroid-like structure. The idea of using a splitting theorem for
augmentation problems dates back to as early as 1976 (Plesnik [22]). Cai and Sun
[1] also use splitting theorems. Actually, this approach was our main motivation in
developing stronger splitting theorems in 2 and 3.

To be more specific, let N be a mixed graph composed from a directed graph
D (V,A) and an undirected graph G (V,E). Let T(D):= {v e Y pD(v) 7
SO(V)} be the set of non-di-Eulerian nodes of D. Let k be a positive integer and let
r(x, y)(x, y E V) be a nonnegative integer-valued demand function satisfying

(4.1a) r(x,y)=r(y,x)_k for everyx, yEV, and

(4.1b) r(x, y) k for every x, y T(D).

Let R() R(V) 0, and for X C_ V let

(4.2)

Let us define

(4.3a)
(4.3b)

R(X) max(r(x, y)" X separates x and y).

qin(X) :-- R(X)- pN(X),
qou (X) := R(X)
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THEOREM 4.1. Given a mixed graph N- (V, A U E), positive integers k, "y, and
a demand function r(x,y) satisfying (4.1), N can be extended to a mixed graph N+
by adding "y new directed edges so that

(4.4) A(x, y; N+) _> r(x, y) for every x, y E V

if and only if

(4.5a) qin(Xi)

_
"y

and

(4.5b) E qout(Xi)_ /

hold for every subpartition {X1,..., Xt} of V.
Proof. It can be assumed that N is a directed graph because undirected edge of N

can be replaced by a pair of two oppositely directed edges, and this operation does not
affect the local edge-connectivity. That is, N D. Let N+ denote an augmentation
of D with /new edges.

CLAIM 4.1. N+ satisfies (4.4) if and only if

(4.6) pN+ (X) >_ R(X) and 5N+ (X) >_ R(X)

hold for every X C V.
Proof. If N+ satisfies (4.4), then for any subset X separating x and y PN+ (X) >_

A(x, y; N+) >_ r(x, y). Hence PN+ (X) >_ R(X) for every X C V. The second inequality
in (4.6) follows analogously. Conversely, assume that (4.6) is satisfied. By Menger’s
theorem there is a y-set X for which (x, y; N+) pN+(X). Hence (x, y; N+)
pN+(X) >_ R(X) >_ r(x, y) as required. [:1

We first examine the proof of necessity. By (4.6) we have _> pN+(Xi)
pD(Xi)

_
R(Xi) pD(Xi) qin(Xi), that is, (4.5a) holds. Inequality

(4.5b) follows analogously.
The proof of sufficiency is structured as follows. First, we extend D by adding a

new node s together with new directed and undirected edges incident to s. Secondly,
we get rid of some new edges. Finally, we replace each remaining undirected edge by
a pair of oppositely directed edges and apply Theorem 2.4.

To be more specific, extend D by adding a new node s, k parallel undirected edges
connecting s and x for every x E V- T(D), and k parallel directed edges from s to x
and x to s for every x T(D). The resulting mixed graph M satisfies

(4.7a) pM(X) >_ R(X),
(4.7b) 6M(X) >_ R(X)

for every X C V.
Let s(X) tiM(X) R(X), Sin(X) pM(X) R(X), and Sout(X) 6M(X)

R(X) for X C V. By (4.7) these "surplus" functions are nonnegative. We say that
X is R-tight, in-R-tight, and out-R-tight if s(x) o, Sin(X) 0, and Sout(X) 0,
respectively.

Secondly, starting with the undirected edges and then continuing with the directed
ones, discard new edges from M one by one as long as possible without violating
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(4.7). Henceforth we use M to denote the final graph. Recall the notation M(X)
min(pM(X),hM(X)). During this process new R-tight sets may arise, and if a set
becomes R-tight at any moment, it stays so throughout.

LEMMA 4.1. 5M(S) and pM(S)

_
".

Proof. We prove only the first inequality; the second is analogous. In M,

(4.8) every directed edge e sx enters an in-R-tight subset of V,

since otherwise e could have been discarded without violating (4.7).
We also claim that in M,

(4.9) every undirected edge sx enters an in-R-tight set X c_ V- T(D).

Indeed, let M denote the current graph at the moment of the discarding phase when
the last undirected edge. has been discarded. The fact that e cannot be discarded
means that there exists a set X c_ Y containing x so that M,(X) R(X). Since
at this moment no new directed edge has yet been discarded, X cannot contain any
element of T(D). That is, X C_ Y T(D) and hence pM,(X) 5M,(X), that is, (4.9)
follows.

Let S {x E Y- T(D)" there is an undirected edge sx of M}. Let in :-- {X
T(D)" there is a directed edge sx of M}. Let us call an in-R-tight set X extreme if
there is no in-R-tight set Y with XCl(S[.JSin) C YN(S[-JSin), and if XN(S[_JSin) YN
(S t2 Sin) for an in-R-tight set Y, then X c_ Y. Thus X is as large inside S t2 Sin as
possible, and subject to this, X is as small outside S t2 Sin as possible.

CLAIM 4.2. For any two in-R-tight sets X, Y, at least one of the following holds:
(a) X U Y is in-R-tight;
(b) both X Y and Y X are in-R-tight and X Y N (S Sin)
(c) T(D) C_ X U Y and X N Y T(D) .
Proof. If (1.ha) holds, then by (1.3a), 0 + 0 sin(X) + 8in(Y) 8in(X Y) --sin(X U Y) >_ O. It follows that 8in(X [-J Y) 0, that is, (a) holds.
Now suppose that (1.ha) does not hold. If X Y T(D) , then T(D)

Y, otherwise R(X) R(Y) R(X Y) R(X Y) k and (1.ha) would hold. That
is, we are at alternative (c).

So assume that X N Y T(D) . Now (1.3b) applies to M and by Lemma
1.1 inequality (1.55) holds. We obtain pM(X) + PM(Y) pM(X- Y) + PM(Y-
X) + dD,(X, Y) + 2da,(X, Y), where D’ and G’ denote the directed and undirected
part of M, respectively. Combining this inequality with (1.5b) we get 0 + 0
8in (Z) -- 8in (Y) 8in (Z Y) -- 8in (Y X) -- riD, (Z, Y) - 2d-, (X, Y) >_ 0. It follows
that 8in(X- Y) 0 8in(Y- X) and dD,(X, Y) 0 2da,(X, Y), that is, (b)
holds.

By (4.8), there is a family 1 of in-R-tight sets whose union includes Sin. We may
choose 1 so that its members are extreme sets and 191 is minimum.

CLAIM 4.3. is either a subpartition or consists of two members whose union
includes T(D).

Proof. If 9 is not a subpartition, then it has two members X, Y with X
Since the members of are extreme and I11 is minimal, alternatives (a) and (b)
cannot occur in Claim 4.2. Therefore, (c) must hold.

Let Z T(D) (X X e 1). By (4.9), for every y e S- Z there is an in-
tight set Y c_ V- T(D) containing y. We claim that Y Z . If not, then X

for a member X of 1. But this contradicts Claim 4.2 because alternatives (a) and
(b) cannot hold since X is extreme; since (c) cannot hold either since Y
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Therefore, there is a family 2 of in-R-tight subsets of V-Z whose union includes
S- Z. Assume that 1’21 is miniumum and, subject to this, ’(IXI X E $2) is
minimum.

CLAIM 4:4. ’2 iS a subpartition of V- Z.
Proof. Indirectly, let X, Y be two members of 92 with X N Y D. This contra-

dicts Claim 4.2 because the minimal choice of -2 implies that neither alternative
nor (b) may hold, and (c) is also impossible since X, Y C_ Y- Z c_ Y- T(D).

Let " ’1 U ’2. By Claim 4.4, if ’1 is a subpartition so is ’. By (4.5a),
> E(R(X) z e E(R(X) x e +

required for the lemma.
If ’1 is not a subpartition, then by Claim 4.3 it consists of two members A, B with

T(D) c_ A U B. Now R(A-B) R(A) R(B-A) R(B) k and pD(X) D(X)
for every X E ’2. Furthermore, (1.2c) applies to A and B, from which 5D(A- B) +
6D(B- A) <_ pD(A) + pD(B).

By applying (4.5b) to the subpartition consisting of A- B, B- A, and the mem-
bers of -2 we get 9/_> [R(A- B)- 6D(A- B)] + [R(B- A)- 6D(B- A)] + (R(X)-
6D(X)" X -2)_> [R(A)-pD(A)]+[R(B)-pD(B)]+-(R(X)-pD(X) X -2)
[R(A) pM(A)] + [R(B) pM(B)] + -(R(X) pu(X) X ’2) -- U(8) M(S),
and the proof of Lemma 4.1 is complete.

By adding back some discarded new edges, if necessary, we may assume that
M(S) pM(S) 9/. Now replace each undirected edge of M by a pair of oppositely
directed edges. By our construction, the resulting digraph D’ satisfies T(D’) C_ T(D).
Therefore, we can apply Theorem 2.4 to M D’. The resulting digraph N+ := M+
satisfies (4.4).

Remark. It is interesting to note that if a node v is di-Eulerian in D (that is,
pD(V) 5D(V)), then v is di-nulerian in the augmented D+ as well.

Let us mention two corollaries. For simplicity we formulate them for directed
starting graphs. In the first one we assume that T is empty, that is, D is-di-Eulerian.
Then k may be chosen arbitrarily large and hence r is not bounded above.

COROLLARY 4.1. Given a di-Eulerian digraph D (V,A) and a symmetric
demand function r, D can be extended to a digraph D+ by adding 9/ new edges so
that A(x, y; D+) >_ r(x, y) for every x, y V if and only if qin(Xi)

_
9/ and

qout(Xi) _< 9/hold for every subpartition {X1,... ,Xt} of V. Furthermore, D+ may
be chosen to be di-Eulerian.

In the second application we do not have any positive demand for di-Eulerian
nodes.

COROLLARY 4.2. We are given a digraph D (V, A), positive integers k, 9/, and
a subset T C_ Y so that pD(V) 5D(V) holds for every v Y- T. D can be extended
to a digraph D+ by adding 9/ new directed edges so that A(x, y; D+) >_ k for every
x, y T if and only if

(4.10) -(k- pD(X,)) <_ 9/ and -(k- 6D(Xi)) <_ 9/

hold for every subpartition {X1,...,Xt} of V for which Xi N T,T- Xi (i
1,... ,t).

The special case T V of this corollary was proven in Frank [6].
Our next goal is to prove an augmentation theorem when only undirected edges

are allowed to be added. Our result is a generalization of Theorem 5.5 in [6], where
the starting graph is an undirected graph. Let N be a mixed graph composed from a
directed graph D (V, A) and an undirected graph G- (V, E), and let r(x, y) be a
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demand function satisfying (4.1). We say that a component C of N is marginal (with
respect to r) if r(u, v) <_ A(u, v; N) for every u, v E C, and r(u, v) <_ A(u, v; N) + 1 for
every u, v separated by C. In other words, C is marginal if we do not want to increase
the local edge-connectivity between the element C, and the demand for increased local
edge-connectivity between a node in C and a node outside C is 0 or 1.

THEOREM 4.2. We are given a mixed graph N, integers k _> 2, >_ 0, and a
demand function r(x, y) satisfying (4.1) so that there are no marginal components. N
can be extended to a mixed graph N+ by adding / new undirected edges so that

(4.11) A(x, y; N+) _> r(x, y) for every x, y V

if and only if

(4.12) fl2v(X )) <_

holds for every subpartition {X1,..., Xt} of V.
Remark. If N has a marginal component, then the above min-max theorem is

not true as is shown by the empty graph on four nodes (taking r(u, v) =_ 1). For the
special case when N is undirected, in [6, Thm. 5.3] a very simple reduction method
was used to get rid of marginal components. The same method easily generalizes to
mixed graphs. Since no new idea is required, we leave out the details.

Proof. Again we may assume that N is a directed graph, that is, N D. Let N+
denote an augmentation of D with - new undirected edges.

CLAIM 4.5. N+ satisfies (4.11) if and only if

(4.13) N+ (X) >_ R(X)

holds for every X c_ V.
Proof. First suppose that N+ satisfies (4.11). By applying Lemma 1.4 to N+,

we obtain that N+(Z) >_ rg+(X, y) >_ r(x, y) for any subset X separating x and y.
Hence (4.11) follows.

Conversely, assume that (4.11) is satisfied. By Menger’s theorem there is a y2-
set X for which A(x, y; g+) pN+(X). Hence A(x, y; N+) pN+(X)
R(X) >_ r(x, y) as required.

We first examine the proof of necessity. If N+ satisfies (4.11), then by Claim 4.5
there are at least R(X) N(X) new edges between Z and V- X. Therefore, the
number , of new edges is at least half of

We now examine the proof of sufficiency. First, extend D by adding a new node
s and k parallel edges connecting s and x for every x V. The resulting mixed graph
M satisfies

(4.14) tiM(X) >_ R(X)

for every X C V.
Second, discard new edges one by one as long as possible without violating (4.14).

Henceforth we use M to denote the final mixed graph and let S {x V there
is an edge in M between s and x}. We call an R-tight set X extreme if there is no
R-tight set Y with X N S c Y N S, and if, in addition, X N S Y S for an R-tight
set Y, then X c_ Y.

LEMMA 4.2. dM(s)

_
2"y.
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Proof. Since no further new edge can be left out of M without violating (4.14),
there is a family - of R-tight sets whose union includes S. We may choose .T so that
its members are extreme and I-I is minimum, v1

CLAIM 4.6. - is a subpartition of V.
Proof. Assume indirectly that X N Y for some X, Y E ’. By Lemma 1.2, at

least one of the following inequalities holds:

(4.15)

(4.15b)

0 + 0 s(X) + s(Y) >_ s(X Y) + s(X U Y) + 2dG, (X, Y)
+ dD(X, Y)

_
O,

0 + 0 s(X) + s(Y) >_ s(X Y) + s(Y X) + 2da, (X, Y)
-t- dD(X, Y)

_
O,

where G denotes the undirected part of M.
If (4.15a) holds, then s(X U Y) O, that is, X t2 Y is R-tight, contradicting the

fact that X, Y are extreme. If (4.15b) holds, then s(X- Y) s(Y- X) 0 and
de, (X, Y) 0. Therefore, both X Y and Y X are R-tight and X Y N S ,
which again contradicts the extremality of X and Y. [:]

By (4.12), 2- >_ -(R(X)- D(X) X jz) -(R(X)- 3M(X) X
.T) + dM(s) riM(S), and Lemma 4.2 follows. [:]

By adding back new edges which are parallel to existing new edges, we may assume
that dM(s) 2/. We claim that there is no cut-edge of M incident to s. Indeed, if
e st were such an edge, then let C denote the component of M- e containing t.
Since e is the only edge of M leaving C, C is a marginal component contradicting the
hypothesis.

The theorem now immediately follows from Theorem 3.3. D
If 1V is an undirected graph in Theorem 4.2, then every node is di-Eulerian,

and hence r may be an arbitrary symmetric function. Therefore, Theorem 4.2 is a
generalization of the following result from [6].

COROLLARY 4.3. Given an undirected graph G (V, E) and a symmetric demand
function r(x, y) >_ 2, it is possible to add " new undirected edges to G so that in the
resulting graph G+, )(x, y; G+ >_ r(x, y) holds for every pair of nodes x, y if and only
if -(R(Xi)- dG(Xi)) <_ 2 holds for every subpartition {Xi} of V.

In another special case, r k _> 2.
COROLLARY 4.4. Let N (V, A t E) be a mixed graph and let k >_ 2,’ >_ 1 be

integers. N can be made k-edge connected by adding "y new undirected edges if and
only if

<_

holds for every subpartition {X,..., Xt} of V.
The example in Fig. 5 shows that for k 1, Corollary 4.4 (and hence Theorem

4.2) is not true in general. However, we can prove the following theorem.
THEOREM 4.3. A mixed graph N with connected underlying graph can be made 1-

edge-connected (= strongly connected) by adding " new undirected edges if and only if
(.) every family of/+ 1 disjoint subsets of nodes contains (not necessarily distinct)
members X, Y for which pN(X) > 0 and 5N(Y) > O.

Proof. First, suppose that E is a set of new undirected edges whose addition
makes N strongly connected, and there is a family " of /+ 1 disjoint subsets of V so
that for each member of ’, say, pN(X) 0. Since the underlying graph is connected,
X0 :-- V- [J(X X G ’) is nonempty. Moreover, since there is no edge (undirected
or directed) connecting distinct members of jr, N X0 has at least - + 1 components.
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FIG. 5. It is easy to see that we need three edges here, but k 1 implies (k- N(Xi))

_
4,

which suggests that two edges would suJfice.

Since the union of any j members of $-(j 1,..., /+ 1) must be connected to the
rest by an element of E’, we get IE’I >_ /+ 1, showing that (,) is necessary.

To see the sufficiency we may assume again that N is directed. Now (*) implies
(4.10) for k 1 and T V, and hence, by Corollary 4.2, there are /directed edges
whose addition makes N strongly connected. If we leave out the orientations of the
newly added edges we get the required undirected augmentations.

5. Variations, polyhedra, and algorithms. In this section we briefly outline
some variations of the augmentation problem, the polyhedral background, and some
algorithmic aspects. We ave concerned here with the case when only undirected edges
are allowed to be added. A similar approach was discussed in detail in Frank [6]. Since
no new idea is required, we refer the reader to that paper for definitions and details.
For the directed augmentation problem, we have not yet found analogous methods to
handle minimum node-cost and degree-constrained versions. This is a possible subject
of future research.

Let N, k,-, r be the same as in Theorem 4.2, but this time, rather than finding a
minimum cardinality augmentation, we are interested in an augmentation satisfying
(4.11) in which the degree of every node is a prescribed value.

THEOREM 5.1. Given a mixed graph N (V, A+E) and an integer-valued vector
m" V -- Z+ for which

(5.1) re(V) is even,

N can be extended to N+ satisfying (4.11) by adding a set F of new undirected edges
for which dE(v) re(v) for every v V if and only if

+ >_ R(X) x c_ V.

Proof. Add a new node s and re(v) parallel undirected edges between s and v for
every v V. Since there is no marginal component of N, in the extended graph there
is no cut-edge incident to s. We may apply Theorem 3.3 and the result immediately
follows.

From this easy derivation one should realize that Theorem 5.1 is nothing but a
reinterpretation of Theorem 3.3. Let us call an integral-valued vector m satisfying
(5.1) and (5.2) an augmentation vector.

Let q" 2y --. Z be an integer-valued set function. We call q skew supermodular if
q() 0 and

(5.3a) q(X) + q(Y) _<_ q(X Y) + q(X U Y) or

(5.3b) q(X) + q(Y) <_ q(X Y) + q(Y X)
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hold for every pair of subsets X, Y c_ V (we point out that other names were used
earlier instead of skew supermodular, for example, weakly supermodular [10] and X-
supermodular [8]). The following theorem was proved in [6, Thm. 7.1] for set functions
of form q(X) R(X) riG(X). However, its proof relied only on one feature of q,
namely, that q is skew supermodular. Hence we state the theorem in this more general
form.

THEOREM 5.2. Where q is a skew supermodular function, the polyhedron

(5.4) C(q) {z RV z >_ O,z(X) >_ q(X) for every X c_ V}

is a contrapolymatroid C(p), where the unique fully supermodular function p defining
C(q) is given by

(5.5) p(A) max (E q(ni) {nl,. ,At} a subpartition of V).
By Lemma 1.2, q R-/N is skew supermodular and hence Theorem 5.2 ap-

plies. We find that the augmentation vectors m are precisely the integer-valued ele-
ments of C(q) satisfying (5.1).

We briefly indicate how this fact can be used for degree-constrained and minimum
node-cost augmentations. Suppose first that we have a nonnegative cost function
c V -- R+, and we are interested in an augmentation of a mixed graph N that
satisfies (4.11). Also, the total cost of new edges is minimum. Here the cost of an
edge uv is defined to be c(u) + c(v).

It was shown in Frank [6] that with a slight modification of the greedy algorithm
we can find a minimum cost integer element m of a contrapolymatroid for which m(V)
is even. That is, with the help of the greedy algorithm, first find an integer vector
m’ that minimizes cx over C(q). If m’(Y) is even, define m m’. If m’(Y) is odd,
define m(vn) by adding 1 to m’(vn), where Vn is an element of Y of least cost, while
m(x) m’(x) for x E Y- Vn. This way we obtain a minimum cost augmentation
vector m and, by Theorem 5.1, m determines a minimum node-cost augmentation
satisfying (4.11).

To consider the degree-constrained augmentation, let f V --. Z and g V --Z U {c} be two functions with f _< g. When does there exist an augmentation of
N satisfying (4.11) for which f(v) <_ dR(v)

_
g(v) holds for every v E V? Let B

{x R" f _< x _< g} denote abox. By Theorem 5.1 the desired F exists if and
only if there is an integer element m of B N C(q) with the additional property that
re(V) is even. The intersection of a box and a contrapolymatroid is a generalized
polymatroid. It was shown in [6, Prop. 6.10] that a g-polymatroid defined by a strong
pair (p, b) has no integer element m for which re(V) is even if and only if p(V) b(V)
is odd (a submodular function b and a supermodular function p form a strong pair if
b(X)- p(Y) >_ b(X- Y)- p(Y- X) holds for all X, Y c V, where V is the groundset
for b and p). From this one can derive the following theorem.

THEOREM 5.3. Given N, k, r as in Theorem 4.2 and integer-valued vector f, g, N
can be extended to N+ satisfying (4.11) by adding a set F of new undirected edges for
which f(v) <_ dE(v)

_
9(v) for every v V if and only if q(X) <_ g(X) for every

c X c V, and there is no partition jz {X0, X1,... ,Xt}, where only Xo may be
empty, with the following properties: f(Xo) g(X0), g(Xi) q(Xi)(i 1,..., t), and
g(V) is odd.

Minimum node-cost degree-constrained augmentation problems can also be han-
dled with the same technique.
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To conclude, let’s briefly say something about the algorithmic aspects. The proof
of Theorem 4.2 consisted of two parts: the edge-deletion phase and the splitting-off
phase. An argument analogous to the one used in [6] shows that the edge-deletion
phase can be carried out on a graph with n vertices by performing 2n2 MFMC compu-
tations. The splitting-off phase requires no more than n3 MFMC calculations. Since
one MFMC calculation can be carried out in O(n3) steps, the overall complexity of
the algorithm is O(n6). Actually, these bounds are valid for the more general problem
when the starting graph is endowed with integer capacities on the edges and we are
allowed to add a new edge in any number of copies. Theoretically, this problem is not
more general since we can replace an edge by as many parallel edges as its capacity
will hold. But from a computational point of view such a reduction is not satisfactory.
Fortunately, the MFMC algorithm is strongly polynomial, and hence the approach
outlined above gives rise to strongly polynomial time algorithm in the capacitated
case as well:

REFERENCES

[1] G.-R. CAI AND Y.-G. SUN, The minimum augmentation of any graph to a k-edge-connected
graph, Networks, 19 (1989), pp. 151-172.

[2] J. EDMONDS, Edge-disjoint branchings, in Combinatorial Algorithms, B. Rustin, ed., Academic
Press, New York, 1973, pp. 91-96.

[3] , Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures
and their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds., Gordon and
Breach, New York, 1970, pp. 69-87.

[4] K.P. ESWARAN AND R. E. TARJAN, Augmentation problems, SIAM J. Comput., 5 (1976), pp.
653-665.

[5] A. FRANK, On connectivity properties of Eulerian digraphs, Ann. Discrete Math., 41 (1989),
pp. 179-194.

[6] , Augmenting graphs to meet edge-connectivity requirements, SIAM J. Discrete Math.,
5 (1992), pp. 22-53.

[7] , On a theorem of Mader, Ann. Discrete Math., 101 (1992), pp. 49-57.
[8] , Applications of submodular functions, in Surveys in Combinatorics, Keith Walker, ed.,

London Math. Soc. Lecture Notes Ser. 187 (1993), pp. 85-136.
[9] H. N. GABOW, Applications of a poset representation to edge-connectivity and graph rigidity,

Proc. 32nd IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
1991, pp. 812-821.

[10] M. GOEMANS, A. GOLDBEaa, S. PLOTKN, D. SHMOYS, E. TAaDOS, AND D. WLLIAMSON,
Improved approximation algorithms for network design problems, in Proc. 4th ACM-SIAM
Symposium on Discrete Algorithms, Arlington, VA, 1994, pp. 223-232.

[11] A.V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum flow problem, J. Assoc.
Comput. Mach., 35 (1988), pp. 921-940.

[12] D. GUSFELD, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987), pp. 599-612.
[13] B. JACKSON, Some remarks on arc-connectivity, vertex splitting, and orientation in digraphs,

J. Graph Theory, 12 (1988), pp. 429-436.
[14] A. V. KARZANOV, Determining the maximal flow in a network by the method of preflows,

Soviet Math. Dokl., 15 (1974), pp. 434-437.
[15] L. Lovsz, Connectivity in digraphs, J. Combin. Theory Ser. B, 15 (1973), pp. 174-177.
[16] , On two min-max theorems in graph theory, J. Combin. Theory. Ser. B, 21 (1976), pp.

26-30.
[17] , On some connectivity properties of Eulerian graphs, Acta Math. Hungar., 28 (1976),

pp. 129-138.
[18] , Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
[19] W. MADER, A reduction method for edge-connectivity in graphs, Ann. Discrete Math., 3 (1978),

pp. 145-164.
[20] , Konstruktion aller n-fach kantenzusammenhangenden Digrafen, European J. Combin.,

a (19se), . a-7.



178 JORGEN BANG-JENSEN, ANDR/S FRANK, AND BILL JACKSON

[21] D. NAOR, D. (USFIELD, AND C. MARTEL, A fast algorithm for optimally increasing the edge-
connectivity, 31st IEEE Symposium on Foundations of Computer Science, St. Louis, MO,
1990, pp. 698-707.

[22] J. PLESNIK, Minimum block containing a given graph, Archiv der Math. (Basel), XXVII (1976),
pp. 668-672.

[23] Y. SHILOACH, Edge-disjoint branchings in directed multigraphs, Inform. Process. Lett., 8 (1979),
pp. 24-27.

[24] T. WATANABE AND A. NAKAMURA, Edge-connectivity augmentation problems, Comput. System
Sci., 35 (1987), pp. 96-144.



SIAM J. DISC. MATH.
Vol. 8, No. 2, pp. 179-185, May 1995

1995 Society for Industrial and Applied Mathematics
002
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Abstract. A radio communication network can be modeled by a digraph, D, where there is an
arc from vertex x to vertex y if a signal sent from x can be received at y. The competition graph,
C(D), of this network has the same vertex set as D, and (x, y) is an edge in C(D) if there is a
vertex z such that (x, z) and (y, z) are arcs in D. The competition graph can be used to assist in
assigning frequencies to the transmitters in the network. Usually the digraphs for these networks are
strongly connected, but the power of transmitters may vary, so they are not necessarily symmetric.
Therefore it is of interest to determine which graphs are the competition graphs of strongly connected
digraphs. We characterize these graphs as well as establish several large classes of graphs, including
chordal, interval, and some triangle-free graphs, which are competition graphs of loopless Hamiltonian
digraphs.

Key words, competition graph, conflict graph, strongly connected digraph, Hamiltonian di-
graph, communication network, edge clique cover, chordal graph, interval graph, cycle, inset
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1. Introduction. A radio communication network can be modeled by a digraph,
D, where there is an arc from vertex x to vertex y if a signal sent from x can be received
at y. The conflict graph, C(D), of this network has the same vertex set as D, and
(x, y) is an edge in C(D) if there is a vertex z such that (x,z) and (y,z) are arcs in
D. That is, signals sent from x and y can be received at z. The conflict graph can
be used to assist in assigning frequencies to the transmitters in the network. Since it
is desirable that a message initiated somewhere in the network be able to reach all
stations, usually the digraphs for these networks are strongly connected. Nonetheless,
in a very large network, with perhaps thousands of vertices, it is not unreasonable
to expect that certain stations be equipped with very powerful transmitters while
other stations cannot transmit signals as far. Thus the digraphs for these networks
are not necessarily symmetric. One might start with a graph that is a conflict graph
of a digraph and then change some of the arcs in the digraph so as to minimize or
maximize the number of arcs while keeping the digraph strongly connected and the
conflict graph the same. Hefner and Hintze [3] are developing algorithms to do this for
a large naval communication network in the Pacific. So it is of interest to determine
which graphs are the conflict graphs of strongly connected digraphs. We characterize
these graphs as well as graphs that are the conflict graphs of Hamiltonian digraphs.

The conflict graph of a digraph is just another name for the competition graph
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FIG.1. G is the competition graph of a digraph but not one that is strongly connected.

that has been studied extensively during the last 15 years (see Kim [4] and Lundgren
[5] for recent surveys of the literature on competition graphs). Therefore we formulate
our characterizations in terms of competition graphs. Characterizations have been
found for competition graphs of acyclic digraphs [1], [5], arbitrary digraphs with or
without loops [1], [11], and symmetric digraphs with or without loops [7], [9].

Let OE(G) denote the edge clique cover number of G, that is, the smallest number
of cliques that cover all the edges of G. The following result of Roberts and Steif [11]
serves as a starting point for our work.

PROPOSITION 1.1. /f IV(G)I n, then G is a competition graph of a digraph that
has no loops if and only if G K2 and OE(G) <_ n.

2. Competition graphs of strongly connected digraphs. The obvious
question to ask first is whether or not the condition given in Proposition 1.1 will
work for strongly connected digraphs as well. The graph given in Fig. 1 is the compe-
tition graph of a digraph but not one that is strongly connected. The problem is that
while OE(G) 9, OE(G) + i(G) > 9, where i(G) is the number of isolated vertices
in G. For a vertex v, we let In(v) denote the inset of v, that is, the set of all vertices
that have an arc into v. Similarly, Out (v) will denote the outset of v. Unless stated
otherwise, all digraphs are without loops.

PROPOSITION 2.1. /f IV(G)I n and G is the competition graph of a strongly
connected digraph, then OE(G) + i(G) <_ n.

Proof. Suppose G C(D) for D strongly connected. Then each inset in D
corresponds to a clique in G and these n cliques cover the edges of G. However, for
D to be strongly connected, each isolated vertex x in G has an arc in D to a vertex y
that has inset equal to {x}. Thus, OE(G) + i(G) <_ n.

Not only is this condition necessary, but it is also sufficient for G to be the
competition graph of a strongly connected digraph. First, we must establish the
result for graphs with no isolated vertices.

THEOREM 2.2. Let G be a graph with no isolated vertices such that G K2 and
OE(G)

_
n. Then G is the competition graph of a strongly connected digraph.

Proof. By Proposition 1.1, G C() for some (loopless) digraph . Among all
such digraphs, let D (V, A) be one with the smallest number k of strong components
and suppose that k >_ 2.

Let D1,D2,...,Dk be the strong components of D and suppose V has been
labeled so that if x E Di, y Dj, and (x, y) A, then i <_ j. See chapter 2 of Roberts
[10] for results that prove such an ordering always exists. Observe that since G has
no isolated vertices, this ordering implies there are at least two vertices in Dk, since
every vertex in D has an outgoing arc.

Case 1. D1 {x}. Observe that In(x) . Since G has no isolated vertices,
Out(x) . Let (x, y) A for some vertex y. Then get a new digraph D by simply
adding the arc (y, x) to D. Then, D has fewer strong components than D and C(D’)
G, a contradiction.
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Case 2. IDll _> 2 and there is avertexy E Dk such that (x,y) A for some
x E D1. Since IDkl >_ 2 and Dk is strongly connected, In(y) . As in Case 1 we
construct a new digraph D’. Let InD, (y) InD(x) and InD, (x) InD(y) with all other
arcs in D staying the same as in D. We claim that D1 U Ok is strongly connected in
D. To prove this, we must show that given arbitrary vertices u, w D1 Dk, there
is a path from u to w.

Let u be a vertex in D1 not equal to x and w a vertex in Dk not equal to y.
In D, u reached x, so in D, u reaches y. In D, y reached w and none of those arcs have
changed; therefore, u reaches all w Dk in D. In D, x reached u and none of those
arcs have changed; therefore x reaches w. Therefore every vertex in D1 reaches every
vertex in Dk.

In D, w reached y, so in D, w reaches x. In D, x reached u and none of those
arcs have changed; thus w reaches u. In D, y reached w and none of those arcs have
changed; thus y reaches u. Therefore every vertex in Dk reaches every vertex in D.

Since every vertex in D1 reaches every vertex in Dk and every vertex in Dk
reaches every vertex in D, every vertex in D reaches every vertex in D1 and every
vertex in Dk reaches every vertex in Dk, completing the proof that D1 t2 Dk is strongly
connected. So D has fewer strong components than D and C(D) G, a contradic-
tion.

Case 3. IDol >_ 2 and every vertex in D1 has an arc to all vertices in Dk. Let
x D1 and y Dk. Since every vertex in D1 has an arc to y, D is a clique in C(D)
and all arcs in the inset of x can be removed in a new digraph D without changing
the competition graph. Now let InD,(X) {y} and let all other arcs in D’ remain
the same as in D. Then D [J Dk is strongly connected in D by arguments analogous
to that in Case 2, so D has fewer strong components than D and C(D) G, a
contradiction.

Thus D is strongly connected, since we assumed that k _> 2 was the small-
est number of strongly connected components and in all cases reached a contradic-
tion. [:]

COROLLARY 2.3. Let G be a graph such that G K1 or K2 and OE(G) + i(G) <_
n. Then G is the competition graph of a strongly connected digraph.

Proof. If G is a graph on n isolated vertices, then G is the competition graph of
an n-cycle, so assume G is not a graph on n isolated vertices. If G has no isolated
vertices, then we are done by the previous theorem, so assume i(G) k O. Let Ik
denote the subgraph of G isomorphic to k isolated vertices. Then there exists a graph
G such that G G Ik. Observe that G has m n k vertices, none of which are
isolated and OE(G’)

_
m. Let {am+,am+2,... ,am+k} denote the k vertices of Ik.

If G K2, let x and y be the vertices of G. Let D be the digraph with cycle
x, y, am+, am+2,..., am+k and the arc (x, a,,+l). Then C(D) G and D is strongly
connected. If G K2, by the previous theorem, there exists a strongly connected
digraph D’= (Y’, A’) such that C(D’) G’. Create D (V, A) as follows. Let Y
V’wIk. Choose x E Y’. Let InD(am+l) InD,(X),InD(X) am+k, and (ai, ai+l) A’
for i m + 1, m + 2,..., m + (k 1). Leave all remaining arcs of D in D. Then none
of the competitions in D have been changed so C(D) G. We claim D is strongly
connected.

Since D is strongly connected, x reaches every vertex V. The only arcs that have
changed are arcs from InD,(X). Therefore x reaches every vertex in V in D. Let u be
a vertex in InD,(X). Clearly u reaches every vertex in Ik in D, and since x reaches
u, x reaches every vertex in Ik. Therefore x reaches every vertex in D. Let v be an
arbitrary vertex in V. We claim v reaches x. Let u InD,(X). There is a path from u
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to x, namely (u, am+l), (am+l,am+2),..., (am+k,X), and v reaches u in D because v
reaches u in D therefore v reaches x in D. Clearly an arbitrary vertex v in Ik reaches
x. Thus every vertex in Ik and V reaches x in D. Thus D is strongly connected. [:]

The previous theorems and corollary give the following extension of the result of
Roberts and Steif [11].

COROLLARY 2.4. If G is a graph and IV(G)I n >_ 3, then G is the competition
graph of a strongly connected digraph if and only if OE(G) + i(G) <_ n.

3. Competition graphs of Hamiltonian digraphs. In looking at examples
of graphs on n vertices satisfying OE(G) + i(G) <_ n, we discovered that in many
cases not only are the graphs competition graphs of strongly connected digraphs but
frequently the digraphs could be chosen to be Hamiltonian. This raised the question
of finding necessary and sufficient conditions on G for G C(D) for D Hamiltonian.
From Proposition 2.1, certainly OE(G)+ i(G) <_ n is necessary, but is it sufficient?
As we shall see, the answer in general is no, but first we present several classes of
graphs for which the answer is yes. Our first result gives an edge clique covering
characterization of such graphs analogous to the results on competition graphs of
acyclic digraphs found by Brigham and Dutton [1] and Lundgren and Maybee [6].

THEOREM 3.1. A graph G with IV(G)] n is the competition graph of a Hamil-
tonian digraph if and only if G has a labeling al, a2,..., an of its vertices and an edge
clique covering {C1,.. Cn} satisfying ai Ci, 1,. ,n, ai E Ci+l,i 1,...,n-I,
and an C1.

Proof. Suppose G C(D) for D Hamiltonian and al,... ,an is a Hamiltonian
cycle in D. Let C In(a). Then {C1,..., Ca} is an edge clique covering of G, ai Ci
since D has no loops, ai C+1 since (a,a+l) is an arc, and an C1 since (an, a1)
is an arc.

Now suppose we have a labeling and an edge clique covering as stated in the
theorem. Construct D with vertices al,... ,an and In(ai) C. Then ai Ci+.l
implies that (ai, ai+l) is an arc and an e C1 since (an, al) is an arc; therefore D is
Hamiltonian. From the construction, it is clear that C(D) G.

The next several results give classes of graphs satisfying OE(G) + i(G) <_ n that
are the competition graphs of Hamiltonian digraphs.

PROPOSITION 3.2. If G is a cycle, then G is the competition graph of a Hamil-
tonian digraph.

Proof. Let al,..., an be the vertices of the cycle. Let C1 {an-l, an}, 62
{an, al }, C3 {al, a2},..., Cn {an-2, an-1 }. Then {C1,..., Ca} is an edge clique
covering of G satisfying Theorem 3.1.

PROPOSITION 3.3. The complete graph Kn for n >_ 3 is the competition graph of
a Hamiltonian digraph.

Proof. Let Y {al,..., an} be the vertices of gn. Let C Y {a}. Then
{C1,..., Cn} is an edge clique cover of Kn satisfying Theorem 3.1.

Two other classes of graphs that are competition graphs of Hamiltonian digraphs
are chordal graphs and interval graphs. See Chapters 4 and 8 of Golumbic [2] for
characterizations and more information about these graphs.

PROPOSITION 3.4. If G is a chordal graph on n >_ 3 vertices, then G is the
competition graph of a Hamiltonian digraph.

Proof. The proof is by induction on the number of vertices. It is easy to verify
the theorem for chordal graphs with three vertices. Assume the result is true for all
chordal graphs with less than n vertices and suppose G is a chordal graph with n
vertices. If G Kn, then we are done by Proposition 3.3. So suppose G Kn and let
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FIG. 2. This graph is not the competition graph of a Hamiltonian digraph.

x be a simplicial vertex in G and let G’ G- {x}. Since G’ is chordal, G’ C(D’)
where D has the Hamiltonian cycle al, a2,..., an-1. Since G 7/= Kn, there is a vertex
aj Nix], the closed neighborhood of x. Note that N[x] is a clique since x is simplicial.
We define a new digraph D as follows: InD(x) InD,(aj);InD(ay) Nix]; and
InD(ai) Ino,(ai) for all/ j. Clearly C(D) G and al,a2,... ,aj-l,x, aj,... ,an-1
is a Hamiltonian cycle in D.

We note that since every chordal graph has a perfect elimination scheme, it auto-
matically satisfies OE(() q- i(G) <_ n. Since the problem of determining the structure
of digraphs with interval competition graphs remains an interesting open problem, we
include the following corollary.

COROLLARY 3.5. If G is an interval graph on n >_ 3 vertices, then G is the
competition graph of a Hamiltonian digraph.

We now prove that connected triangle-free graphs on three or more vertices are
the competition graphs of Hamiltonian digraphs. To obtain this result, we need the
following lemma.

LEMMA 3.6. IfG is a connected triangle-free graph with
n, then G is a tree or a tree with an additional edge.

Proof. Since G is triangle-free, the cliques in any clique cover of minimum car-
dinality are just the edges of G. Since G is connected and OE(G) <_ n, then either
e(G) n 1 and G is a tree or e(G) n and G is a tree plus an edge. [:]

PROPOSITION 3.7. If G is a connected triangle-free graph on n >_ 3 vertices with
OE(G) <_ n, then G C(D) for D Hamiltonian.

Proof. The proof is by induction on the number of vertices n. For n 3, a path on
three vertices is the only such graph, and by Proposition 3.4 a path on three vertices
is the competition graph of a Hamiltonian digraph. Assume the result is true for all
connected triangle-free graphs with n vertices and suppose G has n + 1 vertices. By
Lemma 3.6, G is either a tree or a tree plus an edge. If G is a tree, we are done by
Proposition 3.4, so assume G is a tree plus an edge. If G has no pendant vertices,
then G is a cycle and the result follows from Proposition 3.3, so assume G has
pendant vertex. Let x be a pendant vertex in G. Then G {x} satisfies the induction
hypothesis. Let al,...,an be the vertices of the Hamiltonian cycle. Since n >_ 3
and deg(x) 1, there is a vertex a such that (x, a.) is an edge in G and a vertex
ak such that (x, ak) is not an edge in G. We construct a new digraph D’ as follows:
InD,(X) InD(ak),InD,(ak) {x, aj},InD,(ai) InD(ai) for k. Then C(D’)
G and al, a2,..., ak-1, x, ak,..., an is a Harniltonian cycle inDf, completing the
proof.

We now turn to the question of whether or not all graphs that satisfy OE(()
i(G) <_ n are the competition graphs of Hamiltonian digraphs. In fact, not all triangle-
free graphs satisfying this condition work. For example, neither the triangle-free graph
in Fig. 2 nor the graph in Fig. 3 is the competition graph of a Hamiltonian digraph.
The reasons are a consequence of the following result.

THEOREM 3.8. If C i8 the competition graph of a Itamiltonian digraph, then G
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FIG. 3. This graph is not the competition graph of a Hamiltonian digraph.

has an edge clique covering that has a system of distinct representatives among the
vertices of the cliques.

Proof. Suppose G C(D), where D is Hamiltonian and let al,... ,an be the
Hamiltonian cycle inD. Let Ci In(ai), then C {C1,..., Cn} is an edge clique
covering of G, and {an, al, a2,..., an-1 } is a system of distinct representatives (SDR)
for C.

COROLLARY 3.9. Suppose that G is a graph with components Gi, each of which
has ni vertices. IfG is the competition graph of a Hamiltonian digraph, then O(Gi) <_
ni for each component Gi.

Proof. Suppose that G is the competition graph of a Hamiltonian digraph. If
OE(Gi) > ni for some i, then every edge clique cover C of G requires more than
cliques to cover Gi, and each of these cliques contains only vertices of Gi. It follows
that C does not have a system of distinct representatives, a contradiction.

For the graph in Fig. 2, although OE(G)+ i(G) <_ n, seven cliques are required to
cover the component determined by {1, 2, 3, 4, 5, 6}, so no edge clique cover contains
an SDR. For the graph in Fig. 3, the fact that OE(G) 10 and that 5 and 6 are

adjacent simplicial vertices causes the problem, as described in the following corollary
to Theorem 3.8.

COROLLARY 3.10. If G is a graph on n vertices satisfying OE(G) n and G
C(D) for D Hamiltonian, then G contains no adjacent pair of simplicial vertices.

Proof. Suppose that G C(D) for D gamiltonian and that OE(G) n. Suppose
that x and y are simplicial vertices in G that are adjacent. Then Nix, y] is a clique, so

G- {x, y} requires at least n- 1 cliques in any clique cover. But then no edge clique
cover of G contains an SDR, a contradiction.

We can use Theorem 3.8 to determine exactly which triangle-free graphs are

competition graphs of Hamiltonian digraphs.
THEOREM 3.11. Suppose that G is a triangle-free graph with components Gi each

of which has ni vertices. Then G is the competition graph of a Hamiltonian digraph

if and only if OE(Gi) <_ ni for each component Gi.
Proof. One direction of the proof follows from Corollary 3.9. Suppose that

OE(Gi) <_ ni for each component Gi, 1 <_ <_ k, where k is the number of com-
ponents in G. If ni > 3, then Gi is the competition graph of a Hamiltonian digraph

by Proposition 3.7. If ni 2, then Gi K2,Di with Hamiltonian cycle a,...,
and we let Di be the arc (a,a) (observe C(Di) Gi in this case). If ni 1,

kthen Di is the isolated vertex a. Let D Ji=l Di. We can now form a digraph
D’ such that C(D’) G and D’ is Hamiltonian. For 1,..., k- 1, if ni >_ 3, let
InD, (a/1+1) InD(a). Ifnk _> 3, let InD,(a) InD(al). For 1,... ,k-l, ifni 2,
let InD,(a+1) {a,a}. If nk 2, let InD,(a) {al,a}. For 1,...,k- 1,
if ni 1, let InD,(a+1) a/1 If na 1, let InD,(a) al. Let all other in-
sets in D’ be the same as inD. Observe we have not changed any existing compe-
titions from C(D) to C(D’). Thus if n 7 2, we get all the edges of G in C(D). For

1,...,k- 1, if ni 2, then InD,(a+1) {a,a/} gives the edge inGi K2.
Similarly, InD,(a) does this if na 2. Thus C(D’) G and D’ has the Hamiltonian
cycle al,...,anl,a,...,a2n2,...,al,...,ank.
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We would like to improve on the characterization given in Theorem 3.1. One
possibility for n _> 3 and G satisfying OE(G) <_ n and no isolated vertices is the
converse of Theorem 3.8. While we have yet to find a counterexample, we have not
been able to show that this condition is sufficient to get a Hamiltonian digraph without
loops. We close this section with the following result analogous to the result of Brigham
and Dutton [1] for acyclic digraphs.

THEOREM 3.12. Suppose G is a graph, on n >_ 3 vertices satisfying OE(G)

_
n

and i(G) O. Then G is the competition graph of a Hamiltonian digraph possibly
having loops if and only if G has an edge clique covering C- {C1,..., Cn} that has a
system of distinct representative.

Proof. One direction of the proof follows from Theorem 3.8. So suppose G has
such an edge clique covering C. Let the representative for clique Ci be labeled ai-1
for 2,..., n and the representative for C1 be labeled an. Define a digraph D by
In(a) Ci. Then G C(D) and al,.., an is a Hamiltonian cycle in D.

4. Observations and future research. One obvious area for future research is
improvement on the theorem of competition graphs of Hamiltonian digraphs. Perhaps
some modification of Theorem 3.12 holds for digraphs without loops.

If G is a graph satisfying OE(G) + i(G) <_ n, what is needed are algorithms or
at least heuristics for generating strongly connected digraphs satisfying C(D) G.
If D represents a communication network, one might want the heuristics to minimize
or maximize the number of arcs in D without changing G. Hefner and Hintze [3] have
some results in this area.

These new characterizations suggest another problem. Suppose OE(G) + i(G)

_
n. Let T)(G) {DIC(D G}. What can be said about T)(G)? For example, we
know that T)(G) contains a strongly connected digraph. If G is interval with an
isolated vertex, then 7)(G) also contains an acyclic digraph as well as a Hamiltonian
digraph. This approach may shed some light on the problem of characterizing digraphs
with interval competition graphs. For a particular class of graphs, one might deter-
mine canonical representatives in T)(G). This problem is investigated in Lundgren and
Merz [8].
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A COMPETITIVE STRONG SPANNING TREE ALGORITHM FOR
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Abstract. The new characterization for maximum matching in bipartite graphs given by Balin-
ski and Gonz1ez is based on "strong spanning trees" and is independent on the classical notion of
augmenting path. However, the algorithm that they derived runs in O(IVIIEI) time for bipartite

graphs with IVI nodes and IEI edges, and so it is not competitive with the 0(IEI) algorithm of
Hopcroft and Karp. In this paper we prove that the basic results given by Hopcroft and Karp can
also be obtained using the new characterization, allowing us to develop a competitive algorithm.
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1. Introduction. A matching Z in an undirected finite graph G (V, E) with
node set V and edge set E is a subset of E such that no two edges of Z have a common
node. The maximum matching problem is to find a matching whose number of edges
is maximum.

Balinski and Gonz1ez [3] presented a new characterization and a new algorithm
to solve the maximum matching problem in bipartite graphs; these are based on
"strong spanning trees," a concept introduced by Balinski [2]. This new approach
is independent of the classical notion of augmenting paths, on which all the relevant
results (related to the problem) previously written are based.

The classical notion states that a given matching Z is maximum if and only if
there exists no augmenting path with respect to Z (proved independently by Berge [4]
and Norman and Rabin [11]). This, in turn, gives a general procedure. Starting with
any matching (e.g., the empty one), a search for an augmenting path is conducted. If
the search finds one, the matching is augmented and the procedure is repeated (using
the resulting matching) until no augmenting path is found.

For the bipartite case, direct implementations of the above procedure give algo-
rithms that run in 0(IVI[EI) time (e.g., Hall [7], Ford and Fulkerson [5], Kuhn [10]).
The best algorithm in this case is that of Hopcroft and Karp [8], which has a running
time of 0(IEI). To obtain such a bound, they proved that the construction of a

maximum matching can be performed in x/qVI "phases." For a given matching Z, a
phase consists of finding a maximal set of node-disjoint, minimum-length, augmenting
paths with respect to Z. They showed that each phase can be carried out in 0(IEI)
time. Alt et al. [1] give an implementation of the Hopcroft-Karp algorithm, which runs
in tine 0(n1.5 v/m/logn), an improvement by a factor of.x/-g n for dense graphs.

The new algorithm of Balinski and Gonz1ez runs in O(IVIIEI) time and so is
competitive with all algorithms that use augmenting paths except that of Hopcroft
and Karp.

In this paper, we show that the approach originating from the concept of strong
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1994. This research was supported in part by Fondo Desarrollo Cientifico y Tecnologico (FONDE-
CYT) projects 91-1202 and 1930814.

Departamento de Ingenier/a Matemtica, Universidad de Chile, Casilla 170/3, Correo 3, San-
tiago, Chile.
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spanning trees is actually related to the classical notion of augmenting paths, allowing
us to follow and reproduce the basic results given by Hopcroft and Karp, which in
turn allows us to derive a competitive algorithm.

2. Preliminaries and basic results. Let G (M, N, E) be a finite, connected,
undirected, bipartite graph with node set M t2 N and edge set E C M N, where
M (1, 2,..., m} and N (1, 2,..., n}. The elements of M and N are called row
and column nodes, respectively. It will be assumed that m >_ n and that (i, j) E E
means E M and j E N.

Let Z be a given matching of G. A row or column node h is free or unmatched if
h is incident with no edge of Z. The edges of Z are said to be matched and the ones
of E- Z unmatched. An augmenting path is a path of distinct nodes whose edges
are alternatively in E- Z and Z and whose endpoints are both free (if one of them
is a row node, the other one is a column node). If # is any augmenting path with
respect to Z, its length (number of edges), denoted by I#1, is odd. The following are
well-known results for the maximum matching problem.

LEMMA 1. Let Z be a matching of G. If # is any augmenting path with respect
to Z, then ZA# (Z- #)2 (#- Z) is a matching of G and IZA#I IZI + 1.

THEOREM 1 [4], [11]. Z is a maximum matching of G if and only if there is no
augmenting path with respect to Z.

Since the notion of strong spanning trees cannot be applied to every bipartite
graph [3], an auxiliary bipartite graph associated with G is considered.

Given a bipartite graph G (M, N, E), the auxiliary graph G associated with G
is the bipartite graph Ga (Ma, N, Ea), where Me MU(O) and Ea Et2 ((0,j)
jEW).

Every spanning tree T of Ga will be considered to be a tree rooted at row node
0. This induces a direction on all edges on paths #0s C T which are directed away
from the root 0 toward the (row or column) node s. If l’ and r are two nodes joined
by an edge of T, which is directed from to , then is called the predecessor of
in T and r is a successor of in T. Further, such an edge is called odd if E M and

E N and even if E M and E N. Furthermore, a node or an edge is said to be
higher than a second node or edge in T (and the second is lower) if the first is on the
path that joins the root to the second one. For every (row or column) node s,T(s)
denotes the subtree of T which contains s and all lower nodes and edges (than s) of T
(i.e., node s is the root of T(s)), and M and N denote the sets of row and column
nodes, respectively, that belong to T(s). If t E T(s), the distance from s to t is the
number of edges of the (unique) path #s contained in T.

A spanning tree T of Ga is a strong spanning tree (s.s.t.) if every column node
of degree 1 in T is joined to the root by an (auxiliary) edge (i.e., terminal nodes in T
whose distance to the root is greater than 1 are all row nodes).

Given an s.s.t. T of G, Q(T) and C(T) denote the sets of column nodes of degree
1 and greater than 2 in T, respectively. Furthermore, D(T) denotes the subset of
C(T) which is highest, i.e., h E D(T) if h E C(T) and column nodes in #0h different
from h are all of degree 2 in T. MD and N denote the set of row and column
nodes that belong to the subtrees of T rooted at the column nodes h E D(T), i.e.,
MD (Mh" h E D(T)) and YD U(Yh" h E D(T)}.

An s.s.t. T of Ga is called closed if either Q(T) or C(T) or if E MD

and (i, j) E G implies j E N0.
Let T be an s.s.t, of Ga. For each column node j Q(T) (i.e., j is of at least degree

2 in T), let s(j) be some successor of j in T. The set Z(T) [2((s(j),j)’j
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is a matching of G, called the matching induced by T. Note that if Z and Z" are two
matchings induced by an s.s.t. T of Ga, then

Given a spanning tree T of Ga, a pivot in T consists of deleting an edge of T (called
the leaving edge) and replacing it by an edge of G- T (called the entering edge) to
form a new spanning tree of Ga. A pivot in T is said to be even (respectively, odd) if
the leaving edge is even (respectively, odd). Furthermore, if the leaving edge joins the
nodes and l", and l" is a successor of in T, then the deletion of such an edge cuts T
in two distinct subtrees: T(l") containing the node l" and T-T(l") containing the node
l’. The entering edge is chosen from the set B(l’, l") { (i, j): i E Ml’’ j E N- Nl’’ }.
If (f, g) denotes the entering edge, P P((l’, l"), (f, g)) denotes the corresponding
pivot and T’= T P (T- (/’, l"))U (f, g) is the resulting spanning tree.

LEMMA 2 [3]. Let T be an s.s.t, of Ga and h C(T). If (l,h) is odd (even)
edge in T and B(1, h) 7 , then T’ (T (1, h)) U (f, g) is an s.s.t, of Ga for any
(f,g) B(1, h) and IZ(T’)I IZ(T)I ifg Q(T) and IZ(T’)[ IZ(T)I+I ifg Q(T),
.for any Z(T) and Z(T’) matchiugs induced by T and T’, respectively.

The following is the characterization of maximum matchings in bipartite graphs
using strong spanning trees.

THEOREM 2 [3]. I T is a closed s.s.t, of G, then every matching induced by T
is a maximum matching of G. Moreover, every Ga has a closed s.s.t. T. Reciprocally,
if Z is any maximum matching of G, then there exists a closed s.s.t. T of Ga with Z
a matching induced by T.

The algorithm described in [2] ensures the existence of a closed s.s.t, for every
Ga. It generates a finite sequence of s.s.t, of G, T, T1,..., Tr, where Tk is obtained
by pivoting on some odd edge of Tk-l, k 1,..., r, and T is closed.

3. Strong block pivots in strong spanning trees. The implementation of
the algorithm proposed in [3] uses the idea of a "block pivot" (as suggested in [6]).
This permits the description of the algorithm as one consisting of at most INI- 1
stages. Each stage starts with the s.s.t, obtained at the end of the preceding stage
and generates a finite sequence of (odd) pivots which terminates with a pivot whose
entering edge is incident with a column node of degree 1 in that tree. At the end of the
stage, a block pivot is performed to update the tree. The work required in each stage
is 0(IEI), implying that the algorithm requires a work of O(IVIIEI) to find a maximum
matching in the bipartite G (M, N, E). To make this idea more efficient some
modification is needed. The following, as we prove later on, achieves this requirement.

Let T be an s.s.t, of G. A strong block pivot (s.b.p.) in T is a finite sequence
of pivots in T,P((ll,hl), (fi,h2)),P((12, h2), (f2, h3)),... ,P((lk-i,hk-1), (fk-1, hk))
that satisfies the following conditions:

(a) (/1, hi) is an even edge in T with column node hi of degree greater than 2 in
T and fl T(/1);

(b) (li, hi) is an odd edge in T with column node hi of degree 2 in T and fi T(hi),
for 2,...,k- 1;

(c) column node hk is of degree I in T and T T*Pk-I*Pk-2*’" "*Pt is a spanning
tree of G, for t 1,..., k 1, where Pi P((li, hi), (fi, hi+l)), 1,..., k 1.

The requirement that the first leaving edge be an even edge in T is crucial to
efficiency, since T(ll) C_ T(hl) implies that pivoting on (ll,hl) takes less work than
pivoting on the odd edge (10, hi) T, with l0 being the predecessor of hi in T. In
addition, and more importantly, the choice of an even edge (as we will prove later)
allows us to construct a certain set of s.b.p.s associated with T (the equivalent of
the particular set of augmenting paths found in each stage of the Hopcroft-Karp
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algorithm), which is not always possible if the leaving edge is chosen as an odd edge
(as in the Balinski-Gonz1ez algorithm).

To simplify notation (in some cases), P P1 U P2 ) Pk-1 and T T P
will denote, respectively, an s.b.p, in T and the resulting spanning tree of Ga obtained
after P is done in T.

Two s.s.t.’s T and T’ of Ga are called equivalent if IZ(T)I IZ(T’)I for any Z(T)
and Z(T) matchings induced by T and T’, respectively.

LEMMA 3. Let T be an s.s.t, of G. If P is an s.b.p, in T, then T T.P is an
s.s.t, of Ga, and IZ(T’)I IZ(T)I + 1 for any Z(T), Z(T’) matchings induced by T
and T, respectively.

Proof. The proof follows directly from the definition of strong block pivots. [:]

THEOREM 3. Let T be an s.s.t, of Ga. If T does not admit strong block pivots,
then every matching induced by T is a maximum matching of G.

Proof. We prove that T is equivalent to a closed s.s.t. T* of (a. In such a case,
Theorem 2 and the definition of equivalence between trees imply the result.

Suppose that T is not closed (otherwise T* T). Then, for some h E D(T), there
exists an edge (f, g) with f T(h) and g ND. Since h D(T), g does not belong
to Q(T), otherwise P P((/’, h), (f, g)) would be an s.b.p, in T, where (l’, h) is the
even edge that belongs to the unique path in T that joins h with f, contradicting the
hypothesis. Therefore, column node g is of degree 2 in T. If p is the predecessor of g
in T, pivot on (/", g) in T, using (f, g) as the entering edge, to obtain a new s.s.t. T’
which is equivalent with T. By repeating this argument at most INI- IQ(T)I- ID(T)I
times (since no more than this number of pivots can be done), a closed s.s.t. T*
equivalent with T is obtained. [:]

Note that these results are similar to the ones given in Lemma 1 and Theorem 1.

4. The algorithm of Hopcroft and Karp. The following are the main results
on which the Hopcroft-Karp algorithm is based.

THEOREM 4 [8]. Let Z’ and Z" be two matchings of G. If r IZ’I, s IZ"I,
and s > r, then Z’AZ" (Z’ Z") (Z" Z’) contains at least s r node-disjoint
augmenting paths relative to Z. Moreover, if Z is a maximum matching of G, then
there exists an augmenting path relative to Z’ whose length is at most 2[r/(s-r)J + 1.

Given a matching Z of G, an augmenting path # relative to Z is called shortest
if I#1 -< I#’1 for any augmenting path #’ relative to Z.

THEOREM 5 [8]. Let Z be a matching of G and # a shortest augmenting path
relative to Z. If it’ is any augmenting path relative to Z’ Z/kit, then lit’l >- litl+

By using these results the general procedure that finds a maximum matching in
G can be modified as follows. Starting with any matching Z0 (e.g., Z0 ), construct
a sequence of matchings Z1, Z2,..., defined by Zi+l ZiAiti, where iti is a shortest
augmenting path relative to Zi. Moreover, these results imply that the computation
of the sequence {Zi} can be performed in at most 2[v/NIJ + 2 phases. Within each
phase, all the segmenting paths found are node disjoint and have the same (shortest)
length. All the augmenting paths are relative to the matching from the beginning of
the phase.

In short, the basic steps of the algorithm are as follows:

Step O. Start with Z .
Step 1. Let l(Z) be the length of a shortest augmenting path relative to the current
matching Z. Find a maximal set of paths {its, it2,..., itt } such that
(a) iti is an augmenting path relative to Z and litil =/(Z), for 1,..., t, and
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(b) the #i are node disjoint. If no such paths exist, stop. The current matching Z is
maximum. Otherwise, go to Step 2.

Step 2. Construct Z ZA#IA#2A... A#t. Set Z- Z and go to Step 1.

The construction of the set {l,p2,...,itt} in Step 1 is replaced by one that
obtains a maximal set of node-disjoint paths in a particular graph associated with G
using a depth-first search. The work required to perform such a construction is
which implies the 0(-IEI) bound for the whole algorithm.

5. The new competitive algorithm. In this section we show that the concept
of an s.s.t, is related to the notion of augmenting path. This allows us to obtain results
similar to those given in Theorems 4 and 5. To this end, some additional definitions
are needed.

Let T be an s.s.t, of a and P {P((li, hi),(fi, hi+l)) 1,...,k- 1} an
s.b.p, in T. The definition of an s.b.p, implies that the (unique) paths in T, it(/1, f),
it(hi, fi),i 2,... ,k- 1, together with the entering edges (fi, h+), define the path
it(P) it(ll, fl)[2(fl,h2)t2it(h2, f2)t2-..Jit(hk-1, fk-1)U(fk-l,hk) (contained in G).
The size of P, denoted by s(P), is defined by the length of It(P), i.e., s(P)

A given s.b.p. P in T is said to be of smallest size if s(P) <_ s(P’) for any s.b.p.
P in T.

Two s.b.p. P and P in an s.s.t. T of (a are said to be disjoint if the paths it(P)
and it(P) are node disjoint.

THEOREM 6. Let T be an s.s.t, of G and Z(T) a matching induced by T. If it is
an augmenting path relative to Z(T), then T admits an s.b.p. {P((l,h),

1,...,k- 1} such that it contains the paths it(l,fl),it(hi, fi) and the entering
edges (f, hi+l), i-- 1,... ,k- 1, i.e., it it(P).

Proof. Let it {(f, jl), (il,jl), (il,j2),..., (ip-l,jp-1), (ip-l,g)} be an augment-
ing path in G, relative to Z(T), whose edges satisfy (it,jt) E Z(T), (it_,jt) Z(T),
for 1,..., p, where i0 f E M and jp g N are its endpoints. The definition of
Z(T) implies that g Q(T), that the predecessor of f in T, say column node h, is of
degree greater than 2 in T (because row node f is free), and that js is the predecessor
of is in T for s 1,... ,p- 1 (because (is,js) Z(T)).

Let it and it" be the subsets of it defined as follows. For each edge (is,js+) in

it, let qs be the predecessor of is in T and it {(is,js+) qs is of degree greater
than 2 in T}. Furthermore, let it" {(is,js+)’(is,js+) it- T}. These two sets
are nonempty because (i0, jl) (f, j) E it’ and (/p-I, jp) (ip_, g) it" (since
g Q(T) and (ip-l,g)

_
Z(T)). Therefore, if t max{s" (is,is+l)

denotes the subset of it" containing the edges (is, js+), with s > t (# because
(ip-1, g) #), then a strong block pivot P in T is defined by the even edge (it, qt),
with which P starts, and the edges in #, which define the entering edges of P.

COROLLARY 1. Let T be an s.s.t, of Ga and Z(T) a matching induced by T. If
P is an s.b.p, of minimum size in T, then it(P) is a shortest augmenting path relative
to Z(T). Reciprocally, if it is any shortest augmenting path relative to Z(T), then T
admits an s.b.p. P such that it- it(P).

Proof. Let P be an s.b.p, in T of minimum size and suppose that there exists
an augmenting path it relative to Z(T) satisfying litl < lit(P)l By Theorem 6, it
determines an s.b.p., say P’, whose size is at most equal to litl. Therefore, s(P’)
litl < lit(P)l- s(P), contradicting the hypothesis on P.
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The second part follows directly from Theorem 6, since the s.b.p. P determined
by It satisfies It(P) c It, and the condition on It of being a shortest path implies
It(P) It. 13

THEOREM 7. Let T and T’ be two s.s.t. ’s of G and Z(T), Z(T’) matchings in-
duced by T and T’, respectively. /f r IZ(T)I, s IZ(T’)I, and r < s,. then T admits
(at least)s r disjoint strong block pivots.

Proof. By Theorem 4, it follows that Z(T)AZ(T’) contains (at least) p s r
node-disjoint augmenting paths Itl,It2,...,Itp relative to Z(T). Theorem 6 implies
that each Itk determines an s.b.p. Pk which satisfies It(Pk) C Itk. This implies that
It(Pk) are node disjoint, and Theorem 7 follows. [3

COROLLARY 2. Let T be an s.s.t, of Ga and Z(T) a matching induced by T. Let
r ]Z(T)] and s denote the cardinality of a maximum matching of G. Then T admits
an s.b.p, of size (at most)2[r/(s r)J.

Proof Since s > r, Theorem 7 implies that T admits s- r s.b.p, which contain

(at most) the r edges of Z(T). Therefore one of them contains (at most) [r/(s-
r)J edges of Z(T), and by definition, the size of such an s.b.p, is at most 2Lr/

THEOREM 8. Let T be an s.s.t, of Ga and P an s.b.p, of minimum size in T. If
T’ T.P and P’ is any s.b.p, in T’, then s(P’) >_ s(P) + 2]#(P) VI It(P’)].

Proof. Let P- {P((li, hi), (fi, hi+l))" i- 1,...,k- 1} be an s.b.p, of minimum
size in T and T T.P. From the definition of s.b.p, it follows that d(hi) 2 for

2,... ,k in T’ and d’(hl) _> 2 in T. Furthermore, fi is the successor of hi+ in T
and every odd (respectively, even) edge of It(hi, fi) in T is an even (respectively, odd)
edge in T. Moreover, the definition of It(P) implies that the distance between hk and
11 in T’ is ]It’(hk, ll)]- lIt(P)].

Let P’ {P((l,h), (f,h+l)) 1,... ,t- 1} be an s.b.p, in T’. If It(P)V
It(P’) , then P’ is also an s.b.p, in T, and hence s(P’) >_ s(P).

Now assume that It(P)V #(P’) - . The definition of T’ implies that It(P)V
It(P’) is contained in It’(hk,l) and that both the highest and lowest edge in #’(hk, l)
which belong to It(P)V It(P’) are even. Moreover, the first edge of P’ (starting
from (/,h) toward (f_l,h)) that belongs to. it(P)N It(P’) is an even edge in T’.
This property is also satisfied by the last edge of P’ that belongs to It(P)V #(P’).
Therefore, if (f, hr+) and (f, hs+) denote such edges, then P’ can be partitioned
as follows. P’’ P U P U P, where P {P((l,h), (f,h+l)) 1,..., r} and

P {P((/ h)(f hi+) i= s + 1,... ,t- 1} satisfy P g It(P) P V It(P) ,
and It(P) V It(P’) c P. Furthermore, if q ]P V It(P’)[ for j 1,2,3, t
]It’(f,ll)],t2- ]It’(h+l,fs)],t3- ]It’(hk, hr+l)],P {P((li, hi),(fi, hi+l)) i=
1,... ,s- 1}, and P3 {P((li, hi), (fi, hi+))" r+ 1,... ,k- 1}, then the following
hold:

(1) s(P) t + t2 +t, because It’(hk, ll) It’(hk, h+l) U It’(h+l, f) U It’(f, l)
and, by definition, s(P) ]It’(hk, 11)].

(2) q 4- t3 >_ s(P), because P U P3 is an s.b.p, in T. Hence, using (1) it follows
that q >_ t + t.

(3) tl + q3 >- s(P), because P1 t2 P((/, h), (f, h + 1)) t2 P is an s.b.p, in T.
Therefore, q >_ t 4- t.

(4) t + q + t _> s(P), because P1 U P U P3 is an s.b.p, in T. (1) implies that
_>
These relations imply that s(P’) q + q + q3 >- tl + 3t2 + t3 >- s(P) + 2lIt(P

It(P’)[ since t >_ lIt(P)V It(P’)], completing the proof. [3
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The above results allow us to give the following algorithm to construct maximum
matchings in bipartite graphs.

The basic steps are as follows:

Step O. Start with an s.s.t. T of G.
Step 1. Let s(P) be the size of an s.b.p. P of minimum size in the current tree T.
Find a maximal set of s.b.p. {P,..., Pt} such that
(a) s(Pi)= s(P), for i= 1,...,t, and
(b) the Pi are disjoint. If no such set exists, stop. Every matching induced by T is a

maximum matching of G. Otherwise, go to Step 2.
Step 2. Obtain T T,P,P2,... *Pt. Set T- T, and go to Step 1.

We now, consider the complexity of the algorithm. Recall that G (M, N, E)
with IMI _> INI.

In the implementation, a standard adjacency list is used to represent the bipartite
graph, and each tree is represented by some known data structure (e.g., the "three
label" given in [9]).

Step 0 requires an amount of work of 0(IM + INI). The above results imply (due
to an argument similar to that of Hopcroft and Karp) that Step 1 (and thus Step 2)
is performed at most 0(v/NI) times. Thus, since Step 2 can be done in 0(IM + INI)
work (the noted data structure for trees allows subsets of nodes to be obtained in
work linear in their cardinalities), the complexity of the whole algorithm depends on
the work required to perform Step 1. However, by following the method by which
Hopcroft and Karp solve the corresponding step of their algorithm, we can also obtain
a maximal set of node-disjoint paths in a particular graph ( (,/) associated with
G and use such a maximal set of paths to determine the maximal set of s.b.p.

Let No C(T),M {i M" is a successor ofj in T,j e N0},N1 {j N"
(i, j) E, M1, j N- No}, and E1 {(i, j)" M1, j N1}. (Note that every
column node in N is of degree 2 in T.)

Suppose that for t 1,... ,k the sets Mt, Nt, and Et have been obtained. Then
Mk+l,Nk+l, and Ek+l are defined by Mk+ {i is the successor of j in T,j
Nk},Nk+l {j (i,j) E,i Mk+l,j N-Nk}, where Nk t2{Nt t
0, 1,...,k}, and Ek+ {(i,j)" Mk+,j Nk+l}.

If k* denotes the least value of the index k for which Nk Q(T) , then
{Mt Nt "t 1,...,k*} and/ t2{Et’t 1,...,k*}.
The graph ( (,/), thus defined, can be considered as a layered (directed

and acyclic) graph, since c t2{Mt Nt "t 1,... ,k*} and each node has either
in-degree or out-degree equal to 1.

The construction of G takes 0(IEI) time because each edge in G is processed at
most once to become an arc in (. Furthermore, this construction implies that the
strong block pivots of minimum size in T are in one-to-one correspondence with the
paths of G that begin at nodes in M1 and end at nodes in Nk. Q(T). Moreover,
since a maximal set of node-disjoint paths in G can be obtained with an amount of
work of 0(IEI) (by applying algorithm B given in [8]), we conclude that Step 1 of the
above algorithm can be executed in at most 0(IEI) work, which implies the following
result.

THEOREM 9. The algorithm requires O(IX/VIIEI) work to find a maximum match-
ing in a bipartite graph with IYl nodes and IEI edges.

Even though the above results are similar to those of Hopcroft and Karp, the
approach based on s.s.t.’s is different from the one based on augmenting paths because
the progress of the present algorithm (from one iteration to the next) does not use
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(a) (b)

FIG. 1.

any matching of G associated with the current s.s.t., and therefore it does not use
(explicitly) augmenting paths. In fact, the main object of this approach is to maintain
the structure of the s.s.t. However, since s.s.t.’s do induce some matchings, the above
results allow us to show the relation between the concept of s.s.t.’s and augmenting
paths.

We end this work with an example to illustrate that the two approaches are
different.

Figure l(a) shows a bipartite graph G with a matching Z (defined by the heavy
edges), and Fig. l(b) shows

Figures 2(a) and 2(b) illustrate the auxiliary graphs obtained during Step 1 of
the Hopcroft-Karp algorithm and our algorithm, respectively.

The paths it’ { (1, 1) } and it" { (5, 5) } define a maximal set of node-disjoint
paths of the graph G given in Fig. 2(b), and determine a maximal set of trivial
node-disjoint s.b.p.’s {P’,P"} associated with the s.s.t. T of the Fig. l(b), where
P’- {P((1, 2), (1, 1))} and P"= {P((5,6), (5,5))}. Figure 3 illustrates the resulting
s.s.t. T’ T.P’.P" after pivoting in T((1, 1) and (5, 5) are the entering edges, and
the even edges (1, 2) and (5, 6) in T are the leaving ones).

Note that Q(T) , and therefore T’ is closed (the matching induced by T’ is
a maximum matching of the graph G given in Fig. l(a)). Furthermore, since T’
(T-{(1, 2), (5, 6)})LJ {(1, 1), (5,5)}, the new tree T’ differs from T only in the leaving
and entering edges. In the general case, if {P1,. Pt } is the set of s.b.p.’s determined
in Step 1 of the algorithm, then the resulting tree T T. P1 *’" * Pt will have
lit(P1)l +... + lit(Pt)l new edges because the edges in it(Pi) that were odd (even) in
T become even (odd) in

The difference shown by this example is due to the following reason. In the
augmenting path approach, the free (row and column) nodes are fixed by the current
matching, whereas in the s.s.t, approach (using the matching jargon), column nodes
in Q(T) are free and any successor of column nodes in C(T) can be considered as
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(a)

(b)

FIG. 2.

FIG. 3.

free node (but no one of them is fixed to be free) because of the structure of the strong
spanning trees.

Acknowledgments. The authors would like to thank the referees for their sug-
gestions for improving the presentation of this paper.
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BOUNDS FOR BINARY CODES THAT ARE MULTIPLE
COVERINGS OF THE FARTHEST-OFF POINTS *

HEIKKI O. HMJLJINEN, IIRO S. HONKALA$, SIMON N. LITSYN,
AND PATRIC R. J. (STERGD

Abstract. A binary code C C_ ] with M codewords is called an (n, M, r, it) multiple covering
of the farthest-off points (MCF) if the Hamming spheres of radius r centered at the codewords cover

the whole space ] and. every x E ] such that d(x, C) r is covered by at least it codewords.
The minimum possible cardinality F(n, r, it) of such a code is studied and tables of upper bounds on

F(n, r, it) for n

_
16, r

_
4, it

_
4 are given.

Key words, binary code, covering radius, multiple covering, football pool problem

AMS subject classifications. 94B75, 05B40

1. Introduction. Denote by F2 {0, 1} the field of two elements. The Ham-
ming distance d(x, y) between two words x, y E ]F is the number of coordinate places
in which x and y differ. The weight wt(x) of x E F is the number of l’s in x. Denote
Br(x) (y e Fld(y,x <_ r}.

We define that a binary code C c_ ]F is an (n, M, r, #) multiple covering of the
farthest-off point (MCF) if C has M codewords, its covering radius, defined by

CR(C) max min d(x, c),
xEF cEC

is at most r, and
whenever d(x, C) r.

Given r, we say that y F is covered by c C if d(y, c) <_ r and that y is covered
by C if y is covered by some c C. According to the previous definition, the covering
radius of an (n, M, r, #) MCF C is at most r and every x for which d(x, C) r is
covered by at least # codewords of C. That is why we call C an MCF, bearing in
mind, however, that since the covering radius of C is at most r, it is actually possible
that there are no points x E ]F whose distance to C is as large as r. We denote the
minimum possible cardinality of an (n,., r, #) MCF by F(n, r, #).

The problem of studying MCFs is closely related to studying multiple coverings.
An (n, M, r, #) multiple covering (MC) is a code C c_ ]F with M codewords such that
every x F is covered by at least # codewords, i.e., IBr(x)NC >_ # for every x
The minimum cardinality of an (n,., r,.u) MC is denoted by K(n, r, ). This problem
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and bounds on K(n, r,#) have been studied, e.g., in a companion paper [9] to this
paper, where a table on K(n, r, #) for n _< 16, r _< 4, # _< 4 and further references can
be found.

MCFs form perhaps the simplest subclass of the weighted coverings (see [4]-[6]),
for which all the weights are not equal. Weighted coverings have been studied in con-
nection with some problems in information theory. Another motivation for studying
these problems arises from the well-known combinatorial (generalized) football pool
problem (see e.g. [11], [10], and [17]). Assume that we have n t + b matches, in t of
which there are three possible outcomes and in b of which there are only two possible
outcomes. We wish to forecast the outcomes of these matches by making M forecasts
such that no matter what the outcomes are, there is at least one forecast in which
there are at most r incorrect outcomes, i.e., that wins at least an (r + 1)st prize. Such
a set of forecasts is simply a code with covering radius at most r. In this context, an
MC is a system of forecasts that guarantees at least # prizes, each of which is at least
the (r + 1)st prize, whereas an MCF gives us a system of forecasts that wins a prize
which is at least the rth prize or at least # times an (r -t- 1)st prize. From a player’s
point of view, studying MCFs is an even more natural problem, because at least for
small values of # the rth prize will be worth at least # times the (r + 1)st prize. In
this paper, we study only the binary case t 0, i.e., in each match the player decides
to exclude one of the outcomes, or, equivalently, we have cup matches without draws.

In the definition of an MCF, we have not allowed the possibility that some word
appears in the code more than once. However, sometimes we can do better if this is

permitted. Suppose C is a collection consisting of M (not necessarily distinct) words
in F., say cl, C2, CM. We say that these M binary words form an (n, M, r,/) MCFR
(MCF with repeated words) if for every x E F we have

d(x, ci) <_ r -1 for somei-l,2,...,M,

or

d(x, ci) r for at least # of the indices 1, 2,..., M.

More formally, C is a multiset, i.e., a function from ]F to the set of natural numbers
N {0, 1,2,...}, and we denote by C(c) the multiplicity of c in C. We denote the
minimum cardinality of an (n,., r, #) MCFR by F(n, r, #). An example of a case where
F(n, r, #) > F(n, r, #) is given in 2.

In this paper we concentrate almost entirely on constructive upper bounds. In
2 we very briefly discuss some lower bounds. In 3 we discuss various different
construction methods, for example, some natural ways of obtaining MCFs from MCs.
In 4 we give a table of upper bounds on F(n, r, #) for n _< 16, r <_ 4, # _< 4.

We illustrate the different problems discussed above by the following simple ex-
ample.

Example 1. Suppose that there are thirteen football matches, the outcomes of
which a player wishes to forecast; the player thinks that he or she knows in advance
nine of the outcomes and can exclude one outcome in each of the remaining four
matches. He or she wishes to find a suitable set of forecasts that--no matter what
the outcomes in the remaining four matches are--ensures a forecast in which there
is at most one incorrect result of a game. Then he or she can use the following four
forecasts (after choosing a suitable notation for the outcomes)"

0000, 0111, 1000, 1111.
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If the player uses each of these four forecasts twice, then he or she is guaranteed to
obtain at least two forecasts each with at most one incorrect entry. The same can be
achieved even with seven forecasts instead of eight, namely

0001, 0010, 0011, 1100, 1100, 0111, 1011,

(see [3]). However, by using only the following six forecasts,

1111, 1111, 1000, 0100, 0010, 0001,

the player will always get at least one entirely correct forecast or at least two forecasts
with one incorrect entry, as can easily be checked.

This shows that F(4, 1,2) < 6. As will be shown later, F(4, 1,2) 6, but
F(4, 1, 2) 7.

2. Lower bounds. According to the sphere covering lower bound for MCFs and
MCFRs we have

(1) F(n’r’#)>(n’r’#)>2n(( 0 + (n)l +...+ (n)r_l +-1 (n))r
(see [19]). An MCF which attains (1) with equality is called perfect.

In the following theorem we give a simple but nontrivial example of a case in
which F(n, r, #) > F(n, r, #).

THEOREM 1. F(4, 1, 2) 7 > F(4, 1, 2) 6.
Proof. By the sphere covering bound we have F(4, 1,2) > 6, and it is easy to

check that the six words 1111, 1111, 1000, 0100, 0010, 0001 (see also Example 1 in 1)
form a (4, 6, 1, 2) MCFR. Hence F(4, 1, 2)= 6.

It is equally easy to check that the seven words 1111, 1100, 0011, 1000, 0100, 0010,
0001 form a (4, 7, 1, 2) MCF. It therefore remains to show that F(4, 1, 2) > 7. Assume
on the contrary that there is a (4, 6, 1, 2) MCF. In average the spheres Bl(x) have
6.5/16 < 2 codewords of C, hence for some x e F24, we have IBl(x)CI C

_
1. Then

necessarily x itself is a codeword. W.l.o.g. x 0000 and there are no codewords of
weight 1. Because of the words of weight 1, the number of codewords of weight 2 is at
least 2, i.e., A2 _> 2. On the other hand, since there are only six codewords, there is a
word of weight 2--say 1100--that is not a codeword. But then both the words 1110
and 1101 have to be codewords and A2 _< 3. If 0011 C then also 1011, 0111 C,
and A2 _< 1, a contradiction. Hence 0011 C. By symmetry, we can assume that
1010 C, but then 1011 C. But this forces A2 2, and the codewords of weight
2 should cover all the words of weight 1 once, and therefore the other codeword of
weight 2 should be 1100, a contradiction.

3. Constructions.

3.1. Adding a parity check bit. If we have a binary code of length n and
covering radius R, adding a parity check bit to all the codewords increases both the
length and the covering radius by 1, which is disappointing in the sense that simply
adding one more identically 0 coordinate would do the same. However, adding a parity
check bit does have its advantages, as is shown in the following theorem. We denote
the sum (mod 2) of the coordinates of a word x e F by p(x).

THEOREM 2. Suppose C is an (n,M,r,#) MC. Then the extended code C
{(c,p(c)) e F+ilc e C} is an (n + 1, M,r + 1, [#(n + 1)/(r + 1)]) MCF.
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Proof. It is clearly sufficient to show that every point (x,x’) E F+l,x
x’ F2 that has distance r + 1 to C is covered by at least #(n + 1)/(r + 1) codewords.
Clearly, d(x, C) r. Because (x,x’) has distance r + 1 to C, the word (x,x’) has
to disagree in the last coordinate with every (c, p(c)) C for which d(x, c) r, and
therefore x’= p(x) + l(mod2) if r is even and x’= p(x) if r is odd. If d(x, c) r + 1
or r, then IBr(c) N Bl(x)l r + 1, and because C covers # times all the points
in Bl(x), we have IBr+(x)N C >_ #(n + 1)/(r + 1). We show that the codewords
(c,p(c)), where c B+(x)NC, will do, i.e., each of them is within distance r+ 1 from
(x, x’). This is immediate if d(c, x) r. If d(c, x) r + 1, then p(c) p(x) + 1 x’
when r is even and p(c) p(x) x’ when r is odd, proving our claim.

COROLLARY 3. If C i8 a perfect (n, M, r, 1) MC, then the extended code is a
perfect (n + 1, M, r + 1, (n + 1)/(r + 1)) MCF.

Proof. By Theorem 2, the extended code C is an (n + 1, M, r + 1, (n + 1)/(r + 1))
MCF. Furthermore,

M((n+l)O + (n+l)l +...+ (n+l)r +n+lr+l (n+l))r+l

=2"M(( n)O (n)l+ +... + 2.2n 2n+l.
r

Example 2. The extended Hamming code is a linear perfect (2k, 22-l-k, 2, 2k-l)
MCF.

3.2. Puncturing. As we know from the context of covering codes, puncturing
a covering code is often useful.

THEOREM 4. Suppose C is an (n, M, r, #) MCF. Then the M words c’ c(2)c(3)
c(n), where c c(1)c(2).., c(n) e C, form an (n 1, M, r, 2#) MCFR C’. If no

two words of C differ only in the first coordinate, then C is an MCF.

Proof (cf. [14], proof of Lem. 2). If the Hamming distance from a word x(2)x(3)
...x(n) to all the words c(2)c(3)...c(n)is at least r, then d(0x(2)...x(n), C)

0r, d(lx(2)...x(n), C) r, and there are at least # different codewords c e C
such that d(c, 0x(2)...x(n)) r and at least # different words ci e C such that

0 begin with 0,d(c, lx(2).., x(n)) r. Since d(0x(2).., x(n), C) r, all the words c
all begin with 1, and consequently we have altogether 2#and similarly the words c

different words. Puncturing these words, we see that our claim holds.

Example 3. The (11,192, 1, 1) MC defined in [7] has the property that no two
codewords differ only in the first coordinate. Hence, F(10, 1, 2) _< 192.

3.3. Piecewise constant codes. We can also construct MCFs by using the
piecewise constant code construction of [7]. By definition a piecewise constant code of
length n nl + n2 +... + ni consists of all the words (c, c2,..., ci), where cj F
such that (wt(cl),..., wt(ci)) e W, where W is a given subset of Zi.

Example 4. It is easy to verify that the words of weight 0, 2, 5, and 7 in F7 form
a (7, 44, 1, 3) MCF.

Example 5. Choose n 3 and n2 2k- 1 and take as codewords all the words
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(Cl, C2), for which (wt(cl), wt(c2)) is one of the following pairs:

0 0
2 0
1 2k- 1"
3 2k- 1

Then it is easy to check that we obtain a (2k+2, 8, k, 4) MCF. Hence F(2k+2, k, 4) _< 8
for all k > 1.

Example 6. Choose n 4 and n2 2k- 1 and take as codewords all the words

(o, c2) such that (wt(ci), wt(c2)) is one of the following four pairs:

1 0
4 0
0 2k- 1"
3 2k- 1

Again, it is easy to check that we obtain a (2k + 3, 10, k, 2) MCF and that therefore

F(2k + 3, k, 2) _< 10 for all k >_ 1.
Example 7. Finally, choose nl 4 and n2 2k- 3, where k >_ 2: and take the

words (cl, c2) for which (wt(cl),, wt(c2)) is one of the following pairs:

1 0
0 2k- 3.
4 2k- 3

It is easy to verify that these six words form a (2k + 1, 6, k, 4) MCF and hence F(2k 4-
1, k, 4) < 6 for all k _> 2. When k 1, we clearly have F(3, 1,4) < 23 8. On the
other hand, if C is a (3, 7, 1, 4) MCF and x is the only word in F32 \ C then d(x, C) 1,
but [BI(x)f)C[ _< IBI(x)I- 1 3. Consequently F(3, 1, 4) 8. This gives another
example of a case where the value of the function/ is smaller. Indeed/(3, 1, 4) 6
because the six words 000,000,110,101,011,111 form a (3, 6, 1, 4) MCFR.

The idea of piecewise constant codes applies equally well to MCFRs as shown in

the following examples.
Example 8. If we take the words of weight 3 in F27, each word of weight 6 twice,

and the word of weight 0 four times, we obtain a (7, 53, 1, 4) MCFR.
Example 9. If we take the words of weight 3 in F and the all-0 and all-1 words

each four times, we clearly obtain a (6, 28, 1, 4) MCFR.
Example 10. If we take the words of weight 3 and 5 in F25 and the all-0 word three

times, we obtain a (5, 14, 1, 3) MCFR.
Example 11. If we take all the words in F92 of weight 3 and 6 and the all-0 and

all-1 words four times each, we obtain a (9, 176, 1, 4) MCFR. If we instead take all the
words of weight 1, 3, 6, and 8 in F29 we get a (9,186, 1, 4) MCF instead.

3.4. A matrix construction. The matrix construction of [11], [1], [13], [2] (see
also, e.g., [15]) can easily be modified to the case of MCFs and MCFRs. Let A
(I; D) (a(1);... ;a(N)) be an n N binary matrix and I the identity matrix and
suppose s(1),..., s(t) are not necessarily distinct words in IF represented as column
vectors.

THEOREM 5. If every x F’ can be represented as a sum of exactly one s(J) and
at most r- 1 of the columns a(i), or in at least # different ways as a sum of exactly
one s(Y) and r of the columns a(i), then the words in the sets

Cy {y e FN ]Ay s(Y) }, j 1, 2,..., t
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together form an (N, t2N-n, r, #) MCFR C. If all the words s(J) are different, then C
is an MCF.

Proof. Let z E F2N. Then x Az can be represented as a sum

X a(il) -- 2t- a(ik) + s(J)

for some k _< r and some indices il < < ik, j, and therefore the word z obtained by
adding I to the coordinates il,. ik of z belongs to Cj. Furthermore, we know that (a)
we can find a representation in which k < r in which case d(z, C) <_ d(z, z) k < r,
or (b) we can find at least # representations in which k r, proving that C is an

(N, t2N-n, r, #) MCFR.
This construction turns out to be quite useful. Simulated annealing (see, e.g.,

[18]), with some suitable modifications, can be used in searching for a suitable matrix
A and for the words s(J).

In Table 1 we list all the codes found using this method that are referred to
in Table 3. In Table 1 we first give N, M, r, tt, and n and then list in hexadecimal
(0 0000, 1 0001,... ,F 1111) the columns s(J) and finally the N- n columns
of D. As an example, consider the (16,192,3i 1) code. The six columns s(J) and the
columns of matrix A are

0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 1 1 and 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0,
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

respectively.

3.5. Perfect MCFs with r 1. We have the following proposition.

THEOREM 6 [5]. A perfect (n,., 1, tt) MCF exists if n #(2 1) for some i.
These MCFs were constructed in the following way. Denote by V (respectively,

V1) the set of all binary words of length # that have even (respectively, odd) weight
and by T/the Hamming code of length 2 1 and let

c=(c(1)

Vc(1) ( Vc(2) (... () Vc(2i-1).

It is easy to check that this is a perfect (n,., 1, #) MCF.
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N M r / n

TABLE 1
List of MCFs found using the matrix method.

Columns s(J)/columns of D
24 1 3 5 0,3,4, B,D,E, 11, 16, 17, 18, 1A, 1D/1F
58 1 4 6 1, 3, 4, 9, A, C,F, 11, 12, 16, 17, 18, 1B, 1D, 1E, 20, 22, 25, 26,2B, 2C,

2F, 33, 34, 35, 38, 39, 3A, 3F/3F
80 1 3 4 0,3,6, C,D/8,9,9,7
104 1 4 6 1,4,6,9, A,F, 11, 12, 17, 18, 1B, 1C, 1D, 20, 23, 25, 27, 29, 2A,

2C, 31, 32, 34, 39, 3E, 3F/20, 1F
106 1 2 8 5, B,C, 13, 16, 19, 1A, 20,27,2E, 30,3B, 3D, 42,45,4C, 50,5B,

5F, 67, 69, 6E, 71, 72, 74, 78, 81, 86, 88, 92, 94, 9F, A3, AA, AD, B5, B6,
B9, BC, C1, C8, CF, D6, D7, DB, DD, DE, E3, E4, EA, F0, FD, FF/FF
0, 2, 5, B, F, 2C, 32, 35, 37, 39, 3A, 3C, 4C, 53, 54, 58, 5D, 5E, 60,
62, 65, 6B, 6F, 8C, 90, 91, 96, 9B, 9C, 9F, A1, A6, A7, A9, AA, C1, C6,
C7, C9, CA, EC, F3, F4, F8, FD, FE/E0, DO, AF

8 0, 6, 7, B, C, 11, 14, 1A, 1D, 23, 25, 26, 28, 2F, 30, 33, 37, 39, 3E,
41, 44, 4A, 4D, 52, 57, 58, 5B, 5E, 62, 67, 69, 6C, 6F, 71, 74, 7A, 7D, 82,
84, 85, 89, 8E, 93, 96, 98, 9F, A1, A4, A7, AA, AD, B1, B2, B5, BB,
BC, C3, C6, C8, CF, DO, D5, D9, DA, DC, E0, E5, EB, ED, EE,
F3, F6, FS, FF/80, 70, F

8 3, 6, D, 10, 14, 16, 1B, 1C, 22, 25, 28, 29, 2E, 31, 36, 3F, 41, 48, 4F,
52, 55, 58, 5E, 60, 67, 6B, 6C, 73, 78, 7D, 81, 88, 8F, 94, 96, 97,
9A, 9B, A2, A4, A9, AA, AE, B3, B8, BD, C3, C6, CD, DO, D5, D9, DA,
DC, E4, E7, E8, EA, F1, F6, FF/E0, DO, CC, B3

9 0, 9, E, 14, 1A, 1D, 27, 28, 3C, 42, 4B, 4C, 56, 58, 5F, 6A, 71, 7E,
83, 91, 92, 97, 9B, A4, AD, B2, B3, BA, BB, C5, D3, E0, E6, E9, EF, F4,
FD, 105, 113, 122, 12B, 130, 136, 139, 13F, 141, 144, 147, 14D, 155, 164,
165, 16C, 16D, 172, 17B, 186, 188, 18A, 18C, 18F, 198, 19C, 19E, 1A1,
1AE, 1B5, 1C8, 1CA, 1CE, 1D0, 1D9, 1DA, 1DC, 1DE, 1E3, 1F7, 1F8/100,
80, 180, 1FF

8 2, 4, D, 11, 16, 1A, 1C, 21, 27, 28, 2E, 34, 37, 3B, 40, 47, 49, 4A, 53, 54, 5F,
62, 64, 6D, 72, 79, 7E, 82, 84, 8F, 92, 99, 9C, A1, A6, A8, AB, B0, B5, BF,
CO, C5, CB, CE, D3, D5, D6, D8, E3, E6, EC, F0, FA, FD/C0, A0, 50, 3C,
F3

8 1, 2, F, 13, 1C, 1E, 25, 29, 2E, 30, 35, 3A, 41, 46, 4A, 55, 5A, 5F, 60, 6D, 6E,
71, 73, 7C, 84, 8B, 8C, 90, 97, 99, A2, A7, A8, B6, BB, BD, C7, C8, CD, D2,
D4, D9, E3, E4, EB, F6, F8, FF/80, CO, 38, 76, 75, EB

8 1, 3, 6, F, 13, 14, 1D, 1E, 20, 21, 24, 2A, 35, 36, 38, 3B, 40, 47, 49, 53, 5A,
5C, 63, 66, 6C, 74, 79, 7F, 85, 89, 8A, 92, 97, 98, A2, AC, AF, B1, B6, BD,
C4, C7, CB, CD, DO, D1, D5, DE, E2, E5, E8, EE, F0, F2, F7, FB/E0, DC,
BA, 16, 6E, B5, 73, C7

26 2 2 8 0, 1D, 3A, 4B, 61,76,86, AB, B1, D3, D8, E7, EC/FF
56 2 3 7 0,5,3B, 3E, 5B, 60, 65/39, 75, 53
96 2 3 6 0, 16, 1E/2E, 3D, 3B, 37, F
112 2 4 9 1B, 62, 64, 68, 6D, 75, 76, 81, 84, 87, 8E, 90, 9C, FB, 104, 109, 10A, 112,

117, llD, 17B, 19B, 1E3, 1E4, 1EF, 1F1, 1F8, 1FE/1C0, 1A0
160 2 3 7 2, 1C, 1F, 21, 3E/70, 68, 64, 5C, 3F
224 2 2 10 31, 3A, 3D, 4A, 84, 87, 8A, FA, 135, 13B, 142, 145, 185, 18E, 1F5, 1F8,

236, 240, 24F, 289, 2F3, 2FC, 330, 349, 34C, 383, 3F6, 3FF/300, E0, DO
368 2 4 9 E, 3C, 60, 68, 7B, 7C, 85, 88, A2, D6, D8, ED, 103, 131, 144, 153, 15F, 19D,

1B6, 1BA, 1C7, 1E7, 1E9/1F0, 1CC, 1AA, 156
384 2 2 10 4, 6, 38, 49, 63, 7D, 18A, 19D, 1AF, 1D7, 1E0, 1E4, 29B, 2A9, 2B5, 2D0,

2D2, 2EE, 301,332, 336, 34F, 35C, 37B/380, 70; 36C, 363
640 2 4 9 21, 2E, 54, 5B, 87, 88, B2, BD, E4, EB, 117, 118, 142, 14D, 177, 178, 1A4,

lAB, 1D1, 1DE/100, 80, 40, 20, 10
896 2 3 10 C, 21, 5A, B4, D4, EB, F3, FC, 10B, 113, 134, 154, 18C, 1BA, 1C1, 1F4,

23F, 247, 274, 282, 299, 32C, 34C, 362, 379, .394, 3A7, 3DF/200, 3E0, 19C,
35A, 339

1344 2 2 10 C, 65, 7F, 8F, B1, CF, F1, 158, 16A, 1C1, 1D7, 226, 23C, 2B2, 2CC, 2F0,

11 368 1 2 8

11 592 4

12 976 1 3

13 1248 1 2

13 1728 1 3

14 3072 1 3

16 14336 1 4

9
10
11
11

12
13

13

14

14

15

16
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N M r /t n

TABLE 1
Continued

Columns s(J)/columns of D

15
16
16
14
16

192
192
448
40
96

2F2, 31B, 329, 382, 394/3C0, 338, 2B4, 6C, 1DC, 23C
3 3 10 A9, 16E, 271, 3B2, 3B4, 3B7/380, 340, 38, 2F7, 2EF
3 11 EC, 31A, 515, 541, 6A6, 6EF/700, 680, 5C0, 660, 1F
3 4 10 5A, 197, 1CD, 2C0, 2EA, 2FA, 375/380, 370, 2E8, 1E6, 2D5, 1E3
4 3 12 0, 1FB, 2EC, 71A, 783, 935, ABB, CD6, E3A, F4D/B62, 49D
4 2 11 0, 4DE, 5FC/79A, 4DE, 671, 15D, 66B

TABLE 2
List of linear MCFs found using the matrix method.
N M r Generator matrix
10 32 2 2 0101110000

0011101000
1111000100
1001100010
1110100001

13 256 2 3 1101011010000
1010111001000
1101100100100
0001111100010
0110101100001

15 1024 2 4 011111000010000
101110100001000
110110010000100
111010001000010
111100000100001

16 256 3 2 1111010010000000
0100010101000000
1010101000100000
1100110000010000
0111111000001000
0101001100000100
0001011100000010
1100011000000001

3.6. Other codes. For the very smallest values of n, we can determine the exact
values of F(n, r, #).

THEOREM 7. If

_
2 then

1
F(n, r, #) 2

4

if l < n < r,
if r < n < 2r or if n-- 2r and#=2,
if n- 2r and # > 3.

Proof. The first two cases are simple, and their proofs are omitted. If n 2r, then
F(2r, r, #) _< K(2r, r 1, 1) 4 by [7]. It suffices to show that F(2r, r, #) _> 4 when
# >_ 3. Assume on the contrary that there is a (2r, 3, r, #) code C consisting of three
words 02r, c, and c t. Consider the coordinates in pairs (1, 2), (3, 4),..., (2r 1, 2r).
Choose x x(1)x(2)...x(n- 1)x(n) so that x(1)x(2) is a pair not appearing in
coordinates 1 and 2 of the codewords of C, x(3)x(4) a pair not appearing in coordinates
3 and 4, and so on. Then d(x, C) r. If, e.g., coordinate 1 of C is identically 0, then
either 0 or 1--say 0--appears at most once in coordinate 2. Then, choosing x(1) 1
and x(2) 0, we see that x has distance r to at most one word of C. Hence we
may conclude that no coordinate is identically 0 in C. If all three pairs appearing
in coordinates 1 and 2 of C are different, then clearly x has distance at most r to
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at most two of the codewords of C. We can therefore assume that the only pairs
appearing in C in coordinates 1 and 2 are 00 and 11. Neither nor c’ is the all-
0 word and both of them are not the all-1 word, and we can w.l.o.g, assume that
c(1) c(2) 1, c(3) c(4) 0, and c’(3) c’(4) 1. When we now choose
x(3) x(4) 1, x(1) x(2) 1 + c’(1) 1 + c’(2), and x(5),... ,x(n) as before, we
see again that x can have Hamming distance r to at most two of the words in C.

Remark. Clearly, F(2r, r, 3) 3, as can be seen by taking the all-0 word twice
and the all-1 word once.

Finally, we mention some examples and present some lengthening methods.
Example 12. Take as codewords all the cyclic shifts of the word 11101001000,

00000000000 and their complements to obtain a (11, 24, 3, 3) MCF.
In many cases the amalgamated direct sum (ADS) (see [8]) of an (n, M, r, #) MCF

and the code (000, 111 gives us an (n + 2, M,r + 1,#) MCF. We have checked all
these cases separately, and the upper bounds obtained in this way have been marked
with g in Table 3.

THEOREM 8. F(2n, 1, 2#) <_ 2nF(n, 1, #).
Proof Let C be an (n,F(n,l,#),l,#) MCF and D {(x,x +c)lx e F,c e C}.

If (s, s+/) E F2n2, where s E F has distance 1 to D, then we can choose c
different ways so that d((s, s -+-/), (s, s + c)) 1. All the words -t- c have weight 1,
and we find another # codewords (s+(/+c), s +/) (s+(+c),s+(-{-c)+c) n
that have distance 1 to (s, s + ).

THEOREM 9. F(2n + #, 1,#) _< 2n+-lF(n, 1,it).
Proof. Let C be an (n,F(n, l, #), l, #) MCF and D {(xo, x,x+c)lxo

F, c E C, wt(x0x) is even}. Let (s0, s, s + ) F+2n, where s0 F, s,/ F, be
arbitrary.

Assume first that d(, C) 1 and d(, c) 1 where c C. The words and c

disagree in exactly one--say the ith--coordinate. If wt(s0s) is even, then (s0,
c) E D and d((s0, s, s + c), (s0, s, s + )) 1; otherwise (s0, s’, s + c) n and
d((s0, s’, s’ + c), (s0, s, s +/)) 1 where s’ is the word obtained by changing the ith
coordinate in s. The same argument applies to all the # different words c C such
that d(, c) 1 and gives us # different words of D.

Assume that / C. If wt(s0s) is even, then (s0, s,s--/) D. Finally, if
wt(s0s) is odd, then (s, s, ) E D for all i- 1, 2,..., #, where s denotes the word
obtained by changing the ith coordinate in s0.

Example 13. It can be verified that a code {(x,x +y)lx, y F27, wt(x) 0,2,5 or

7, and wt(y) 0 or 7} is a (14, 88, 3, 2) MCF.

4. Tables. In Tables 3.1-3.4 we give upper bounds for F(n, r, #). In a number of
cases better upper bounds are known for F(n, r, it). For the following upper bounds,
see 3.3:

F(3,1,4)_<6, F(7,1,4)_<53, F(6,1,4)_<28,

F(5, 1, 3) <_ 14, /(9, I, 4)<_ 176.

The proofs of the following bounds are omitted:

/(8, 1, 2) <_ 58, /(11, 1, 2) _< 352, /(11, 1, 3) _< 508,

F(8, 1, 4) _< 96,

See also the remark after Theorem 7.

F(14, 3, 3) _< 106.
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Key to Tables 3.1.-3.4. The upper bounds for # 1 are from [9], [16], and [171.
a: F(n + 1, r, #) < 2F(n, r, #),
b: puncturing (see 3.2),
g: ADS of a code with {000, 111} (see 3.6),
l: linear code (see Table 2),
m: matrix construction (see Table 1 and 3.4),
p: Theorem 2,
r: Theorem 8,
s: piecewise constant code (see 3.3),
t: F(n, r, #) <_ F(n, r, # + 1),
v: Theorem 1,
w: Theorem 9,

y: perfect weighted covering (see 3.5 and [5]),
z: see 3.6.

TABLE 3.1
Upper bounds for F(n, 1, it).

n it 1 2 3 4
1 1 2z 2z 2z
2 2 2z 4z 4z
3 2 4t 4y 8a
4 4 7v 8t 8s
5 7 10 s 16 16 a

6 12 16 y 24 m 32 a

7 16 32 a 44 s 58m
8 32 62 b 80m 104m
9 62 106m 128 y 186 s

10 120 192 b 256 a 320 r
11 192 368m 512 a 592m
12 380 640 w 976m 1024 y
13 736 1248m 1728m 2048 a

14 1408 2048 y 3072m 4096 a

15 2048 4096 a 6144 a 8192 a

16 4096 8192 a 12288 a 14336m

TABLE 3.2
Upper bounds for F(n, 2, It).

2 1 2z 2z 2z
3 2 2z 2z 2z
4 2 2z 4z 4z
5 2 4t 4p 6s
6 4 7t 7p 8s
7 7 10 s 12 12 p
8 12 16 16 16 p
9 16 26 m 32 a 32 a

10 30 32 56 m 62 p
11 44 64 a 96 m 112 m
12 78 128 a 160 m 192 p
13 128 224 m 256 368 m
14 256 384 m 512 a 640 m
15 480 768 a 896 m 1024
16 896 1344 m 1792 a 2048 a

n It 1 2 3 4
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TABLE 3.3
Upper bounds for F(n, 3, re).

n tt 1 2 3 4
3 1 2z 2z 2z
4 2 2z 2z 2z
5 2 2z 2z 2z
6 2 2z 4z 4z
7 2 4t 4p 6s
8 4 7t 7p 8s
9 7 10 s 12 12 g
10 12 16 16 16 g
11 16 24 24 z 30 p
12 28 32 g 44 44 p
13 42 64 a 78 78 p
14 64 88 z 128 128 p
15 112 160 x 192 m 256 a

16 192 m 256 384 a 448 m

TABLE 3.4
Upper bounds for F(n, 4,

n # 1 2 3 4
4 1 2z 2z 2z
5 2 2z 2z 2z
6 2 2z 2z 2z
7 2 2z 2z 2z
8 2 2z 4z 4z
9 2 4t 4p 6s
10 4 7t 7p 8s
11 7 10 s 12 12 g
12 12 16 16 16 g
13 16 24 24 g 28 p
14 28 32 g 40 m 42 p
15 40 64 64 64 p
16 64 96 m 112 112 p
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THE EXISTENCE OF HOMOMORPHISMS
TO ORIENTED CYCLES *

PAVOL HELL AND XUDING ZHU

Abstract. We discuss the existence of homomorphisms of arbitrary digraphs to a fixed oriented
cycle C. Our main result asserts that if the cycle C is unbalanced then a digraph G is homomorphic
to. C if and only if (1) every oriented path homomorphic to G is also homomorphic to C, and (2) the
length of every cycle of G is a multiple of the length of C. This answers a conjecture from an earlier
paper with H. Zhou and generalizes a result proved there. We also show that this characterization
does not hold for balanced cycles. We relate these results to work on the complexity of homomorphism
problems.

Key words, graph homomorphisms, oriented cycles, homomorphism duality

AMS subject classifications. 05C99, 05C20, 05C38

1. Introduction. All the digraphs discussed in this paper are finite unless oth-
erwise specified. A homomorphism G -- H of a digraph G to a digraph H is a
mapping of the vertex sets f V(G) - V(H) which preserves the edges, i.e., such
that xy E E(G) implies f(x)f(y) E(H). If such a homomorphism exists, we say
G is homomorphic to H and write G - H. Otherwise we write G H. Note that
these notions can also be applied to undirected graphs by viewing them as symmetric
digraphs. If Kn denotes the undirected complete graph on n vertices, then for an
arbitrary undirected graph G, a homomorphism G - Kn is just an n-colouring of G.
Because of this fact, it is also common to call a homomorphism G -- H (of general
digraphs) an H-colouring of G.

Suppose go V(G) is a fixed vertex of G, called the root of G, and ho V(H) is
the root of H. A rooted homomorphism of G to H is a homomorphism h G - H such
that h(go) ho. In this case we write (G, go) - (H, h0) and say h is a homomorphism
of (G, go) to (H, h0). We observe that the composition of rooted homomorphisms
(G, g0) - (H, h0) and (H, h0) - (J, j0) is a rooted homomorphism (G, g0) - (J, j0).

An oriented path P is a sequence of distinct vertices [p0, pl,..., Phi, such that, for
each {0, 1,..., n- 1}, either pipi+l E(P) (a forwardedge of P) or pi+ipi E(P)
(a backward edge of P), and P has no other edges. The direction in which P is traversed
is emphasized by saying that p0 is the initial vertex i(P) of P, and Pn is the terminal
vertex t(P) of P, respectively.

An oriented cycle C is a digraph obtained from an oriented path P by identifying
its initial and terminal vertices. Thus an oriented cycle C can be given by a circular
sequence of vertices [co, c1,..., c,_1, co], such that, for each E {0, 1,..., m 1},
either cici+l E(C) (& forward edge of C) or ci+ci E(C) (a backward edge of C),
and C has no other edges. (Subscript addition is taken modulo m.) The direction
of C which agrees with the forward edges, i.e., co, Cl, c2,..., is the positive direction
of C, and the opposite direction, i.e., co, Cm-1, Cm--2,..., is the negative direction of
C. We also use the term path (respectively, cycle) to mean an oriented path (respec-
tively, an oriented cycle). Since we do not distinguish an initial vertex of an oriented

* Received by the editors November 4, 1992; accepted for publication (in revised form) April
28, 1994.

Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
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cycle, [co, el,..., Cm-1, c0] [Cl, c2,..., Cm-1, co, eli, and we usually choose the most
convenient vertex to start listing C.

A directed cycle (respectively, a directed path) is a cycle (respectively, path) in
which all edges are in the same direction; if they are all forward edges we speak of a
forward directed cycle (respectively, path); if they are all backward edges we speak of
a backward directed cycle (respectively, path).

Suppose G is a digraph. A path (respectively, a cycle) in G is a subgraph of G
which is an oriented path (respectively, an oriented cycle). A digraph G is connected
if any two vertices are joined by some path.

The length l(X) of an oriented path or an oriented cycle X is the number of
forward edges of X minus the number of backward edges of X. Note that the length
can be negative. An oriented cycle C is unbalanced if l(C) 0; otherwise C is balanced.
A digraph G is balanced if each cycle of G is balanced. For an oriented path P
[p0, pl,..., P.n] and two vertices p, pj E P, we define the distance dp(pi, pj) from p to
pj as the length of the subpath of P connecting pi to pj. The level of a vertex pi of
P is defined as AP(pi) dp(po, pi). An oriented path P is minimal if P contains no
proper subpath P’ such that l(P) l(P’).

Let H be a fixed graph or digraph. The H-colouring problem, or the homomor-
phism problem with respect to the target H denoted by H-col, is the decision problem
in which the instance is a graph or digraph G and the question is whether or not
G --. H. The H-colouring problem h, from the algorithmic point of view, received
much recent attraction [1]-[4], [8], [9], [14], [22], [30].

For undirected graphs, it was shown in [14] that H-col is polynomial for H bi-
partite and NP-complete for all other H. No such clear distinction is known for di-
graphs. We do know many cases of NP-complete problems and many nontrivial cases
of polynomial problems, [1]-[4], [8], [9], [22], [30]. One easy case is the existence of a
homomorphism to a directed path. In fact, we have the following result; cf. [5], [10],

THEOREM 1.1. Let P be a directed path of length k. A digraph G is homomorphic
to P if and only if every oriented path homomorphic to G has length at most k.

Theorem 1.1 asserts that paths of length greater than k are the only possible
obstructions to a homomorphism to P. It is not hard to speci a polynomial algorithm
for testing the condition by a breadth first labeling of G; cf. [10].

A polynomial algorithm for the existence of a homomorphism to any oriented
path was given in [9]. It did not depend on a theorem specifying the obstructions to
homomorphisms, but such a theorem was later given in [18].

THEOREM 1.2. Let P be an oriented path. A digraph G is homomorphic to P if
and only if every oriented path homomorphic to G is also homomorphic to P.

This theorem generalizes Theorem 1.1 and can also be shown to imply a polyno-
mial algorithm for P-col; cf. [16].

The existence of homomorphisms to oriented cycles appears to be a harder prob-
lem. In particular, there exist oriented cycles C for which C-col is NP-complete; cf.
[8, 4]. It is still the case that for directed cycles there is a simple characterization in
terms of obstructions, given in Theorem 1.3 below; cf. [5], [10], [24].

THEOREM 1.3. Let C be a directed cycle of length k. A digraph G is homomorphic
to C if and only if the length of every oriented cycle in G is divisible by k.

This result also implies a polynomial algorithm via a breadth first labeling modulo
k; el. [10].

At this point one may wonder whether or not a general obstruction result analo-
gous to Theorem 1.2 holds for cycles. Let C be an oriented cycle and let (De) denote
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the following statement:
(Dc) A digraph G is homomorphic to C if and only if every oriented cycle ho-

momorphic to G is also homomorphic to C.
It is unlikely that (Dc) holds for all oriented cycles C, though we shall prove it

for a large class of oriented cycles. We shall prove in the last section that if (Dc)
holds then C-col is in NPNcoNP. Thus it is not surprising that when (Dc) holds we
usually also find a polynomial algorithm for C-col. (It is, of course, a priori not clear
how to find such an algorithm, but see the added remark at the end of the paper.)
This also means that (Dc) is unlikely to hold for those cycles C for which C-col is
NP-complete.

If C is a directed cycle then (Dc) holds as can be easily seen using Theorem 1.3,
since the condition concerning cycle lengths is weaker than the condition in (Dc). If
C is a cycle obtained from two copies of an oriented path by identifying their two
initial vertices and their two terminal vertices, then (Dc) can also be seen to hold
using Theorem 1.2. In this case we also have a weaker condition, namely, that every
oriented path homomorphic to G is also homomorphic to C. Indeed, if there is a path
P homomorphic to G but not homomorphic to C, then the cycle obtained from two
copies of P by identifying their two initial vertices and their two terminal verices is
homomorphic to G but not to C. Another class of cycles C for which (Dc) holds is
the class of B-cycles. A B-cycle is an oriented cycle obtained from a forward directed
path I of length n and a minimal oriented path J of length n- 1 by identifying their
two initial vertices and their two terminal verices. Thus B-cycles are particular cycles
of length one. The following characterization theorem was proved in [19].

THEOREM 1.4. Let C be a B-cycle. A digraph G is homomorphic to C if and
only if every oriented path homomorphic to G is also homornorphic to C.

Thus in this case we also know that (Dc) holds, and once again we have a weaker
condition. These weaker conditions suggest the following modified statement:

(Dc) A digraph G is homomorphic to C if and only if
every oriented path homomorphic to G is also homomorphic to C, and
the length of any cycle of G is a multiple of the length of C.

Note that if C is a directed cycle then the first condition is vacuously satisfied and
(D) becomes Theorem 1.3. Similarly, when C is a B-cycle, the second condition is
vacuously satisfied and (D) becomes Theorem 1.4. Thus (D)is a stronger statement
than (Dc), yet one which holds in all the cases in which we know (Dc) holds. We
know that this stronger statement does not hold for all cycles. In 4 we will construct
cycles C such that (D) fails. In [19] we made the following conjecture.

CONJECTURE 1.5. If C is an unbalanced oriented cycle, then a digraph G is
homomorphic to C i.f and only if (De) holds.

Here we shall prove this conjecture. Note that this implies both Theorem 1.3
and Theorem 1.4, whose proof in [19] is quite complex. Our proof also motivated a
polynomial algorithm for C-col for any unbalanced C [30]. In fact, such an algorithm
has also been discovered independently by Gutjahr [8]. More recently, it has been
proved [16] that whenever (De) holds, there is a polynomial algorithm for C-col. (See
the remark at the end of this paper.)

The characterization theoren (Theorem 3.1) proved here is of course interesting
in its own right, regardless of any polynomial algorithms it may yield or any inpli-
cations regarding NP coNP. It has already been applied, at least in the special
case of B-cycles, in proving the multiplicativity of certain oriented cycles [20], thereby
completing the classification of multiplicative cycles [20].
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2. Auxiliary results. We shall first prove some lemmas that are special cases
of the conjecture and are needed in the proof of the main theorem. In order not to
have to repeat our assumptions everywhere, we specify them explicitly here as follows.

Assumptions. Let C be an unbalanced oriented cycle which is not a directed
cycle. Assume that l(C) > 0 and n is the maximum length of a subpath of C. Let co
be a vertex of C such that C [co, c1,..., Cjo,... Cm--1, CO], where [co, cl,..., Cjo] is
a minimal path of length n.

The Assumptions result in no loss of generality in view of the fact that the result
for directed cycles is known. In fact, when C is a directed cycle, l(C) n and
[co, cl,..., Cjo [co, c,..., co]. It is easy to see that under the Assumptions we have
>
LEMMA 2.1. Let C be the cycle from the Assumptions. For any 1 <_ j <_ rn- 1

we have /([co, o,...,cj]) > 0, and for any jo <_ j <_ m we have /([co, cm-,c,-2,
_> 0.

Proof. Suppose 1 _< j

_
jo. If/([co, Cl,..., cj]) _< 0 then l([cj, cj+,..., Cjo]) _> n,

contradicting either the minimality of [co,c1,..., Cjo or the maximality of n. Simi-
larly, if j0 < j _< rn- 1 and l[co, cl,...,cy]) _< 0, then l(cy,cy+,...,Cm-l,CO) > 0
and l([cj, Cj+l,..., co, Cl,..., Cyo]) > n, contradicting the choice of n. On the other
hand, if l([co, c,-,Cm-2,...,cj]) < 0 for jo <_ j <_ m- 1, then we also have
l(cj, Cj+l,..., c,-1, co) > 0, and we obtain a contradiction as above.

Note that these inequalities imply that co has in-degree zero.
We sometimes view [co, c,... ,Cm-,co] as an oriented path and call it RI(C);

formally, we introduce a new vertex Co and let RI(C) be the path [co, o,..., c,-l, c],
where Cm-C or CCm-1 is an edge of RI(C) precisely if c,-co or CoCm-1 is an edge
of C. This is the path which wraps around C exactly once in the positive direc-
tion starting at co and also ending at co. In a similar fashion we define Rq(C) as
the path wrapping around C exactly q times in the positive direction, i.e., Rq(C)

Cg, ,C-1 --1 q--1[co, Cl,..., c,_1, c, cl,..., c,_, c Cm_l, c]. For convenience we

C, ,C-1 -1omay also write Rq C) [Co, cl Cm_
q--1
Cm_l, C]. We define the index function as Ind(c}) =im + j. For x, y E Rq(C), we say
x _< y if Ind(x) _< Ind(y) (and x < y if Ind(x) < Ind(y)). Note that Rq(C) -- C via

(for i =0,1 ,q) to Cj.the obvious homomorphism taking all cy
Frequently, we will need to consider homomorphisms h of an oriented path P

O,Pl,...,Pn] to the oriented cycle C. Each such h defines a sequence [h(p0), h(p),
h(p)] of vertices of C such that for each 1 <_ _< n, either h(p-l)h(pi) is an edge

of C (if pi-ipi is an edge of P) or h(pi)h(pi-) is an edge of C (if pipi-i is an edge of
P). We call such a sequence a walk of C. If P 0, pl,..., Phi is a minimal path and
h" P -- C is a homomorphism, then we call [h(p0), h(pl),..., h(pn)] a minimal walk.

Let P 0,Pl,...,Pn] be an oriented path and h P - C be a homomor-
phism. We shall also view h, in a natural way, as a homomorphism P R2q

C, ,cq--i 2q--1 .2q--1 2q[C0, Cl,..., Cm--i, C, C,..., Cm_l, Cl (;m.--a, C0 fop 3 large enough
q. Formally, we define a homomorphism h" P R2q(C) as follows.

q is in the "middle range" of Rq(C)q if h(po) ci Note that ciWe let h’ (po) c
We will define h’ so that h(pr) cj will always imply that h’(pr) c for some a. If
we have already defined h’(p)= cy’ and h(p+)= c8, then

h’(p+) c+ ifj=rn-lands=0,

a-1h’(.p+) c8 if j 0 and s m 1,
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h’(pr+l) c otherwise.

It is easy to see that h is well defined (as q is large enough), uniquely determined
by h (for a fixed q), and indeed a homomorphism. We call h the induced homomor-
phism of h. We say h(P) goes in the positive direction of C if Ind(h’(p0)) < Ind(h’(pn)),
and h(P) goes in the negative direction if Ind(h’(p0)) > Ind(h’(pn)). Observe that
whether h(P) goes in the positive direction or the negative direction of C is indepen-
dent of the integer q, though in the definition of h we need to choose a fixed inte-
ger q.

For balanced graphs G, the second condition of Conjecture 1.5 is vacuously sat-
isfied. Thus, when we restrict our attention to balanced graphs G, Conjecture 1.5
becomes the following statement.

LEMMA 2.2. Let G be a balanced digraph and C be an unbalanced cycle. Then
G -- C if and only if every oriented path homomorphic to G is also homomorphic
to C.

Proof. Clearly, if G --. C then any path P with P G satisfies P C by
composition. For the converse we shall use Theorem 1.2. Assume that G has q
vertices. Then the absolute value of the length of any path in G is less than q.
Since G is balanced, the same is true for any walk in G, and hence also for any path P
homomorphic to G. Since the length of C is not zero, any homomorphism of such path
P. to C can wrap around C at most q times in either the positive or negative direction.
Now assume that every oriented path homomorphic to G is also homomorphic to C.
Then any path homomorphic to G is also homomorphic to R2q(C). By Theorem 1.2,
G -- R2q(C), and by composition with R2q(C) -- C we have G C.

COROLLARY 2.3. Let T be an oriented tree and C be an unbalanced cycle. Then
T -- C if and only if every oriented path homomorphic to T is also homomorphic to
C.

Lemma 2.2 has a corresponding rooted version.
LEMMA 2.4. Let G be a balanced digraph and go be a fixed vertex of G. Let C

and co be as described in the Assumptions. Then (G, g0) -- (C, c0) /f and only if
(P, i(P)) -. (G, go) implies that (P, i(P)) --. (C, co) for every oriented path P.

Proof. The necessity of the condition is again clear by composition. Suppose the
condition is satisfied. We shall construct a homomorphism (G, g0) (C, c0). Assume
again that G has q vertices and consider R2q(C). Let c* be the "middle vertex" of
R2q, i.e., c* c. Recall that (R2q, c*) -- (C, c0). Note also that by Lemma 2.1 and
the assumption that l(C) > 0, we have dR.q(c) (C*, X) > 0 for any x with x > c*.

We shall first define two mappings and For x E G, let :Px be the set of
all oriented paths P such that some homomorphism h P - G has h(i(P)) go
and h(t(P)) x. Consider a path P e Px. Since (P, i(P)) (G, go), we also have
(P, i(P)) -- (C, co) by our assumption. This implies that (P,i(P)) - (R2q(C),c*) by
an argument similar to the one given in the proof of the previous lemma. Thus we

may define

(P) min{h(t(P)) h is a homomorphism (P,i(P)) (R2q(C),c*)}.

Finally, we define :G - R2q(C) as

(x) max{(P): P e

Here the terms "max" and "min" are taken with respect to the order determined
by the index function.
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Next we prove that is a homomorphism (G, g0) - (R2q(C), c* ). Let (x,y)
E(G) be an edge of G. We show that ((x), (y)) e E(R2q(C)). First,
because for any oriented paths P1 E :Px and P2 E Py, we must have l(P) =/(P2) 1
(a G is balanced) and, therefore, (P) (P2).

Suppose (x) > (y). Let P e :Px be an oriented path such that (P) (x). Let
P’ be the path obtained from P by adding a new vertex a t(P’) and an edge t(P)a.
Then, obviously, P’ e Py. Therefore, (P’) _< (y). Let h: (P’,i(P’)) --. (R2q(C),c*)
be a homomorphism such that h(a) (P’). We have h(t(P)) >_ (P)
because h restricted to P is a homomorphism from (P,i(P)) to (R2a(C), c* ). Since
h(t(P))h(a) e E(R2q(C)), we have Ind(h(t(P))) <_ Ind(h(a))+ 1. Hence Ind(h(a))
Ind((y)) < Ind((x)) <_ Ind(h(t(P))) <_ Ind(h(a))+ 1. Therefore, we must have
h(t(P)) (x) and h(a) (y), and (x)(y) is an edge of R2q(C).

A similar argument applies for the case (x) < (y). Thus is indeed a homo-
morphism.

It remains to check that (g0) c*. First we have (g0) >_ c* because the path
P consisting of a single vertex is in Pgo and (P) c*. If (g0) > c*, let P’ e :Pgo
be an oriented path such that (P’) (g0) > c*. Let h: (P’,i(P’)) - (R2a(C),c*)
be .a homomorphism such that h(t(P’)) (P’). Since l(P’) 0 (because G is

balanced), we must have dR.q(v)(h(i(P’)),h(t(P’))) dR2q(c)(C*, (g0)) 0. This is
a contradiction with dR.(c)(c*, (go)) > 0 implied by (go) > c* (see the end of the
first paragraph of this proof). Therefore, (go) c*.

COROLLARY 2.5. Let T be an oriented tree and to T. Let C and co be as
described in our assumptions. Then (T, to) - (C, co) if and only if for any oriented
path P, (P, i(P)) -- (T, to) implies that (P, i(P)) (C, co).

It is easy to see (from Lemma 2.2 and Corollary 2.3) that both the above lemma
and corollary remain true when C is a directed cycle and co is an arbitrary vertex
of C.

3. The main theorem. The following theorem verifies Conjecture 1.5 and is
the main result of this paper.

THEOREM 3.1. Let C be an unbalanced cycle. A digraph G is homomorphic to
C if and only if

every oriented path homomorphic to G is also homomorphic to C, and
the length of any cycle of G is a multiple of the length of C.

The necessity of the condition is obvious. We shall prove the sufficiency from the
following rooted version of the theorem, which is of independent interest.

THEOREM 3.2. Let G be a digraph and go be a fixed vertex of G. Let C and co be
as described in the Assumptions. Then (G, go) -- (C, co) if and only if

for every oriented path P, (P, i(P)) - (G, g0) implies that (P, i(P)) (C, co),
and

the length of any cycle of G is a multiple of the length of C.
It is again the case that the above theorem remains valid if C is a directed cycle

and co is an arbitrary vertex of C. On the other hand, we do not know whether
Theorem 3.2 remains true if the choice of co is unrestricted.

We first prove that Theorem 3.2 implies Theorem 3.1.
LEMMA 3.3. Let G be a digraph satisfying the two conditions of Theorem 3.1. Let

C and co be as described in the Assumptions. Then one of the following two situations
must occur:

there is a vertex go V(G) such that for any oriented path P, (P, i(P)) (G, go)
implies (P, i(P)) -- (C, co), or
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every oriented path P homomorphic to G is also homomorphic to C \ co.
Proof. Suppose the lemma is not true. Then for any vertex g E V(G), there is

an oriented path Pg such that (Pg,i(Pg)) --, (G,g) and (Pg, i(Pg)) - (C, c0). Also,
there is an oriented path P [pl,P2,...,Pn] which is homomorphic to G but not
homomorphic to C \ co. Let h" P - G be a homomorphism. For each 1 _< j _< n, let
Pj be an oriented path such that (5,i(5)) -- (G,h(py)) and (5,i(5)) (C, c0)
(i.e., we write Pj for Ph(p)). Let T be the oriented tree obtained from P by attaching
the oriented path Pj to each vertex pj of P, identifying i(Pj) with pj.

Obviously T G. Thus every oriented path homomorphic to T is also homomor-
phic to G and, by our assumption, also homomorphic to C. By Corollary 2.3 we have

Let f T C be a homomorphism. Since P Cc0, there exists pj

P c T such that f(py) co. But then f restricted to Py C T is a homomorphism
(5,i(5)) (C, c0), contradicting the assumption that (5,i(5)) (C, c0). This
proves Lemma 3.3.

Now suppose that Theorem 3.2 is true and G is a digraph satisfying the conditions
of Theorem 3.1. By Lemma 3.3, either there is a vertex go V(G) such that (G, g0)
satisfies the conditions of Theorem 3.2, which implies (G, g0) (C, co), or every
oriented path homomorphic to G is also homomorphic to C c0, which implies G
C c0 by Theorem 1.2. In both cases we have G C and, therefore, Theorem 3.2
implies Theorem 3.1.

Next we proceed to prove Theorem 3.2. Since rooted homomorphisms can be
composed, it is ey to see that the conditions are necessary for the existence of
homomorphisms (G, g0) (C, c0). Thus suppose the conditions are satisfied.

We first construct an auxiliary digraph D as follows: we take the subpath [c0, c, c2,

am--1 C, C C-1] of R2(C) and identify the vertices c0 and c calling the
30

new vertex c*. Thus D is a copy of the cycle C with an additional oriented path
A [c*, c co-1] attached to it at vertex co. The path A is just another copy of
the path [co, cl,c2,... ,Cyo-]. Note that c* has in-degree zero. We define the index
function as Ind(cy) j for 1 j m- 1, Ind(c}) m + j for 1 j jo 1, and
Ind(c*) m. For a, b V(D), we write a b if and only if Ind(a) Ind(b) and a < b
if Ind(a) < Ind(b)). We again use the terms "min" and "max" with respect to this
order.

Obviously (D,c*) and (C, co) are homomorphically equivalent, i.e., (D,c*)
(C, c0) and (C, co) (D, c*). Therefore, (G, g0) (C, c0) if and only if (G, go)
(D, c*). Instead of constructing a homomorphism of (G, g0) (C, co), we will con-
struct a homomorphism of (G, go) (D, c*).

Given a vertex x V(G), we let be the set of triples (T, to, t) such that T is
an oriented tree, t0, t are vertices of T, and there is a homomorphism h T G with
h(to) go and h(t) --x.

REMARK 3.4. Let (G, go) be a rooted digraph satisfying the conditions of Theo-
rem 3.2. Let C and co be as described in the Assumptions. Then for any rooted tree
(T, to), (T, to) (T, to) (C,

Indeed, if (T, to) (G, go), then for any oriented path P, the existence of a hom
morphism (P, i(P)) (T, to) implies the existence of a homomorphism (P, i(P))
(G, go) and, therefore, the existence of a homomorphism (P, i(P)) (C, co) (according
to one of the hypotheses). Thus (T, to) (C, co) by Corollary 2.5.

Now we are ready to cotruct a homomorphism (G, go) (D, c*).
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Define two mappings and as follows: for (T, t0, t) E Uxev(a), let

(T, to, t) max{h(t)" h is a homomorphism (T, to) (D, c*)},

and for x E V(G), let

(x) min{(T, to, t)" (T, to, t) e T}.

Note that and are well defined: for any x and any (T, t0, t) :Y we have
(T, to) (G, go), and hence (T, to) --+ (C, co) by the above remark. Thus (T, to) --(D, c*). It is also clear that for any x V(G), the set r is not empty, since G is
connected.

We now proceed to prove that is a homomorphism (G, go) -- (D, c*).
First we need some lemmas that will help us restrict the possible images of a

vertex of G under a homomorphism of G to D.
Let l(C) k. For x e Y(D), let ,(x) be the length of the path [c*, cl, c2,... ,x]

if x E C and the length of the path [c*, c,..., x] if x A. By the remarks at the
beginning of 2, we have that ,(x) > 0 for all x # c*.

Consider any oriented path P and any homomorphism h’(P,i(P)) --+ (D,c*).
The image h(P) of P under h is a walk of D. Since homomorphism of paths preserves
distances, we have ;p(x) Ah(p)(h(x)) for any x e P. The walk h(P) may wind
around C several times. Since l(C) k, we have Ah(p)(h(x)) A(h(x))+ tk for
some integer t (t can be positive, negative, or zero). We state this important fact as
a lemma.

LEMMA 3.5. Let (D, c*) be the rooted digraph defined above and k l(C). For
any oriented path P and any homomorphism h (P, i(P)) (D, c*), we have Ap(x)
A(h(x))(modk) for all x e P.

COROLLARY 3.6. Suppose that H is a connected digraph and ho V(H) is a fixed
vertex of H; suppose further that hi (H, h0) -- (D,c*) and h2 (H, h0) (D,c*)
are two homomorphisms. Then ,(hl(x)) A(h2(x))(modk) for all x e H.

Note that the path I [c*, 0,..., Cjo] is the only minimal path of length n in D
which starts at c*.

LEMMA 3.7. Let (D, c* be the auxiliary digraph constructed from (C, co). Let n be
the maximum length of a subpath of C and k be the length of C. If X Ix0, xl,..., xt]
is a minimal walk of D of length n and A(xo) 0(modk), then xo c* and X C I.

Proof. Let X [x0, xl,... ,xt] be a minimal walk of D of length n with ,(x0)
0(modk). First we show that x0 c*. Otherwise, suppose x0 c*. It is easy to see (by
Lemma 2.1) that D \ c* contains no path of length n, and thus we have c* xj for
some 0 <_ j _<. t. Since c* x0, we have ,(x0) > 0. Since X is mininal, dx(xo, c*) > O.
However, if X goes in the negative direction of C, then dz(xo, c*) -A(xo) < O.
Therefore X must go in the positive direction of C. Thus 0 < dz(xo, c*) k- A(xo),
which implies ,(x0) < k. Thus 0 < ,(x0) < k, contradicting the assumption that
,(x0) 0(modk). Therefore x0 c*. Since I is the only minimal path of length n in
D which starts at c* we see that X c I.

COROLLARY 3.8. Suppose that P is an oriented path and B is a minimal subpath
qf P of length n. If there is a homomorphism h" (P, i(P)) - (D, c*) such that h(B)
I, then for any homomorphism h’ (P,i(P)) --, (D, c*), we ’must also have h’(B) I.

Proof. Let h’’(P,i(P)) -- (D,c*) be a homomorphism. Obviously h’(B) is a
mininal walk of D of length n. By Corollary 3.6, A(h’(i(B))) 0(modk). Therefore,
h’(i(B)) c* and. h’(B) I by Lemma 3.7.
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In the following three lemmas, we assume that xy is an edge of G. We shall prove
that (x)(y) is an edge of D.

LEMMA 3.9. Let p V(G) --, V(D) be the mapping defined just after Remark
3.4. If xy E E(G) then (x) (y).

Proof. Otherwise, suppose (x) (y) a. Let (T’, t’o, t’) T be a triple such
that (T’, t, t) (x), and let (T’, t, t’) Ty be a triple such that (T’, t, t")

Let T be the tree obtained from the disjoint union of T and T" by adding
the edge from t’ to t". Then it is easy to see that (T, t, t’), (T, t, t’) e Tz and
(T, t, t"), (T, t, t") e Ty. By the definition of (y) we have b(T, t, t") >_ (y)
(T", t, t"). Since any homomorphism h’(T, t) -- (D, c*) restricted to T" is a ho-
momorphism from (T", t) to (D, c*), we have (T, t, t") _< (T", t, t"). Therefore
(T, t, t") (T", t, t") a. Similarly, (T, t, t’) (T’, t, t’) a. Let h" T -- Dbe a homomorphism such that h(t’) a, and let h T -- D be a homomorphism
such that h’(t’) a. Suppose h(t’) b and h’(t") c. Then (b,a) e E(D) and
(a, c) e E(D), because (t’, t") e E(T) and h, h’ are homomorphisms. Therefore, a has
positive in-degree and positive out-degree. In particular, a c* and, therefore, a has
in-degree one and out-degree one.

To obtain the final contradiction, we consider two cases.
Case 1. Suppose that a- Cl. Let h’(T, t) - (D, c*) be a homomorphism such

that h(t’) (T, t, t") ca. Then h(t’) c*. Delete from T all the vertices t such
that h(t) c*, and let B be the component which contains t" after the deletion. If
Cjo ([ h(B) then h(B) is contained in I \ Cjo. Now define a mapping h’ T --. D as
follows:

h’(t) h(t) if t B, and

h(t)-c} iftBandh(t)=cj.

It is easy to see that h is a homomorphism and h(t) c*, h’(t’) c. However,
Ind(c) m + 1 > Ind(cl). This contradicts the fact that (T, t, t’) Cl. Therefore
Cjo h(B). Let s B be a vertex such that h(s) Cjo, and for which the unique
path P connecting t and s in T has no other vertex u with h(u) Cjo. Thus P is a
minimal path of length n.

Now let h" (T,to) - (D,c*) be a homomorphism such that h’(V)
(T,to,t’) Cl. By Corollary 3.8, h"(P) I, which implies that h’(t’) c*, a
contradiction.

Case 2. Assume that a : cl. Then for the two neighbours b and c of a we have
b < a < c. As a has in-degree one and out-degree one, assume that ba E(D) and
ac E(D). (A similar argument applies to the case ab E(n) and ca E(D)).

By the definition of p(x), we have (T, tg, V) >_ p(x) a. Let h (T, tg) -(n, c.) be a homomorphism such that h(t’) (T, tg, t’). Then (h(t’), h(t’)) E(D)
implies that h(t’) > a. This contradicts the fact that (T, t, t’) a and proves that
(x)

LEMMA 3.10. Let V(G) -- V(D) be the mapping defined just after Remark
3.4. /f xy e E(G) and (x) < (y) then (x)(y) e E(D).

Proof. We proceed as in the proof of Lemma 3.9, constructing (T’,to,t’),
(T", tg, t"), and T. Recall that (T,to,t’) (x) and (T,to,t’’) >_ (y). Let h"
(T, t) - (D, c*) be a homomorphism such that h(t") (T, t, t") _> (y). By the
definition of we have h(t’) <_ (T, t, t’) (x). Therefore h(t’) <_ (x) < (y) _<
h(t"). However, h(t’)h(t") e E(D), and hence Ind(h(t")) _< Ind(h(t’))+ 1. Therefore,
we must have h(t’)- (x), h(t")- (y), and thus (x)(y) e E(D).
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LEMMA 3.11. Let " V(G) -- V(D) be the mapping defined just after Remark
3.4. /f xy e E(G) and (x) > (y), then (x)(y) e E(D).

Proof. Again, let (T’, t, t’), (T", tg, t"), and T be defined as in the proof of Lemma
3.9; thus we again have (T, tg, t") (y) and (T, tg, t’) >_ (x). Let h’(T, tg) --(D, c*) be a homomorphism such that h(t’) (T,t, t’) _> (x). As in the proof
above, we have h(t") <_ (y) < (x) <_ h(t’) and h(t’)h(t") e E(D). If Ind(h(t’)) _<
Ind(h(t")) + 1 then the same argument shows that (x)(y) h(t’)h(t") e E(D).
Otherwise, we must have h(t’) c*,h(t") cl, and cl _< (y) < (x) _< c*. In
what follows we prove that in this case we must have (y) Cl and (x) c* and,
therefore, (x)(y) e E(D).

Let K {t e T" h(t) c*} and let B be the component of T \ K which contains
fit. With the same argument as in Case 1 of the proof of Lemma 3.9, we find a vertex
s c B such that the unique path P in T joining t and s is a minimal path of length
n. Let h’’(T,to) - (D,c*) be a homomorphism such that h’(t’) (T,t’o,t’ (x).
Since h(t’) c*, we have h(P) I. By Corollary 3.8, we have h’(P) I as well.
Therefore h’(t’) c* -(x).

To show that (y) Cl, we let h"" (T, t) -- (D, c*) be a homomorphism such
that h"(t") (T, t, t") (y). Again, by Corollary 3.8, h"(P) I and h"(t’) c*.
Observe that tt is the vertex adjacent to t in P; we have h’(t) c. Now Lemma
3.11 is proved.

This completes the proof that G - D is a homomorphism. To complete the
proof of Theorem 3.2, we still need the following lemma.

LEMMA 3.12. The homomorphism satisfies (g0) c*.

Proof. First, we observe that (g0) _< c*, because for the tree T* consisting of a

single vertex to, we have (T*, to, to) C :rgo and (T*, to, to) c*.

Assume that (go) < c*, and let (T, to, t) To be a triple such that (T, to, t)
(go). Thus, there exists a homomorphism hi T -- G with h(to) h(t) go and
a homomorphism h2 T - D with h2(to) c* and h2(t) (T, to, t) (go). By

with ci, we view h2 as a homomorphism of T to C with h2(to) co. Weidentifying ci
shall proceed to construct a homomorphism h" T - C with h(to) h(t) co, which
can be viewed as a homomorphism of T to D with h(to) h(t) c*, in contradiction
to (T, to,t) < c*.

To construct h we shall use hi, h2, and a third homomorphism h3 T -- C with
h3(t) co. Such a homomorphism exists by Remark 3.4, since (T, t) (G, go) via h.
We shall construct h by letting it equal h2 on part of the tree T and h3 on the rest of
the tree T. For this purpose we need the following claim.

Claim. Let P be the unique path of T connecting to to t. Then there is a vertex
t* of P such that h2(t*) h3(t*).

Since hi(P) is a closed walk of G, we have l(P) l(h (P)) sk for an integer q.
Now we consider four cases.

Case 1. Suppose that s <_ -1. Since h2(to) co and l(h2(P)) <_ -k, it is easy to
see from Lemma 2.1 and the minimality of I that h2(P) must wind around C in the
negative direction at least once. Therefore, there is a minimal subpath X of P such
that h2(X) I. By Corollary 3.8, h3(X) I and h2(i(X)) h3(i(X)) co. Thus,
in this case we let t* i(X).

This argument also shows that the claim follows whenever there exists a vertex
v P which has level less than or equal to -k.

Case 2. Suppose that s _> 2. The composition o hi of the two homomor-
phisms and hi is a homomorphism of T to D. Since (to) (t) (go) and C is
a cycle of length k, we see that (P) is a closed walk of C which winds around C at
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least twice. This implies that there is a minimal subpath X such that (X) I, and
again, by Corollary 3.8, h(i(X)) h’(i(X)). In this case we also let t* be i(X).

Case 3. Suppose that s 0. We choose a large integer q and consider the induced
homomorphisms of h2 and h3, namely h2, h3 P - R2q(C) (cf. 2). As h2(to)
h3(t) co, we have h2(to) c and h3(t) c for some a. Let h P - R2q(C)

r+q--abe the homomorphism defined as h(x) cj if h3(x) c.. In other words, h
is obtained from h by shifting the image so that t is sent to c. It is obvious that if
h2(t*) h(t*) for some t* P, then h2(t*) h3(t*).

Note that Lemma 2.1 implies that dn.q(c)(c, v) > 0 for any v R2q(C) with
v > c (recall that the order is defined by the index function). Since h2(P) and h(P)
are walks of R2q(C) of length zero, we must have h2(t) < c and h(to) < c. Thus
we have h2(to) > h(to) and h2(t) < hg(t). Let x be the last vertex of P such that
h2(x) >- h’(x3t, and let y be the next vertex of P. Thus we have h2(y) < h(y). If
h2(x) h(x) then we let t* x and the claim follows. Assume that h2(x) > h(x).
Observe that either xy is an edge of P, which implies that h2(x)h2(y and h(x)hg(y)
are edges of Rq(C), or yx is an edge of P, which implies that h2(y)h2(x) and h(y)h(x)
are edges of Rq(C). In any case, we have Ind(h(x))

_
Ind(h(y))+ 1 and Ind(h(y))

_
Ind(h(x)) + 1. Therefore, we must have h2(x) h(y) and h2(y) h(x). This is a

contradiction, since R2q (C) has no digons.
Case 4. Suppose that s 1. Again, we let o hi be the composition of

the two homomorphisms and h. Since (P) is a closed walk of C of length k, it
winds around C exactly once in the positive direction of C. Therefore, the induced
homomorphism ’ P R2q(C) satisfies ’(to) cq and ’(t) cq+l, where cr
(to) (go) h2(t). In particular, there is a vertex v e P such that ’(v) cg+1.

Recall that h2(to) co. Suppose h2(P) goes in the negative direction of C. Then
the induced homomorphism (for some large q) h2 P - R2q(C) satisfies h2(to) c
and h2(t) c for some s _< q- 1. Thus the distance dn2q(c)(C,C) l(P) k.

However, dR.q(c)(C,C+1) (-k) (q- (s + 1)) <_ 0. Therefore, dR.q(c)(C+,c) >_ k.

This implies that dR.q(c)(Cq,c+) <_ -k, and hence the level of the vertex v in P is
less than or equal to -k. We have already shown that in this case the claim is true
(see the remark at the end of the proof of Case 1).

Thus we may assume that h2(P) goes in the positive direction of C, i.e., h(to)
c and h2(t) > c If there is a vertex v of the tree T such that h2(v) cq. then the

30

path P of T connecting to to v has length n. Thus it contains a minimal subpath
B of length n such that h(B) [c c cq. This implies that h2 (B) I and,

30
therefore, ha(B) I by Corollary 3.8. In this case we let t* i(B). On the other
hand, suppose that there is no vertex v of T such that h2(v) cq. We delete all the

30"
vertices x of T such that h2(x) co. Let B be the component which contains t (recall
that h2(t) (go) = c*). Then there is no vertex x e B such that h2(x) Cjo, and
hence h2(B) is contained in I\cjo. As in the proof of Lemma 3.9, we can shift the image
of B to A (recall that A is just another copy of I \ {Cjo } attached to c* in the auxiliary
digraph D). The new homomorphisIn shows that (T, to, t) _> c*, contradicting our
assumption.

Now the claim is proved and we can define a homomorphism h" (T, to) -- (D, c*)
as follows: let B be the component of T \ t* which contains t, and let

h"(x) h’(x) if x E B,
h"(x) h(x) ifxCB.

Then h" is obviously a homomorphism and h’(to) h’(t) c*. Thereibre, (go) c*
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FIG. 1. Example paths P1 and P2.

P2

FIG. 2. Cycles G and C.

and (G, go) -+ (D, c*). This completes the proof of Lemma 3.12, as well as that of
Theorem 3.2.

4. General oriented cycles. We first construct an example to show that (D)
does not always hold.

Let P1 and P2 be two minimal paths of the same length such that P1 7+ P2 and
P2 - P1. Such paths are easy to construct; Fig. 1 gives one such pair of paths.

Let G be obtained by identifying t(P1) with t(P2) and i(P) with i(P2) (cf. the
left graph in Fig. 2, where the directed edge labeled Pi represents the path Pi). Let C
be obtained in a similar way from two copies of P and two copies of P2, as depicted
in the right graph of Fig. 2.

It is easy to see that G 7+ C, yet G satisfies the hypotheses of (D). Thus (D)
does not hold for this cycle C. Note that this does not show that (Dc) fails for C, since
G does not satisfy the hypotheses of (Dc). However, Theorem 4.1 below suggests that
(Dc) may fail for any cycle C such that C-col is NP-complete; cf. Fig. 3.

THEOREM 4.1. If (Dc) holds for an oriented cycle C then C-col is in NPNcoNP.

Proof. Obviously each problem C-col is in the class NP. Let C be a fixed oriented
cycle for which (Dc) holds, i.e., such that a digraph G is homomorphic to C if and
only if every cycle homomorphic to G is also homomorphic to C.

In order to prove that C-col is also in coNP, we shall prove the following two
statements (in Lemmas 4.2 and 4.3).

(1) There is an algorithm which decides whether or not X -- U in time
IE(H)I. IV(H)I for any oriented cycle X and any digraph H.

(2) Let H be a fixed digraph. If there is a cycle X which is homomorphic to a
digraph G but not to H, then there is such a cycle X’ with O(IV(G)I) edges.

It is not difficult to see that these two statements imply that C-col is in the class
coNP. Indeed, if G is a digraph with G 7 C, then there is a cycle X which is homo-
morphic to G but not to C. Thus by (2), there is such a cycle X’ with O(IV(G)I edges.
By (1), it can be verified in time O([V(G)[. [E(G)[2) that X’ is indeed homomorphic
to G and not to C (observe that the size of C is a constant).

Let W [w0, w,...,Wm-l,Wm] be an oriented path, H be any digraph, and
ho V(H) be a fixed vertex of H. The canonical labeling of W by (H, ho) is the
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unique mapping A of W to the subsets of V(H) for which

A(w0) {h0},
A(wi+l) {v E V(H):uv e E(H) for some u e A(wi)}

if wiwi+l E(W),
h(w+l) {v e Y(g):vu e E(H) for some u e A(w)}

if w+w E(W).

LEMMA 4.2. Let W IT0, Wl,..., Win-l, Wm] be an oriented path and X be the
oriented cycle obtained from W by identifying wo with Wm. Let H be any digraph and
let ho be a fixed vertex of H. Then (X, w0) (H, ho) if and only if hoe h(wm) in
the canonical labeling of W by H.

Proof. Suppose h" (X, To) - (H, h0) is a homomorphism. Then it is easy to show
by induction on j that h(wj) A(wj) for all 0 _< j _< m. Since h(w,) h(wo) h0,
we have ho A(wm).

On the other hand, suppose h0 E A(wm) in the canonical labeling of W by
(H, ho). A homomorphism h’(X, To) (H, ho) can be constructed as follows" Let
h(wm) h(wo) ho. If h(wj) vje h(wj) has been chosen, then let h(wj_)
vj_, where vj_ is an element of A(wj_l) such that either (vj_,vj) E(H) or
(vj,vj-1) e E(H), according to whether (wj_,wj) e E(W) or (wj,wj_) e E(W).
Such an element exists by the definition of the canonical labeling. It is clear that the
mapping h is a homomorphism.

The canonical labeling of W by (H, ho) can be found in time
Thus it can be determined in time O(IE(W)I" [E(H)I) whether or not (X, w0) --+

(H, h0). In order to determine whether or not W H, it is enough to determine
whether or not (W, w0) (H, h) for some h e V(H). Therefore, it suffices to find the
canonical labeling of W by (H, h) for each of the vertices h V(H). Thus it can be
determined in time O(IE(X)I. IE(H)I. [V(H)I whether or not X -- H.

LEMMA 4.3. Let V(H) k. If there exists an oriented cycle X homomorphic to
G but not to H, then there exists such a cycle X with IY(Z)l <_ 2

Proof. Suppose that X is obtained from the oriented path W IT0, Wl,..., Wm]
by identifying w0 with Wm, and X G and X 7 H. Let f" X -- G be a homomor-
phism. For each vertex h V(H), let Ah be the canonical labeling of W by (H, h).
By the previous lemma, h Ah(Wm) for any h e V(H) (otherwise we would have
(X, w0) (H, h), and hence X H). If m > 2k2. IV(G)I, then by the pigeon hole
principle there are two vertices wi, wj of W(with < j) such that f(w)- f(wj) and
hh(w) Ah(wj) for all h e V(H). (The mappings f and {Ah" h e V(H)} can be
viewed as a single mapping of W into the set V(G) 2V(H) 2V(H) 2V(H) of
size 2k. IV(G)I.) Let W’ IT0, Wl,..., w, wj+,..., w,] (i.e., W’ is obtained from
W by deleting all the vertices w+l,..., wj_ and identifying wi with wj), and let X
be the cycle obtained from W by identifying w0 with Wm. Then, obviously, W -- G,
and for the canonical labeling A of W’ by (H,h) we have h(wt) Ah(wt) for all
wt e W’ and all h e V(H). Therefore, h A(wm) for all h e V(H) and Z’ H.

COROLLARY 4.4. Let G be a digraph and C be an oriented cycle with k edges. If
there exists a cycle homomorphic to G but not to C, then there exists such a cycle X
t IV(X)I <_ .

Since C is fixed, 2k: is a constant. So the size of X is O(IV(G)I ). Thus we have
proved statements (1) and (2), as well as Theorem 4.1.

It follows from Corollary 4.4 and Theorem 3.1 that C-col is in NP coNP
whenever C is unbalanced. In fact, it follows from [8], [30] that C-col is polynomial
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P6’.P4
P5

FIG. 3. Gutjahr’s cycle C for which C-col is NP-complete.

for unbalanced cycles C. This can also be derived from Theorem 3.1 using a technique
explained in [16]. On the other hand, suppose that Pi (i 1, 2, 3, 4, 5, 6) are minimal
oriented paths of length n such that Pi - Pj whenever j. (Such paths are easy
to construct using the technique apparent in Fig. 1.) Gutjahr proved that C-col is
NP-complete for the balanced cycle C depicted in Fig. 3 [8].

5. Remark on new results. In [16], we shall argue that statements like (Dc)
can be viewed as "duality" properties of graph homomorphisms. In the terminol-
ogy of [16], our main result here asserts that unbalanced cycles have cycle duality,
and Theorem 1.2 asserts that oriented paths have path duality. We have recently
considered more general duality statements: A digraph H is said to have treewidth-
k duality if a digraph G is homomorphic to H if and only if every oriented partial
k-tree homomorphic to G is also homomorphic to H. Since oriented paths are par-
tial 1-trees and oriented cycles are partial 2-trees, we have many examples of graphs
with treewidth-k duality. It is proved in [16] that if H has treewidth-k duality (for
any k), then H-col is polynomial. This allows us to conclude, from our main theo-
rem, that C-col is polynomial for each unbalanced cycle C. Polynomial algorithms for
this problem have previously been proposed by X. Zhu [30] (motivated by the main
technique of this paper), and independently by W. Gutjahr [8]. (It also allows us to
conclude from Theorem 1.2 that P-col is polynomial for each oriented path P; this
was first proved in [9].) T. Feder and M. Vardi have recently shown that the class of
graphs with treewidth-k duality corresponds exactly with H-col problems they call of
bounded width [6], which admit polynomial Datalog algorithms. Most recently, Feder
has shown that for all oriented cycles C, the problem C-col is either polynomial or
NP-complete [7]. J. Neetil and X. Zhu [25] have shown that there exist balanced
oriented cycles which have no treewidth-k duality for any integer k. This implies, in
particular, that (Dc) does not hold for these cycles.
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CHERNOFF-HOEFFDING BOUNDS FOR APPLICATIONS WITH
LIMITED INDEPENDENCE *

JEANETTE P. SCHMIDT, ALAN SIEGEL, AND ARAVIND SRINIVASAN

Abstract. Chernoff-Hoeffding (CH) bounds are fundamental tools used in bounding the tail
probabilities of the sums of bounded and independent random variables (r.v.’s). We present a simple
technique that gives slightly better bounds than these and that more importantly requires only limited
independence among the random variables, thereby importing a variety of standard results to the case
of limited independence for free. Additional methods are also presented, and the aggregate results
are sharp and provide a better understanding of the proof techniques behind these bounds. These
results also yield improved bounds for various tail probability distributions and enable improved
approximation algorithms for jobshop scheduling. The limited independence result implies that a
reduced amount and weaker sources of randomness are sufficient for randomized algorithms whose
analyses use the CH bounds, e.g., the analysis of randomized algorithms for random sampling and
oblivious packet routing.

Key words. Chernoff-Hoeffding bounds, large deviations, randomized algorithms, derandom-
ization, limited independence, correlation inequalities, deterministic simulation
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1. Introduction. The most fundamental tools used in bounding the tail prob-
abilities of the sums of bounded and independent random variables are based on tech-
niques initiated by Chernoff [11] and generalized by Soeffding [17] more than 30 years
ago. They are frequently used in the design and analysis of randomized algorithms
and derandomization and in the probabilistic method. We present a simple method
which generalizes somewhat the classical method for proving the Chernoff Hoeffding
(CH) bounds in the case of bounded random variables confined to the interval [0,
1]. More importantly, this approach requires only limited independence among the
random variables (r.v.’s) and thereby imports a variety of standard results to the
case of limited independence for free. This and related bounds lead to a variety of
applications ranging from improved bounds for tail probability distributions to new
algorithmic results.

The limited independence result implies that sources of randomness that are
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weaker than the standard model of unbiased and independent bits are sufficient for any
algorithm whose analysis uses the CH bounds. It also provides a better understanding
of the proof techniques behind these bounds and gives improved bounds for various
tail probability distributions. Via standard techniques, it leads to a simple analysis
of algorithms for such classical problems as random sampling. The formulation also
leads to approximation algorithms with better approximation guarantees for certain
problems.

Given n r.v.’s X1,X2,... ,Xn, suppose we want to upper bound the "upper tail"
probability Pr(X

_
a), where X ,in= X,# E[X],a It(1 + 5), and 5 > 0.

The classical idea behind the CH bounds (see, for instance, Chernoff [11], Hoeffding
[17], Raghavan [35], and Alon, Spencer, and ErdSs [3]) is as follows. For any fixed
t > 0, Pr(X >_ a) Pr(etX

_
et) <_ E[etX]/eat by garkov’s inequality. Computing

an upper bound u(t) on E[etX] and minimizing u(t)/et over t > 0 gives an upper
bound for Pr(X _> a).

An important situation in computation is the one in which Xi {0, 1),i
1, 2,... ,n. For this case, we construct a class of functions of X that is as easy to
analyze and includes the class {etX t > 0} and do the above minimization over
this class. In the process, we discover that X, X2,..., Xn need only be h(n, It, 5)-wise
independent for a suitably defined function h(.,., .), which is typically much less than
n for many algorithms; recall that a set of r.v.’s V exhibit k-wise independence if
any subset of k or fewer r.v.’s from V are jointly independent, which is to say that
their joint probability distribution function is simply the product of the individual
distributions. One reason for the use of the etX function in the classical methods is
that E[etX] generates all higher moments of X; using only a constant number of higher
moments, for instance, gives weak bounds. However, in the binary case, the first n
moments are sufficient to generate all higher moments, which motivates our method.
Interestingly, this formulation can also be applied to general Xi that take arbitrary
values in the interval [0, 1], even though it is not true that the first n moments of
X in= Xi determine all higher ones.

The results have many applications to tail probability distributions. They imply
similar limited independence results when X1, X2,..., Xn take values in the interval [0,
1]; this can be extended to bounded r.v.’s by scaling their ranges to [0, 1]. In the case
of the hypergeometric distribution (sampling without replacement), they provide an
elementary mechanism to attain slightly better bounds than those implied in [17] and
by Chvtal [13]. The method also yields good upper bounds for the tail probabilities
of the sums of r.v.’s with limited independence.

These constructions also provide pointers to further improvement of the inde-
pendence bounds. For example, we will take the liberty of redirecting somewhat the
estimation method as appropriate when attaining improved tools for analyzing the
behavior of the sum of k-wise independent r.v.’s. The results simplify and sharpen
some of the analyses done in [39] and [40]. In particular, we derive good upper bounds
on E[((Ein= Xi) E[Ein__l Xi])k], where X1, X2,..., Xn are k-wise independent r.v.’s,
each of which lies in the interval [0, 1]; this leads to better independence bounds than
our h(n, It, 5) when 5 < 1. We also prove good bounds on the probability of exactly r
successes in a sequence of k-wise independent Bernoulli trials, which shows that even
with modest independence, probabilities and conditional probabilities are close to the
fully independent case in situations such as hashing.

The sufficiency of limited independence has several computational applications.
First, it means that any random process whose analysis uses the CH bounds can
be simulated with a weaker random source than one which outputs unbiased and
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independent bits. Next, via known constructions of r.v.’s with limited independence
using fewer random bits (Joffe [19], Carter and Wegman [9], Mehlhorn and Vishkin
[26], Alon, Babai and Itai [1], Siegel [43]), we can reduce the randomness required for
certain algorithms. One simple example is that of random sampling; given a universe
U and a subset X c U, the problem is to estimate the fraction of objects of type
X in U such that the absolute error of the output is at most 5 with probability at
least 1 for given error parameters 5 and s. The new constructions imply that if R
independent samples are required to yield the desired bound, then it in fact suffices
for those R samples to be k*-wise independent, for k* O(log()). These samples
can be generated by O(log(7)) random samples from U using standard methods. Note
that the above construction is not optimal with regard to the number of random bits
used (see Bellare, Goldreich, and Goldwasser [6] for an optimal construction), but
is extremely simple. It is also easily parMlelizable, whereas it is not known how to
parallelize other schemes for reducing randomness, e.g., random walks on expanders.
It has come to our attention that, via weaker bounds on the kth moment, essentially
the same bounds for the random sampling problem have been obtained by Bellare and
Rompel [7]. We believe that there should be additional applications yielding reduced
randomness. A spectrum of explicit constructions of oblivious routing algorithms on
the butterfly with varying time-randomness parameters is among the results of Peleg
and Upfal [32]; our limited independence result directly matches these bounds on the
hypercube and, we believe, should extend to other interconnection networks.

Finally, we combine the method of conditional probabilities [34], [44] with the
new construction to obtain two results. We get a much faster implementation of
the sequential jobshop scheduling algorithm of Shmoys, Stein, and Wein [41]. It is
comparable in time complexity to the speedups of Plotkin, Shmoys, and Tardos [33]
and Stein [45], but more importantly, the approximation bound it presents is better
than those of [33] and [45]. Here, we show that a problem can be derandomized
directly, thereby avoiding the bottleneck step of solving a huge linear program. We
also prove an "exact partition" result for set discrepancy and derive a polynomiM-time
algorithm for it.

The organization of the paper is as follows. Section 2 presents the new formulation
and its applications to tail probabilities. Section 3 presents applications of these results
to computation.

2. The basic method and applications to tail probabilities. In this sec-
tion, we introduce the method, discuss its implications to the tail probabilities of
various distributions, and analyze some related approaches. We also prove probability
bounds for exactly r successes in a sequence of Bernoulli trials under limited indepen-
dence. As discussed in 1, the basic idea used in the CH bounds is as follows. Given n
r.v.’s X1,X2,... ,Xn, we want to upper bound the upper tail probability Pr(X _> a),
whereX =ln X,# E[X],a=#(l+5),andi>0. Foranyfixedt>0,

Pr(X > a)- Pr(etx > .at) < E[e’tx]
at

by computing an upper bound u(t) on E[etX] and minimizing t(t)/.at over t > 0, we
can upper bound Pr(X _> a). When X1, X2,..., Xn are binary, we construct a class
of functions of X that includes the class {etx t > 0} and do the minimization over
this class; in the process, we discover that XI,X2,..., Xn need only be h(n, it, 6)-wise
independent for a function h(-,., .) that will be defined in equation (3) of the next
section.
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Notation. If x is real and r is a positive integer, then () will denote, as usual,
(x(x- 1)... (x- r + 1))/r! with () 1.

2.1. Estimating tail probabilities of binary random variables. The CH
bounds are frequently used when the r.v.’s X1, X2,... Xn are binary and independent.
In this section, we first assume that XI,X2,...Xn are 0-1 independent r.v.’s with
Pr(Xi 1) pi, 1 < < n; the independence assumption will be relaxed later and

nthe results will be extended to r.v.’s Xi with 0 < Xi < 1 in 2.2. Let X y’i=l Xi,
and # E[X] n= P. We want good upper bounds on Pr(X > tt(1 + 5)) for
(5 > 0. Chernoff [11] implicitly showed that for identically distributed 0-1 variables
X,X2,...Xn and for a > #,

min
E[etX] < L(n,#,a)= (it)

a -#
eat a a

Hoeffding [17] extended this by showing that L(n, #, a) is an upper bound for the
above minimum even if the Xi’s are not identically distributed and range between 0
and 1. Replacing a with #(1 + 5) in the Hoeffding estimate L(.,., .) gives, for 5 > 0,

Pr(X >_ #(1 + )) _< F(n, #, 5)
(1 t,5 n-t*(+5)+ (n- it(1 + 5))1

(1 + ti)( +)

Since L(n, tt, a) is symmetric with respect to (a, #) and (n a, n #), the Hoeffding
estimate also shows that

The following simple upper bounds for F(n, #, 5) and F(n, #,-) are sufficient
to derive most of the useful approximations that have appeared in the literature [17],
[4], [35], [3].

_< a(.. e) +
(see, for example, [35]);

for < 1, G(#, 5) <_ e-"./a [4]; for 5 > 2e- 1, G(#, ) <_ 2-(1+5)* [35],

and
F(n, #,-5) <_ G(#,-) < e-"el2

[171, [4], [35], [3].
At the heart of these estimates are the simple calculations associated with the

multiplicative nature of E[ePX]. Recall that etX Y.o(ti/i!)X. Consider X, for
n n

instance. X2 (Xl Dr- X2 q--.., q- Xn)2 i=1 X/2 -+- 2 1<_il <i2<_n Xi& i=1 Xi +
2 l<l <i,. <n XiXj, since X2 X for Xi e {0, 1}. Similarly, other higher powers of
the Xi’s are unnecessary, implying that a form simpler and more useful than functions
of the form {etX t > 0} might exist. There are many ways to formalize this. We define
for Z (Z1, Z2,..., Zn) E n a family of symmetric multilinear polynomials Sj (z), j
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0,1,...,n, where So(z)- 1, and for 1 <_j

_
n, Sj(z) El_il<12...<ijnzilzi2...zij.

We start with the following simple lemma.
LEMMA 1. Suppose zl, z2,...,zn take on binary values. Then for any positive

integer j, (zl + z2 +... + z,)J x-min(j’n) aii(Z1 Z2 Zn) for some nonnegativeA-i--
integers al, a2,..., amin(j,n).

The proof of Lemma 1 is trivial and is omitted. The converse of Lemma 1 also is
true; if z (Zl,Z2,...,zn) E {0,1}n, then for any j,j 0,1,...,n,

V(u0,...,
J J

3(VO,..., Vj) j+l E tii(Z) E Vi(Zl "- Z2 -’’"-- Zn)
i=1 i---1

So, the two forms polynomial of z + z2 +... + Zn and linear combination of So(z),
Sl(z),..., Sn(Z) are equivalent. Note that if the binary random variables X1, X2,...,
X, are independent, then E[Si(X1,X2,... ,X)] is explicitly available; E[Si(X,X2,

X)] S(pl, p2,..., p), where pj Pr(Xj 1). This explains our preference
for the S’s.

Since the expansion etZ -.=(t/i!)Z converges for all t and Z and since all
the coefficients (t/i!) are positive if t > 0, we get the following corollary.

COROLLARY 1. Let Zl,Z2,...,Zn take on binary values. Then for any t > 0,
there exist nonnegative reals a0, al,..., an such that et(z+z2+’’’+zn) ---- Ei=0n aiSi(Zl,
Z2, Zn).

One reason for the use of the function etx in the CH bounds is the need for
higher moments of X. In particular, the moment-generating function of X is defined
to be E[etX] o(t/i!)E[X]; its derivatives generate all higher moments of X.
Moreover, the use of moment-generating functions embeds the problem of attaining
probability estimates in a space rich with algebraic structure and convex inequali-
ties. (More about the computational aspects of such an alternative approach can be
found in [42].) The need for higher moments is due to the fact that a direct applica-
tion of Markov’s or Chebyshev’s inequality to upper bound Pr(X _> E[X]. (1 + 5))
leads to weak bounds. Higher moments and exponentials give dramatically better
estimates. However, when X is the sum of random bits X1,X2...,Xn, Lemma 1
and Corollary 1 imply that all the higher moments of X can be linearly generated
by {E[i(X1,X2,...,Xn)]" 0,1,...,n}. Equivalently, they are also generated
linearly by any n higher moments of X.

Thus, we now consider functions of the form n--i=o yS(X, X2, Xn), where
y0, yl,..., Yn

_
O, instead of restricting ourselves to those of the form etz, for some

t > 0. Indeed, by Corollary 1, we will be considering a class of functions which includes
the class {etx" t > 0}. For any y (Yo, Yl,...,Yn) e +1 and z (z,z2,...,Zn)
n, define fy(z) -n=o ySi(z). With this notation, we can restate Corollary 1 as
Vt > 0 3y +1 fy(Z,X2,...,Xn)- etx. Assumea #(1+5) to be integral.
Note that for any nonnegative integer m,X rn iff fy(X1,X2,... ,Xn) =o Y(’)
and hence,

(1)
Pr(X _> a)- Pr fy(X1,...,Xn) >_ Y i

i--0
nEi--O YiSi(Pl, P2, Pn)

a

E[fy(Xl, ,Xn)]
E a_--0 (?)

Thus, our goal now is to minimize this upper bound over (y0, y,... ,y) __+1. To
accomplish this, note that Ya+l, Ya+2,. Yn must all be set to 0 since they contribute
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nonnegative terms to the numerator and nothing to the denominator. Next, note that
the right-hand side of inequality (1) is minimized by setting yi 1 if i j* and 0
otherwise, where j* is the integer at which Si(pl, p2,..., Pn)/() is minimized over the
range 0, 1,..., a. To get a better handle on this minimum, we need the following
lemma.

LEMMA 2. For any > 0 and s > 0, Si(zl, z2,..., Zn) is maximized by setting
Z z2 zn ,8 when subject to the constraints that (zl, z2, Zn) E n+ and

En
j=I Zj 8.

Proof. Suppose zp < Zq for some vector z satisfying the constraints
Zn) e ._ and E’--I Zj 8. Then, set z zp + e and z zq- e for any

e < zq z, and set z}-= z for all indices j, j {p, q}. It is easy to verify that z
satisfies the above constraints and that S(z’) > S(z). Hence S(z) is maximized at
z=z* where - for j=l 2 n.Z Tt

Inequality (1) and Lemma 2 imply that if p (-=1 pi)/n , then for any
n-t-1yE +

(2) Pr(X > a) _<
E %0

Since ((i+n1)pi+I /(ia+l))/(()pi/()) (-ip__.=, which is less than, equal to, or greater
a--upthan 1 depending on if is less than, equal to, or greater than i_tt/n (7)pi/(i) is

minimized at

(3) i* h(n, #, 5)
1-#In 1-#In

So, the right-hand side of (2) is minimized at y y*, where y 1 if i i*, and
0 otherwise. Hence, we get

Ul(n, pl,... ,pn, 5) is guaranteed to be better than any estimate based on the CH
method, since we have considered a larger class of functions. Also, the upper bound
U2(n, it, 5) on U1 (n, pl,..., pn, 5) is better than any such estimate which depends only
on it and which is oblivious to the actual values ofpl, p2,..., Pn; this includes F(n, it, 5)
and G(it, 5).

But most importantly, note that these new bounds will hold even if X1, Xg.,...,
X are only h(n, it, 5)-wise independent. This is because each term in Sk(X1, X2,...,
Xn) is of the form Xil,Xi.,... ,Xik for any integer k, and, hence, E[Sk(X1,X2,...,
X)] will be the same for k-wise independent X1, X2,..., Xn as for completely inde-
pendent X1, X2,..., Xn. Because it(1 + 5) <_ n, h(n, it, 6) <_ n; in typical algorithmic
situations, h(n, it, 5) << n. This will be of great use later on.

THEOREM 1. Let bits X1,X2,...,X be random with Pr(Xi 1) pi, X
n n-=1 Xi, and it E[X] -=1P" Suppose further that the X ’s are k-wise indepen-

dent for k >_ h(n, it, 5). Then for any 5 > O,

Pr(X _> it(1 + 5)) _< Ul(n, pl,...,pn,5) <_ U2(n,#,5).
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Furthermore, U2(n, #, ) <_ F(n, #, 5) _< G(#, ti), i.e., the CH upper bounds hold even

if the Xi’s are only h(n, #, )-wise independent.
Our results also imply upper tail bounds for r.v.’s with smaller independence than

h(n, #, ti).
nLEMMA 3. Let X1, X2,..., Xn be binary r.v. ’s with X =1 Xi and # E[X].

Then for any ti > 0, Pr(X _> #(1 + 5)) _< (’)(#/n)k/((k+)), if the Xi’s are k-wise
independent for any k < h(n, #, ).

Proof. Set y -0 for k and Yk 1 in (2). [:]

It turns out that U2(n, #, 5) is almost the same as F(n, #, ).
THEOREM 2. Given n random bits X1, X2, Xn, let X i=ln Xi, # E[X],

and p "- #In. Then for any 5 > 0,
(I)/f the X ’s are [#-wise independent, then Pr(X _> #(1 +5)) _< G(#, i), where

G(#, 5) (1 + i)1+
<

e-thln(l+5)/2 _< e-/3 if >_ 1.

(II) If the X ’s are r 5/1- pl-wise independent, then Pr(X _> #(1 + 5)) _<
F(n, #, 5).

(III) If the Xi’s are [#5/p [n[-wise independent, then Pr(X p(1 5))
F(n, , -), where

e-52/(2(1-p))
F(n, #, ) <_ e_2p52

if p <_ 1/2;
if p> 1/2.

Proof. The first claim follows by setting k _< h(n, #, 5) in Lemma 3. The
only interesting case is that k < h(n,#, 5). We apply the inequality (’)(#/n)k/() <_
Q(n, k, a) ()k(#/n)k(n_kjn-k(, a_ak )a-k, valid for any a < n; this inequality follows
by induction on k combined with the fact that the function (1-5)x-1 is nonincreasing
for x > 1. Let a (1 + ti)# and k’ #5. Then,

Q(n, k’a) (n/(n #5)
(I + 5)(1+5)

1+5
1+

It is easy to verify that Q(n, x, a) is nonincreasing for x <_ h(n, #, 5), and hence the
bound G(#, 5) established for k’ also holds for k
are either straightforward or have been established in [4], [35], [3].

The second claim follows immediately from Theorem 1, while the third claim
follows by obtaining lower tail bounds from the upper tail of 1(1 Xi) and im-
porting the upper tail bounds established in [17]. By Theorem 1, these bounds hold
with independence h(n, #, 5).

As we will show in 2.3, bounds almost as good as G(#, 5) and F(n, #,-) hold
with the much smaller independence k [#52j when 5 < 1.

2.2. Tail probabilities of bounded ,,random variables. We now show that
almost the same results hold for arbitrary r.v.’s which take values in [0, 1]. Analogous
bounds for bounded r.v.’s that are constrained to lie in other intervals can be obtained
by a linear transformation of their ranges to [0, 1]. Given arbitrary r.v.’s Xi such
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that 0 <_ Xi <_ 1, 1, 2,..., n, we wish to upper bound Pr(X >_ #(1 + )), where
nX -=1 Xi,# E[X], and > 0. Hoeffding [17] has proved upper tail bounds

for bounded r.v.’s, assuming full independence among the X’s; the main point of
interest here again is that partial independence suffices, giving bounds almost as good
as Hoeffding’s. Almost all of the work is done by the following lemma.

LEMMA 4. Let z be real numbers, with 0

_
z

_
1, 1, 2,..., n, and suppose

that a >_ O, j <_ [aJ and Ein_._l zi a. Then,

(a)j(Zl,Z2,...,Zn)

_
j

Proof. We will consider only the case =1 z a; then the upper bound will
directly follow if in__ z > a. If 0 < zp _< Zq < 1 for p = q, then Sj(z) decreases if we
set Zp Zp- and zq := zq+ for any < min(zp, 1-z). Thus, if Sj(z) is minimized
at z* in the domain [0, 1] n under the constraint that ’n=l z a, then 0 < z < 1 for
at most one i, 1 _< _< n.

If a is integral, then z e {0, 1}, 1, 2,..., n, and hence Sj(z*) (). Otherwise,
suppose a is nonintegral; let al [a] and a2 a- al. Hence, z a2 for some index
p and z e {0, 1} for e {1, 2,..., n} {p}; thus,

Sj(z*)
j +a2. j al)

and we need to show that this is at least (), i.e., that

[ally + a2j. [al]j-1 >_ [al + a2]j -[a]j,

where [x]r denotes x(x- 1)... (x-r + 1) and [x]o 1. This is easily seen by induction
on j, as follows. Equality clearly holds for j 1. For j > 1, [ally + a2j. [ally-1
[ally + (j 1)a2[al]j-1 + a2[al]-l. Since a2 < 1, a2[al]j-1 > a2[al + a2 1]j-1 and,
hence,

[al] + a2j. [al]j-1 >_ al ([al 1]j-1 q- (j 1)a2[al 1]-2) + a2[al -k a2 1]j-1
ind hyp.

_> al[al + a2 1]j-1 + a2[al + a2 1]j-1
[al + a2]j. V1

By essentially the same analysis as before, we get the following theorem.
THEOREM 3. Given n arbitrary r.v. ’s X1,X2,...,Xn with 0 <_ Xi <_ 1 and

E[Xi] pi let X -n Xi and it SIX] Then if Xi X2 Xn are k-wise inde-
pendent for k >_ h(n, it, 5), then Pr(X >_ it(1 + 5)) _< Vl(n, pl,... ,pn,() V2(n, it, (5)
for any 5 > O.

Proof. From Lemma 4, we have that for any a > 0 and for nonnegative y0, yl,...,

Yn

a
Pr(X _> a) _< Pr fy(X1,...,Xn) >_ Y i

i=1

E[fy(Xl, ,Xn)]

i=1 Yi(i

and the rest of the proof follows as before. [:]
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Remark. The methods of 2.1 were motivated by the fact that if X is the sum of
n 0-1 r.v.’s, then any n higher moments of X linearly generate all the higher moments
of X. However, note that if r.v’s X1, X2,..., Xn take arbitrary values in the interval
[0, 1] and if X- ni=1 xi, then such a result is not true in fact no bound can be put
on the number of higher moments needed to generate all the moments of X. However,
the intuition gained from 2.1 has helped us obtain a large deviation bound for X,
which is as good as the known bound [17]. This is despite the fact that we have not
considered all the higher .moments of X; one of the original motivations for Chernoff’s
consideration of E[etX] was that it generates all the higher moments of X. A possible
interpretation of our result of this subsection is that it pinpoints the "crucial" higher
moments.

2.3. Redirecting the method. Recall that in 2.1 we introduced the class
of functions So(z),Sl(z),..., Sn(z) and generalized Chernoff’s idea by working with
nonnegative linear combinations of these functions. A natural generalization of this
is to allow arbitrary linear combinations; however, the corresponding optimization
problem, described below, seems hard to analyze.

Suppose we have n binary r.v.’s X1,X2.,... ,Xn with Pr(Xi 1) pi and with
ni=1 Xi and we want good upper bounds on Pr(X > a) where a > E[X] when

the Xi’s are k-wise independent. As before, let

n

fy(Xl,X2, ,Xn) E Yii(Xl’X2’ "Xn)’
i--0

with the further restriction that yi 0 for i _> k + 1 to capture the idea of k-wise
independence. Note that fy(X1, X2,..., Xn) is a function of X;

fy(Xl,X2,...,Xn)--- gy(X)
min(k,X)

E yi

i--0

If g(t) _> 0 for t 0, 1,... ,n (so that Markov’s inequality can be applied) and if
gy(b) >_ gy(a) for b >_ a, then

Pr(X _> a) _< Pr(gu(X) _> gu(a)) <_ -i=0 yiSi(pl, p2, pn)
gu(a) gu(a)

We can scale the yi’s so that gy(a) 1, and thus we get the following linear program
with y0, yl,..., Yk being arbitrary real variables.

LP(a, k, pl, p2,..., p,):
kMinimize ’i=0 yiSi(pl, p2,..., pn) subject to

gy(j) > 0,j 0,1,...,n,
gy(a) 1, and
gy(b) >_ 1, b a + 1, a + 2,...,n.

Unfortunately, we have been unable to analytically compute the optimum of this
linear program. However, we now consider an important case in which some of the
multipliers are negative and that is a feasible solution to the above LP; our results
generalize a result of [22], [8], [27]. We use the kth moment inequality

Pr(IX- E[X]I >_ hE[X])<_ E[IX E[X]
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which is attributable in various formulations and generalizations to Chebyshev,
Markov, and Lo6ve [18] and has been used to attain probability deviation estimates
for over a century. Note that if X X1 +X2 +... Xn, where the Xi’s are random bits,
then (X E[X])k is a linear combination of S0(X1, X2,..., Xn), S1 (X1, X2,..., Xn),

Sk(XI, X2,..., Xn), with some of the multipliers being negative. We derive good
nupper bounds on E[[X E[X]Ik], where X i=1 Z, with the X’s being k-wise

independent r.v.’s that satisfy IX-E[X][ <_ 1; this yields bounds that are better than
those given in Theorem 1 and Lemma 3 when k << h(n, #, 6) and 5 < 1. Moreover,
the large-deviation bounds derived in Theorem 5 for k-wise independent r.v.’s agree
with the simple exponential forms of the large-deviation bounds most often cited for
sequences of fully independent Bernoulli trials.

Theorem 4 is similar in spirit and proof to Lemma 4.19 of [22] for identically
distributed Xi and constant k, but the present result is somewhat tighter even in the

n
case of identically distributed X, especially if X -=X has small variance. A
slightly weaker form of a special case of one of the inequalities proven in Theorem 4
was also obtained in [8], and some related formulas were given in [27]. The proof of
Theorem 4, as well as related proofs presented elsewhere, is based upon estimates for
the kth moment of X. Estimates related to ours, but for a more general class of r.v.’s,
were established in [28]. That formulation, however, is considerably more complicated
than ours and is not as tight for the cases specifically considered here. In particular,
Theorem 5 cannot be derived from the bounds in [28] for the kth moment. Other
related work was done by Gladkov [15] (with later improvements in [16]). He showed
that if Y1, Y2,..., Yn are independent r.v.’s, with Y/ having the same distribution as

X and with Y Y + Y2 +"" + Yn, then as n cx, the convergence of Y to the
normal distribution implies a comparable convergence for X provided k is sufficiently
large.

THEOREM 4. Let X,..., Xn be a sequence of k-wise independent r.v. ’s that sat-
isfy IX- E[X][ _< 1. Let Z -= Xi, with E[X] tt, and let r2[X] denote the
variance of X so that a2[X] -n=l a2[X] (provided k >_ 2, which we require). Then
the following hold for any even k.

(I) ForC >_ a2[X],Pr([X #1 >- T) <_ x/cosh(v/k3/36C)(kC/eT2)k/2.
(II) For 2 <_ k <_ 3(a2[X])/3, pr(]X- #1 >- T) <_ 2(ka2[X]/eT2)k/2.
(III) For C >_ max{k, a2[X]},Pr(]X #1 >- T) <_ (kC/e2/3T2)/2.
Proof. We use the kth moment inequality

(4) Pr(IX- #] _> T) _< E[IX- t[1
Tk

For even k,E[IX- [a] E[(X- tt)a]. Most of our effort will therefore be invested
in estimating the kth moment of X tt. Let pi E[Xi], for 1 _< _< n. Then

E[(X E (Z,__
( in) E[(XI pl)il] E[(Xn pn)i’]"

il+i2+"’+in=k

Recall that cosh(x) (e + e-X)/2. Throughout this manuscript, e denotes, as usual, the base

of the natural logarithm.
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Clearly, E[Xi- pi] 0 and any term in (5) that has some ij 1 must be 0.
More generally, IE[Xi- pi]el <_ a2[Xi] for any t >_ 2, since IXi- Pil _< 1 and therefore
IXi- pile <_ ]Xi- pil2; hence IE[Xi- pi]el <_ IE[Xi- pi]2]_ a2[Xi]. Thus,

(6)

k/2-1

E[(x-
g--1 Jl q-J2T’"TJk/2-- =k

ji_2

( k
jl,j2, ,Jk/2-e

k/2-e

il <i2<...<ik/2_ r=l

k/2-1

e=l Jlq-J2+’"+Jk/2--g=k
ji>_2

( k )jl,j2,... ,jk/2-e

.-’-0 Jl +J2q-’"+Jk/2--
i>2

k ) ([x])/-jl j2, Jk/2-e (k/2 g)!

Estimate (6) comes about because the summation

k/2-e

il <i2<"’<ik/2-e r=l

is maximized when all the a2[Xic] are equal (Lemma 2) and hence is at most

Let To, T1,... Tk/2-1 denote the k/2 terms in summation (6); hence,

k ) ([x])/-e
jl,j2,...,Jk/2-e (k/2 t)!

(8) ) ([x])/To 2,2,...,2 (k/2)!

[k/2+e-1There are exactly 2e terms (i.e., possible sets of assignments for jl, j2,...,
jk/2-e) in Te, since ji k and ji >_ 2. For each such assignment of values,

vIk/2-e 2k/2-e32e (and equality holds only whenk=l (2k- 2) 2g, hence Xlk=l jk! >_
g <_ k/6 and exactly 2g of the k/2 values equal 3 while the remaining values equal
2). Hence (j,J2,..Jk/2-) <- (2/9)e(2,2,.k..,2)and

Te< (k/2+e-1) ( 2 )
e

2g 9a2[X]
(k/2)! To(/- e)!
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(k/2+g-1 (k/2)’ x-k/2-1 k3Since 2t <(k/2)3/(2) wehave El(X-#)] < To -,t=o (362[x])(2t)!(k/2-e)!
Using Waylor’s series for cosh(x) (ex + e-x)/2 -.j x2J/(2j)!, we see that

e=o (20!
_< cosh

36a2[X

Consequently

(9) E[(X #)k] _< cosh
36a2[X To.

To is readily bounded by expanding (8) to get To k!(a2[X])k/2/(2k/2(k/2)!). We
may apply a strong version of Stirling’s formula [37]

which is valid for all r >_ 1, to bound both k! and (k/2)!. This yields To <_ V/(ka2[X]/
e)k/2. Substituting for To in (9) gives

(o) E[(X #)k] _< xflcosh
36a2[X e

which establishes the desired bound for E[(X #)k].
Estimate (6) is an increasing function of a2[X], and the estimate in (10) exceeds

(6). Therefore, a2[X] can be replaced by any C _> a2[X] in (10). The proof of (I) is
completed by applying this estimate to (4).

All other bounds are special cases of (I). When k _< 3(a2 Ix]) 1/3, we use C if2 IX]
in (I) and overestimate cosh(v/k3/36a2[X]) by cosh(x/)

(III) is easily verified for k 2 by applying Chebyshev’s inequality,

Pr(IX- #l-> T)_< <
T2 e2/3T2"

For k >_ 4 we may replace C by max{a2[X],k} in (I) and overestimate

cosh(/k3/36C) by cosh(). Since cosh(x) < e/x/ for x >_ , we get cosh() <_
ek/6/x/ and, hence,

(kC)
/

Pr(IX-#I>-T)<- e2/3T2

This concludes the proof of estimate (III).
We now combine the results of Theorem 4 and Theorem 2 to establish Chernoff-

like bounds [11], [17], where the independence k might even be much smaller than the
deviation we wish to bound.

THEOREM 5. If X i8 the sum of k-wise independent r.v. ’s, each of which is con-

fined to the interval [0, 1] with # E[X], then the following hold:
<_ 1,

(a) if k <_ [52#e-1/3, then Pr(IX- #1-> 5#) -< e-[k/2J, and
(b) if k- [52#e-1/3j, then Pr(IX- #1-> 5#) -< e-[/3J.
(II) For 5 >_ 1,
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(a) if k <_ [6#e-l/a], then Pr(IX te _> 6te) _< e-Lkl2J, and
(b) if k [htee-1/3j, then Pr(IX- te] _> ate) _< e-[5/3].
(III) For 5 >_ 1 and k [hte],

Pr(IX- tel-> 5te) _< G(te, 5) _< e-51n(l+5)>/2 < e-5"/a.

Proof. (I). To prove that (la) holds we apply Theorem 4(III) with C te, T- 5te
and k [52te/el/3j, which is permissible since te _> k and te _> a2[X] for variables in
the range [0, 1]. When k [52te/el/3j and k is even, this gives a bound of

e2/362te
since 2e1/3 < 3.

If k is odd, we follow a calculation similar to that above, but only use independence
k- 1. This gives

k 1 )
k-l/2

Dr(IX-#1 > #) -< e2/a52#)
k 1 )

(k-l)/2

<-- ek <- e-(k-1)/2e-(k-1)/2k"

Since k _> 2 for the desired bound to give anything less than 1, v-(k-l)2k

_
e-l/3

and hence,
Pr(IX- tel >- 6te) <_ e-(k-1)/2+I/3) <_ e-[52u/3].

In (II) we follow the same iterations as in (I), but set C 5te and k <_ [hte/el/3j
for (IXa); (IIb) we use k [hte/e/3J or [SteleS3] 1, depending on the parity of
[hte/el/3j. In (III) we reiterate the result of Theorem 2, combined with Theorem
3.

Remark. The proofs of parts (I) and (III) of Theorem 5 also point out the relative
merits of the basic method (2.1 and 2.2) versus its redirection of this subsection. The
basic method of using nonnegative linear combinations of the symmetric polynomials
Si gives better probability bounds when 5, the relative deviation from the mean, is
greater than 1; it yields the probability bound of exp(-O(51n(1 + 5)te)) in this case.
On the other hand, the formulation involving the kth moment inequality gives a much
smaller bound on the amount of independence needed when 5 < 1.

2.4. Probability bounds for exactly r successes under limited indepen-
dence. Some applications require estimates for the probability that exactly r successes
occur in cases where the occurrence of at least r successes is not too improbable. The
following theorem shows how and when this can be done. It also provides relative
errors, which can be useful for estimating conditional probabilities.

THEOREM 6. Let X1, X2,..., Xn and YI, Y2,..., Yn be Bernoulli trials with prob-
abilities of success E[Xi] E[]] pi. We let the Y ’s be independent, but only require
the Xi ’s to be k-wise independent. Let p(r) Pr(i Yi r) and pk(r) Prk(X r),
where the subscript k denotes the k-wise independent trials. Let P(r) --e>r P(g),
and Pk(r) -.> Pk(g).

(I) If r <_ k, then Ipk(r) P(r)l <_ ()(k)(n)k.
(II) /f k _> eta + ln(p-0)) + r + D, then Ipk(r) P(r)l <_ e-Dp(r).
(III) If k >_ eta + ln(p-0))+ r + D, then [Pk(r) P(r)l <_ (1 P(r))e-D.
(IV) /f r _> (1 + 5)te + k, then Pk(r) <_ (1 + 5)-k,P(r) <_ (1 + 5) -k, and, hence

IPk(r)- P(r) <_ (1 + 5) -k. Although (IV) holds for all values of k, it is meant to be
used for k <<
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(V) Ifr > (1 +5)#+k andk > I-l, then Pk(r) <_ G(#,5),P(r) < G(#,5), and,
hence, IP (r) P(r)l _< G(p, 6).

Proof. For an arbitrary event A, we may use standard inclusion-exclusion to
estimate the probability of the event [AA [Att{il Jr} (Xt 0)]]. The probability p(r)
can be expressed in terms of events A [A/e{,,...,i (Xj 1)], which admits a simple
estimation as follows.

pk(r) E
je{il

/=0 il < "r+l j

/ (x 1)).{1 it+,}

Truncating the outer summation at k- r introduces an error that is bounded
by the last term of the truncated sum. Let T pTPk (r) and (r) denote these truncated
sums, in the respective cases of k-wise and full independence. Since the first k- r
terms in the outer summation are the same for both fully and k-wise independent

T pT kr.v.’s, Pk (r) (r). Furthermore, Prk(Aje{i, ik}(Xj 1))= rly=l pit Hence,

() () (-1)- ( k)
k

il <...<ik j=l

for some 5k E [0, 1], and an identical inequality holds without the k subscripts. Hence,

(11) Ip(r) p(r)l <_ ( k
k

i<...<ik j=l

kil <...<i Hj=IP is maximized when all p are equal (Lemma 2) and, hence,

ipk(r) p(r)l <_ (k (n ) -P2 nU
k

napn)k (n (k )
(I) follows.

To get multiplicative error bounds, let Qr -i<i2<...<i 1-I=l(pi/(1-pi)) and
define the summation in the error estimate of equation (11) by Rk

kil<...<i 1-[=1 Pit. Observe that Rk is the expected number of size k sets of successes
among n trials so that z successes total accounts for () such sets. In the fully inde-
pendent case, p(r) p(0) i<i.<...<i 1-I=l(Pi/(1 pi)) p(O)Q. Furthermore,
R _< Q, and (k)Rk <_ Rr x Rk-. It follows that

/ \|k|R<R x R_<QRk_ <I(,,)- p(.)l < p(r)#-
p(O)(k- )!’

since Rk- <
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For k > e#- log(p(0))+ r + D, the factor (#)k-r/(p(O)(k- r)!)is bounded by
((k + log(p(0)) D r)/(k r))k-re log(p(0)) < e-D, which establishes (II).

(III) is immediate, since

P(r) 1-

and, hence,

IPk(r)- P(r)l <- E IPk(g)- P()I <- EP(g)e-n (1- P(r))e-n.
g<r g<r

Finally, suppose that r (1 + 5)# + k. Then by Lemma 3,

(12)
#kPk(r) <

k!(k)
<
r(r- 1)(r- 2)... (r- k + 1)

_< (1 + 5) -k.

(IV) is completed by observing that (12) also holds with P(r) substituted for
Pk(r). (V) is an immediate consequence of Theorem 2. This concludes the proof of
Theorem 6.

It is worth pointing out that parts (I)-(III) of Theorem 6 are not strong when
# > v/-, since it follows from the work of Linial and Nisan [24] that Pr(X g)
Pr(Y t)(1 +O(e-2(k-O/v)) independently of #, which gives a much sharper bound
in this case. Also, independently of our work, a result similar to part (I) of Theorem
6 has been proven by Even et al. [14]; they have shown that Ipk(O)- P(O)I < 2-a(k).

Theorem 6, in fact, achieves its greatest strength when # is small, say # o(n), or
even # O(1). Such instances are not unusual when pseudorandom integers are being
generated uniformly in the range [0, n], and a successful trial corresponds to just a few
different values. This is precisely the usual circumstance in, for instance, hashing [40],
[52]. As an example, consider the (uniformly distributed) random placement of n balls
among n slots. The expected number of items in slot 1 is only 1. The probability p(0)
that no item lands in a given slot is about 1. Theorem 6 shows that if the independence
k is e + 1 + r + D, the probability that exactly r items land in that slot is the same
in the k-wise independent case as in the fully independent case up to a multiplicative
factor of (1 + e-D) or less. Suppose that, during the placements of balls through m,
exactly r balls fall into slot j for 1 < < m < n r < m- + 1 Let X denote this
event (with the dependence upon j understood). The conditional probability that,
under k-wise independence, ball m + 1 also falls into slot j is Prk(Xm+l,m+l]lX[Z,m]).r
If we use 1 degree of freedom for the (m +-1)st ball, it will be uniformly distributed,
while the previous m balls will enjoy (k- 1)wise independence. We may estimate
the conditional probability as Prk(x[rl,m]lXm+l,m+l]) Pr(xl[m+l,m+l])/Prk-1 (X[Z,m])"

rSince both Prk-l(X[Z,m]) and Prk(X[Z,m]lX[m+l,m+l]) can be estimated by Pr(X,m])
(1 + errk-1) where errk-1 is the relative error that results from the limited indepen-

X1 r with a relative error thatdence, we see that Prk([m+,m+l]lX[Z,m]) is very close to
is approximately 2errk_. For k _> 1 + e + 1 + r + D, the resulting accuracy is about
1 :l: 2e-n. Thus even with modest independence, this process behaves "as expected"
much of the time; that is, the corresponding conditional probabilities for k-wise inde-
pendence are very close to the ones for full independence, in many cases.
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2.5. How close to optimal are our results? It is known that the standard
CH bounds are optimal in general to within a constant factor in the exponent, since we
know by the Central Limit Theorem that as n - , the tail of the scaled sum of i.i.d.
r.v.’s tends to the tail of a normal distribution, and hence we cannot significantly
improve the tail probabilities presented by Theorem 5. However, what about the
independence we obtain? Can it be reduced further to get the same tail probabilities?

To answer this, we note that the tail probabilities presented by Theorem 5 for
k-wise independent r.v.’s are of the form e-c’k. However, n k-wise independent r.v.’s
can be obtained from a sample space of size

Lk/2J

(O(n/k))Lk/2J
i--O

as shown for binary unbiased r.v.’s by Chor et al. [12] and for general r.v.’s by Alon,
Babai, and Itai [1]. Noting next that any nonzero probability in a sample space of size
t is at least , we see that to obtain a tail probability of the form e-c’k we need at least

k )-wise independence. Thus, the independence we obtain cannot generally be-(log(n/k)
reduced by more than a factor of O(log n).

However, by using results from the newly developing theory of approximating
probability distributions (Naor and Naor [29], Azar, Motwani, and Naor [5], Alon et
al. [2], Even et al. [14], and Chari, Rohatgi, and Srinivasan [10]), we obtain optimal

A sample spaceresults in the case where the Xi’s are binary with Pr(Xi 1) .
X for n-bit vectors was defined to be k-wise e-biased by Naor and Naor [29] (see also
Vazirani [49]) if

where denotes the XOR function and zi denotes the ith bit of an n-bit string z
picked uniformly at random from X. One property of such a sample space is that
 e,e= 1,2,...,k,V{il,i,...,Q} {1,2,...,n},Vbb...be e {0,1}e,

1
(13) Pr(Xil bl, xi b2,..., xi b) e.

X is e-biased if it is n-wise e-biased. Constructions of k-wise e-bied sources of
size poly(k, log n, ) were presented in [29], [2]. Such sample spaces have been shown
to have several applications to explicit constructions and derandomization, mainly
because probabilistic analyses may be expected to be robust under small perturbations
of the probabilities. It is easy to see how our methods can be used to derive large
deviation bounds for xx + x2 +... + Xn; from inequality (13), it follows that for a
k-wise e-biased source X,

1 )e +e
and hence, by picking e 1/2, this quantity can at most be double its unbied value

) n andof (). 1/2e Thus, for a k-wise e-biased random source with k h(n, g,

n(1+5) <2.U: n,(14) Pr xi
i1
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Because such a source can be generated using poly(k, log n) random bits, we see that
this result is optimal as long as k f(logn); if k O(logn), then the probability
space is polylogarithmic in size and should in most cases be dispensable via brute-force
search of the sample space. Similar results hold when the Xi’s are binary with their
probabilities of being 1 being the same negative power of 2 (not necessarily 1/2) using
identicM methods.

2.6. Upper tail bounds for some other distributions. Suppose we have
random bits X1, X2,..., X, with some arbitrary distribution. Let X in=l Xi and
# E[X]. Then, for any a > #, the methods of 2.1 yield

Pr(X > a) <
yiE[Si(X , X2,..., Xn)]

G a=o V(y0, Y1,’’’1) e }__+1.

The following theorem is immediate.
THEOREM 7. Given n random bits X, X2,..., Xn with X -in= Xi and #-

E[X], suppose zj is an upper bound on E[Sj(X,X2,...,X,)],j 1,2,...,n. Then,
if a #(1 + 5) for 5 > 0, the following hold:

a a(I) Pr(X _> a) _< -]i:o yizi/--:o Yi(i ), V(yo, yl,..., Ya) e }__+1
(II) If X1,X2,...,Xn are k-wise independent, then Pr(X _> a) _< min{=l,2 k

zi/(?).
As an example of a distribution that benefits from the above, consider the self-

weakening r.v.’s defined and used in [31]; random bits X1,X2,...,Xn are defined
to be self-weakening with parameter A in [31] if for all j and for all distinct indices

Xl, x,.,..., X, E[I-I_I X] _< , YI= E[X]; note that zj <_ A()(n)J in this case.
Hence, Theorem 7 directly implies one of the main theorems of [31], which states that
if X, X2,..., Xn are self-weakening random bits with parameter A with X in__l Xi
and #--- E[X], then for any 5 > 0, Pr(X >_ #(1 + 5)) is at most times any cn-type
upper bound on the corresponding probability had the Xi been independent, with the
same individual distributions. It was the work of [31] which primarily motivated the
methods of 2.1. Furthermore, the applications sketched in 3.2 use Theorem 7.

Theorem 7 helps improve the known upper tail probability bounds for the hy-
pergeometric distribution, an important source of self-weakening random variables.
Suppose n balls are picked at random without replacement from an urn containing M
red balls and N M balls of other colors. Let X be the number of red balls picked
in the random sample and let p . Then for 5 > 0, a special case of a result of
Hoeffding [17] (see Chvtal [13] for another proof) implies that

(15) Pr(X >_ np(1 + 5)) <_ F(n, np, ).

We prove the following strengthened version of inequality (15).
LEMMA 5. Suppose a random set of n balls is picked from an urn containing M

red balls and N- M balls of other colors. IfX denotes the number of red balls picked,
p- ,5 > 0, and k h(n, np, 5) o(N), then

Pr(X _>_ np(1 + 5)) <_ U2(n, np, )e-O(k2/M)
_

F(n, np, )e-O(k2/M).

Proof. (Sketch). Number the balls picked s 1, 2,..., n and let Xi be the indicator
r.v. for the event that ball was red. Then X i=1 Xi and

Pr(X _> a) U3(n, np, 5) E[Sk(Xl,X2, ,Xn)]
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E k Pr(Aak.=where a [np(1 + 5)] For distinct indices il, i2,.. ik, [Hj=I Xij] Xij
1) k-1 M-i1-Ii=o N-i; hence,

U3(n, np, 5) ( N )
k

U2(n, np, 5) - i=0

k-l( (_ )1- -1
N-i

i=1

which is e-(k/M) if k o(N).
Remark. Note that sampling without replacement produces r.v.’s which are self-

weakening with parameter 1. Lemma 5 gives good improvements over inequality (15)
in many interesting cases, e.g., consider the case p constant, 5 constant, and
(M.5+) _< n o(N) for any fixed e > 0.

Also, the CH bounds [11], [17], [35], [3] depend only on #, not on the actual
values of pi, and give the upper bound F(n, #, ) >_ U2(n, #, 5). We know for any
5 > 0 that Pr(X > #(1 + 5)) < UI(n, pl, ,pn, 5) Sk(Pl, ""Pn)/("(l+5)k ), where
k h(n, #, 5). By Lemma 2, this is maximized by setting pi #In for all i, subject
to the constraint that E[X] #. However, if the values pi are different, we get
bounds formally superior to U2(n,#,5) and F(n,#,5). Suppose, for example, that

n
# n/2,p
Then

k-i k
i=0

where k h(n,#,5). Note that f(0) _< e-O(k2/n) by Lemma 5 and f(e) can get
arbitrarily close to f(0) since f(.) is continuous.

Remark. This particular result can only increase the constant factor in the ex-
ponent of U2(n, #, 5). However, it is a small step towards better understanding of the
dependence of Pr(X _> #(1 + 5)) on n, pl,... ,Pn, and 5. Similar improvements can
also be made in the case of nonbinary r.v.’s. An alternative approach might be to
derive CH bounds for a sum of Bernoulli trials as a function of the variance as well as

#, a, and n, as in [42].
A final application is to the semirandom source introduced by Santha and Vazirani

[38]. A random source that outputs bits X1, X2,..., Xn is defined to be e-semirandom
in [38] if

Vi 1/2- e _< Pr(X- llX1,X2,... ,Xi-1)

_
1/2 + e,

i.e., the random bits can be correlated, but only to a limited extent, independently of
the past history. Despite its seemingly weak nature, such a model has been shown to
be able to simulate complexity classes such as RP (Vazirani and Vazirani [50], [51]),
and the study of a generalization of this model by Zuckerman [54] has led to significant
results recently (Nisan and Zuckerman [30], Wigderson and Zuckerman [53]). Noting
that for such a source,

[j ](1)kIE __Xi <_ +s
--1
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for all k _> 1 and all distinct indices il, i2,..., ik, we see that

Pr X>_n -+ (1+5) <_U2 n,n + ,5
i--1

for an -semirandom source.
Inequality (14) shows another application of our techniques.

3. Applications to computation. The most striking point of Theorems 1and
5 is that bounds as good as the CH bounds can be obtained with small independence.
This implies, for any analysis that relies on the CH bounds, much weaker requirements
on the random sources used. We now present some further computational applications
of the new results.

3.1. Reduced independence for randomized algorithms. There are known
constructions of r.v.’s with limited independence using a small number of random bits.
Examples include: the construction of [19], the use of universal hash functions [9] to
generate IF many k-wise independent random elements from a finite field F using
O(k log IFI) random bits, and the result of [1] using coding techniques [25], which gives
a polynomial (in n) time algorithm to construct n k-wise independent and unbiased
random bits given O(k log n) independent unbiased bits for any k, k _< n. Combining
these with our result on reduced independence for the CH bounds, we get a major
reduction in the amount of randomness needed for several randomized algorithms.

3.1.1. Reduced randomness of random sampling. In random sampling,
we hve a huge finite universe U and a subset W c_ U, and we want to estimate the
fraction f* -IWl/IVl. Given error parameters 5, > 0, the method used is to pick
random sample S of size N(5, ) from U and output the fraction f of type W elements
in S; N(5,) must be such that Pr(If* fl -> 5) -< . This is required, for instance,
in PAC learning [47] and running BPP algorithms. What was known so far is that
N(5,) O(1/52) log() with M1 the samples being independent. We can improve
this to the following theorem.

THEOREM 8. Given a universe U, a subset W .c U, and error parameters , > O,
))-wise independencesuppose a set S of 0(1/52) log() random samples with O(log(7

are picked from U. Then, if f* and f are the respective fractions of type W elements
in V and S, Pr(If* fl >- 5) <_ will hold.

Proof. Consider a randomized algorithm which looks at a random set of samples
S from U, and outputs the ratio f of type W elements in S. We now look at the
random properties of S that are required for the claim Pr(If* fl-> 5) _< to hold.

Let ISI n. In the notation of Theorem 5, we want to claim that Pr(IX
5’#) _< , where # E[X],X hi, and 5’ 5If*. We apply Theorem 5 with X fn
and # f*n and choose k* consistent with parts (Ia) and (IIa). For such a suitable
choice of independence k* among the elements of S, Pr(IX #1 -> 5’#) can be bounded
by e-[k*/2J. Hence, it suffices to choose k* _> 2[ln(7)], for the above probability to
be bounded by . To compute the required sample size n, we distinguish between the
two cases 5 _< 1 and ti > 1. Then, from part (Ia) of Theorem 5, the probability that

IX- #] is greater than 5’# is bounded by e-[k*/2J provided that k*
and k* _> 2[ln() for this probability to be bounded by . It therefore suffices to
choose 5’2#e-1/3

_
2[ln(7). This will hold if n52e-1/3/(2f*)

_
[ln(7)]. Because

e-1/3/2 > 1/3, it suffices to choose n _> Nl(5,s) (3f*/52)[ln().
1-

If 5’ > 1, then a
similar analysis using Theorem 5(IIa) implies that N2(5, )= - [ln(7)] many samples
with 2[ln()-wise independence suffice to satisfy the error bounds.
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Note that since both f* and 5 are clearly bounded by 1, the number of samples
and independence needed in both the above cases can be upper bounded by N3(5, )
(3/52) [In(2)] and 2

By Theorem 5 the choice for the independence that minimizes the error bound
is an increasing function of the sample size; however, increasing the sample space size
when given a fixed independence will also reduce the error probability; a proof of this
claim follows. In the proof of Theorem 5, parts (I) and (II) were derived from part
(III) of Theorem 4 with C #. Note that in the current problem, C nf* and
T aS, where n is the number of random samples picked (in the notation of Theorem
4). When the independence k is fixed, the bound given by part (III) of Theorem 4
decreases with n for these values of C and T, and the claim follows.

Theorem 4 hence also allows an estimate for the required size of a sample space
with k-wise independent variables, in case k < 2[ln()].

THEOREM 9. Given a universe U, a subset W c_ U, and error parameters 5, > 0,
suppose that S is a sample space of U whose elements are k-wise independent .for some
even k. Then, if f* and f are the respective fractions of type-W elements in U and
for Pr(If* f] >_ 5) <_ to hold, it is sufficient to choose ISI >_ ck/52(2/k) for some
constant c.

Proof. Use part (III) of Theorem 4 by setting C- n, where n-
Theorems 8 and 9 imply "reduced randomness" results for random sampling if

the universe U has some properties. For instance, if U is a finite field and the field
operations can be done in polynomial (in 1/2 and log()) time, then any number of
k-wise independent samples from U can be generated frown k independent random
samples [19], [9]. Also, via weaker bounds on the kth moment, it has been indepen-
dently shown in [7] that essentially the same bounds as those given in Theorem 8 can
be obtained for random sampling; [7] also shows how iterated sampling can be used
to decrease the number of random bits at the expense of a controlled increase in the
sample size.

The above .constructions are not optimal with regard to the minimum number of
random bits used. Using random walks on expander graphs to generate the random
bits, it is shown in [6] that O(log(IUI) + log()) random bits are necessary and suffi-
cient for this problem. Our construction has the advantage of being elementary and
parallelizable.

3.1.2. Reduced randomness for oblivious permutation routing. We now
show how our results directly imply bounds that match the explicit constructions of
algorithms with reduced randomness of Peleg and Upfal [32] for oblivious permutation
routing on fixed interconnection networks (see also [20], [35], [36], [46], [48]).

Given some interconnection network with N nodes and a permutation r {1, 2,
...,N} {1,2,...,N}, the problem is to route a packet ui residing at each node i
to its destination (r(i) so that the total time taken is small. Furthermore, the routing
must be oblivious in that the path P(x) chosen for a packet x must be "independent"
of the path P(y) chosen for any other packet y. (See [32] for a precise definition when
randomized routing protocols are allowed.) Explicit constructions of algorithms with
a spectrum of time-randomness parameters are among the results proved in [32] for the
degree-4 butterfly network; these are also extendable to other networks. (See Karloff
and Raghavan [20] for a protocol for the hypercube with. slightly weaker bounds.) Here,
we show how our results of 2.1 directly imply the bounds of [32] for the hypercube;
we believe that similar results should hold for other interconnection networks.

Consider the implementation of Valiant’s two-phase scheme [46] (see also Valiant
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and Brebner [48]) on a hypercube with N 2n nodes. Phase (I) Each vertex picks a
random p(i) {1, 2,..., N} as an intermediate destination for and routes there.
Phase (II) Each packet is routed to its final destination a(i). We now follow the
discussion of the standard aspects of this from [35]. Assume FIFO queues at each
edge, and that Phase (I) routes from to p(i) by "correcting" its bits from left to
right, assuming that the nodes of the hypercube are indexed by n bits, and Phase (II)
"corrects" bits right to left. So, Phase (II) is like "running Phase (I) backwards," and
so we consider Phase (I) alone here. It is shown in [35] that the time taken for packet
i in Phase (I) is at most

N

(16) n + E Hij,
j--1

where Hij 1 if the paths (i,p(i)) and (j,p(j)} share an edge in Phase (I) and 0
otherwise (recall that n log2 N). It is also shown in [35] that if each p(i) is uniformly

E N Hij] < n. Here is the theorem thatdistributed in {1, 2,..., N}, then for all i, [Yj=I
matches the explicit construction of [32].

THEOaEM 10. There are explicit constructions of oblivious routing algorithms on
the hypercube that, for any T, c log N

_
T

_
x/ (c > 4 is a constant),

(I) use O(log N log(N/Q)/log(T/log N)) random bits and terminate in T steps
with probability at least 1 -Q for any 0 < Q <_ 1, and

(II) use O(log2 N/ log(T/ log N)) random bits and terminate in expected time at
most T.

Proof (sketch.) Consider any packet i; the probability that it takes more than
T log N) If the p(i)s are pickedT steps in Phase (I) is at most er(-jN__l Hij < -2

uniformly and in k-wise independent fashion, then the Hij are (k- 1)-wise indepen-
E Ndent while [j=l Hj] <_ log N as before. It follows from our discussion of 2.1 and

Lemma 3 that, if T > E[-;= Hij], (i.e., if T > 4log N), then

pr(kgij_T/2_logN)
_
(kN-i)()k-1 lgN)k-i

(T/2--1ogN k-2
j=l k-i 1-Ij=o (T/2 log i j)

NBy picking k O(log(N/Q)/log(T/log g)), we can ensure that Pr(j=1Hij 2 T/2-
log N) < _9_ holds. Arguing similarly for Phase (II) and summing up over all i, we(:aN)
get (I) above.

For (II) above, we set Q and replace T by T- 1 in (I). Let Tmax be an

r.v. denoting the time taken by the protocol, i.e., the maximum over all packets of
the number of steps taken by packet i to reach a(i). Note that Tmax _< log N + N
from upper bound (16). Also,

Pr(Tmax > (T- 1)) <_ Q

from (I) above. Hence,

E[Tmax] < (T- 1)" Pr(Tmax < (T- 1))+ (log N + N)" Pr(Tmax > (T- 1))
1

<(T-l) 1--5 +(logN+N)
2N

<T.



244 J.P. SCHMIDT, A. SIEGEL, AND A. SRINIVASAN

Note that for any k, k-wise independent p(i)’s can be generated from k log N random
bits using hash functions [9], since the p(i)’s can be thought of as belonging to the
field GF(2n). Hence, we get bounds that match those of [32]. D

The above example typifies the type of application we expect our methods to find,
i.e., as direct "plug-ins" in analyses where the CH bounds are normally used.

3.2. The new formulation and the method of conditional probabili-
ties. The method of conditional probabilities [34], [44] is an important technique for
the derandomization of algorithms; the reader is referred to [35] for details. We now
show how this method can be combined with the formulation of 2.6. This will en-
able us to derive simple and efficient deterministic polynomial-time algorithms from
randomized algorithms that can be analyzed using our formulation in a unified way.

Given n random bits X1, X2,..., Xn, can the conditional expectation

E[Sk(X1,X2,... ,Xn)lXl bl,X2 b2,... ,Xi bi]

be evaluated, or at least be given a "reasonable" upper bound, for any k, any i, i
0,1,2,...,n- 1, and any blb2...bi E {0, 1)i? If the Xi’s are identically distributed,
then it is reasonable to assume that an upper bound U on E[1-ir=i XjrlXI hi, X2
b2,...,Xi bi] is known for all g,g 1,2,...,n- i, and for all distinct indices
XyI, Xy.,..., Xy E (i + 1, + 2,..., n); this is sufficient for the two applications
shown below. Then, if

I{jl(1 _< j _< i) A (by 1)) --/1,

we can see that

(17)

E[Sk(X1, X2, Xn)lZl bl, X2 b2, Xi bi]
min(il ,k)-- (i1)

r---O

We now present two applications in which the combination of our formulation
and the method of conditional probabilities leads to fast polynomial-time algorithms,
via upper bound (17). The first application, to jobshop scheduling, is a "natural" de-
randomization of the randomized algorithm of [41], faster than the derandomization
techniques of [41] and [33]; this is shown in 3.2.1. The second application is to discrep-
ancy theory and is discussed in 3.2.2. The "usual" method of conditional probabilities
for these problems frequently calls for independence among the r.v.’s corresponding
to the bits X, X2,..., Xn seen above; this is not the case for these two problems and
in general for many other problems.

3.2.1. Improved algorithms for packet routing and jobshop schedul-
ing. We now present simpler approximation algorithms for packet routing (Leighton,
Maggs, and Rao [23]) and jobshop scheduling (Shmoys, Stein, and Wein [41]) that
provide improved approximation guarantees by using ideas from above. The nonpre-
emptive jobshop scheduling problem is as follows. Given n jobs, m machines, and a

sequence of operations for each job, where each operation is assigned to a specific
machine, construct a schedule to run the jobs so that the time taken to process all the
jobs is minimized, subject to the following conditions: (a) the operations of each job
must be done in sequence; (b) no operation of any job running on any machine can
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be preempted until it is completed; and (c) a machine can process at most one oper-
ation at a time. One of the results of [23] tackles a special case of this problem; the
general case is handled in [41]. Both of these papers give polynomial-time algorithms
to produce good approximations to an optimal schedule.

Let Pi be the total time needed for job Ji, Pmax maxi[1,n] Pi, IIj be the total
time for which machine Mj is needed, and Hmax maxie[1,m] Hi. Before an actual
schedule is constructed in [41], a pseudoschedule S is constructed that temporarily
assumes that each machine can work on up to D operations simultaneously, where
D > 1 depends on the input instance. The pseudoschedule is later used to construct
an actual schedule. The only step in which randomization is used in [41] is during the
construction of the pseudoschedule and is the following.

An initial random delay di E { 1, 2,..., IImax} is assigned for each job Ji. Suppose
that the sequence of operations of job Ji is Oi,1, Oi,ri and operation Oi,r takes time

ti,r; then, in the pseudoschedule S, job Ji is scheduled to start at time di and runs to
r--1completion without interruption, i.e., operation Oi,r starts at time di + t= ti,t. We

r--1denote the offset ’t= ti,t by T(Oi,r). As shown in [23], [41], if the di’s are generated
uniformly and independently, then with high probability, every machine at every unit
of time will have (a congestion of) at most D(n, mmax) --" C" log(n mmax)/log log(n
mmax) jobs scheduled on it for some constant c, where mmax is the maximum number
of operations in any job. This step is then derandomized to deterministically compute
initial delays leading to a congestion bound of O(log(u. mmax)). Linear programming
is used for the derandomization, making this step the bottleneck. This step is sped
up in [33], [45]. Here, we get a better congestion bound of D(n, mmax), as opposed to
the previously known O(log(n. mmax)) bound, with an algorithm that is more direct
than those of [33], [45] while having time complexities comparable to those.

We assign random initial delays {di {1, 2,... ,Hmax}} uniformly and inde-
pendently to the jobs. Suppose that the operations scheduled on machine Mi are
01,..., Omi, which belong to jobs Jii, Ji., Ji., respectively, and take t,..., tm
units of time. For any machine Mi and time instance t {1, 2,..., Ymax -- Pmax},
we define te[,m] Q Hi many indicator r.v.’s Xj(t), j 1, 2,..., Hi, to analyze the
congestion on machine Mi at time t in S. Each of these r.v.’s is an indicator for the
event that a particular unit of time of some operation gets scheduled on Mi at time t
in S as follows. The index j encodes the time unit and operation. Let jr -’=lr--1 t
for r 1, 2,..., mi; then if jr < j < jr+l, j represents the (j jr)th time unit of Or
as follows.

Xj(t) { 1

0

if j jr + p, 1 .< p < tr and the pth time unit of Or
is scheduled for time t, i.e., if dir + T(Or) + p- 1 t;
otherwise.

It is easy to see that E[X(t)] < 1/Hmax and, for any positive integer k, the
probability that machine Mi has congestion at least k at time unit t is

Pr(Xr(t)>k) <E[Sk(X(t) X (t))]< (Hi) ( 1 )kHi k IImax
\r-1

In addition, if Er=l X(t) >_ k holds for some time t, then Erl X(t’) >_ k also
holds for some time V, where t’ is one of the starting times of the operations scheduled
on Mi. Furthermore, the starting time of each operation Or is uniformly distributed
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in [T(Or),Hmax- 1 + T(Or)]. Hence, for any k, Pr (some machine has congestion at
least k at some time instance) is at most

(18)
m m 1-Imax--lWr(Or)

i=1 r=l t=r(O)
Hmax
E [Sk-1 (X(t) X (t))]IIi

which is at most

E mi Hmax k- 1 Hmax -< (k- 1)!"
i--1 i--1

Clearly 2im=l mi
_
n" mmax, and hence for k- 1 > k* Cl log(n, mmax)/loglog(n

mmax) for some suitable constant Cl, the above probability estimate is less than 1. We
may now use the above form as a pessimistic estimator [34] to deterministically set
the delays di for the jobs one-by-one by the method of conditional probabilities [34],
[44] to achieve the congestion bound of D(n, mmax).

Assume inductively that initial delays dl d, d2 d,..., d8 d have been
set deterministically for the jobs J1, J2,..., Js; the aim is to compute d]+1. Consider
any machine Mi on which J+l has at least one operation; let these operations be
As+l,l,As+l,2,... ,As+l,a. Let Bs,l,Bs,2,... ,Bs,b be the operations that belong to
some job in {J1, J2,..., J} and are scheduled on Mi and let t,l,t,2,... ,t,b be the
times at which they are scheduled to start on Mi; these times are known, since we know
the values of dl, d2,..., ds. Let 01, 02,...,0 be the operations on machine Mi that
belong to jobs from the set {Js+2, Js+3,...,Jn}. For any t E {1,2,... ,Pmax + Hmax}
and r E {1, 2,..., IImx}, we define

g(s + 1, i, t, r) E[Sk. (Xil (t), X(t), Xn,
d,d2 d,...,d8 d,ds+l r]

and Hum(i, t, <Xl,X2,... ,Xj>) to be the number of operations from jobs J1,J2,...
that are scheduled on machine Mi at time t given that dl Xl,..., dy

When conditioned on the event dl d,d2 d,... ,d d,d+l A for any
A {1, 2,..., Hmax}, upper bound (18) becomes

f(s + 1, A) E g(s + 1, i,T(A+l,y) + A,A)+ Eg(s + 1,i,t,y, A)
i=l j=l

Ci T(Oj)-l-IImax--I ITE E IImax g(s+ l’i’t’A)]j=l t=r(o)

Recall that the method of conditional probabilities will set d+l d+1, where

d+ is the index at which f(s+ 1, .) is minimized. Note that f(s+ 1, A) can be readily
computed for any A and, hence, so can d+l. To make the computation more efficient,
we use the following observations.

(a) Suppose we need to compute f(s + 1, A) for some A using upper bound (17).
Then, for any machine My that has some operation from job Js+l, the term n- i
in (17) corresponds to the number of operations of jobs J1, J2,..., Js+l on machine
My, i.e., ay + by. Hence, for any t {1, 2,..., Pmax + Hmax}, g(8 + 1, j, t, A) can be
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computed in O(k*) time if num(j, t, (d, d,..., d%, A)) is known, since upper bound
(17) involves a sum over at most k* terms. (Recall that k* is an upper bound on the
number of operations scheduled at the same time.)

(b) Suppose inductively that num(i,t, (d,d,... ,d)) is known for all machines
Mi and all times t. Let ws+l be the number of operations of job Js+l. We will con-
sider only those machines that have some operation of J+l; the number of such
machines is clearly at most w+. Hence, given the num(i, t, (d, d,..., d)) values,
the num(.,., (d,d,... ,d%, 1)) vahes need to be updated for at most w+ machines
and Pnax / IImax time units, which can be done in O(w+l(Pmax + Hmx)) time.
Given the num(.,-, (d,d,...,d,l)) values, the computation of f(s + 1,1) takes
O(ws+lk*(Pmx + Hmax)) time, since g(-,., 1) can be computed in O(k*) time, given
these values.

(c) Suppose we have computed the num(.,., (d, d,..., d, A)) values and f(s +
1, A) for some value A and that we need to compute f(s + 1, A + 1). We can first
compute the num(.,., (d,d,... ,d%,A + 1)) values and then f(s+ 1, A + 1) as follows.
Suppose some operation a of Js+ is scheduled to run on some machine Mi from time
t to time t2 when we set d+l A. Then

num(i t’ (d d d:,A+l))=num(i,t’ (d d ,d: A)), Vt’[t+l t2]

Hence, this operation a leaves at most two of the num(.,., (d, d,..., d,A + 1))
values different from the corresponding num(.,., (d, d,..., d%, A)) values. Hence,
num(.,., (d,d,...,d%,A + 1)) can be updated in O(w+l) time. It now follows
from arguments similar to those used above that f(s + 1, A + 1) can be computed
in O(k*w+) time.

The above observations imply an efficient algorithm to compute ds+l. Inductively
maintain the num(.,., (d, d,..., d%, r)) values as r goes from 1, 2,..., to Hmax and
compute f(s + 1, 1), f(s + 1, 2),..., f(s + 1, Hmax) in that order by sequentially up-
dating the corresponding Hum values. Since computing d+ takes O(w+k*(Pmx +
Hmax)) time, the total time complexity is O(wk*(Pmax + Hmx)), where w is the total
number of operations. Hence, we have the following theorem.

THEOREM 11. Initial delays {d 1 <_ i <_ n} in the range {1, 2,...,Hmax} for
each.job Ji can be set in O((Pmax + Hmax)W log(n mmax)/log log(n mmax)) time,
where w is the total number of operations, such that in the (infeasible) schedule in
which every job Ji starts at time di and runs without interruption, every machine has
at most O(log(n. mmax)/loglog(n, mmax)) jobs scheduled on it at any time.

We feel that the above is a natural derandomization of the randomized algorithm,
since it sets the delays one-by-one, as opposed to the more complex methods used
before.

3.2.2. Exact partitions in set discrepancy. Set discrepancy problems [3] are
combinatorially important, and special cases of these can model divide-and-conquer
situations; see, e.g., the RNC edge-coloring algorithm of Karloff and Shmoys [21].
Given a finite set X and a family of subsets - {S, $2,..., Sn} of X, the goal is
to come up with a 2-coloring X X -. {0, 1} such that the discrepancy disc(x) "-

max disc(x), where disc(x) {l(s x(J))- IS1/21}, is minimized. It is known
that a 2-coloring X with disc(x) O(v/A log n) exists and can be computed in polyno-
mial (in IXI and n) time [3] and that a 2-coloring X with disc(x) O(A’5+e/log n)
for any fixed > 0 can be computed in NC [8], [27], [29], where A --" max ISI. Using
the ideas of 2.1, we can prove the following theorem.
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THEOREM 12. Given a finite set X with
{$1, $2,..., Sn} of Z such that A maxi

{0,1} computable in polynomial (in IX] and n) time such that (I) disc(x*)
O(v’A log n) and (II)

Proof. For the existence proof, we can show that if we pick a random subset
Z C_ X with ZI uniformly from the set of all size subsets of X and set
Xz(y) 1 iff y e Z, then Prz(disc(xz) O(v/Alogn)) > 0 as follows. It is well
known [3] nd ensily checked via the CH bounds that there is a constant c > 0
such that if X(Y) is picked uniformly and independently from {0, 1}, then for any
S, Pr(disc(x) > cx/’ 15g n) < ; hence,

1
Pr(disc(x) > cV/A log n) Pr(3i disc(x) > cv/A log n) < n. 1.

n

Note that {Xz(Y) Y E X} is a set of self-weakening random bits with parameter 1,
i.e., if Z is picked uniformly at random from the set of sized subsets of X, then
for any distinct yl, y2,..., y E X,

E Pr(xz(yl) Xz(Y2) Xz(Yi) 1) _< H Pr(xz(yj) 1)
j=l

II
j--1

still holds,Hence, it follows from 2.6 that for any S, Pr(disc(xz) > cv/A log n) <
concluding the existence proof.

Assume that IXI m and that X {1, 2,..., m}. To use the method of condi-
tional probabilities to derandomize the above construction, note that for {il, i2,...,
ij} c_ {i + 1,i + 2,...,m},

E xz(ie)lxz(1) b,..., xz(r) b undefined if rl > ---or ?’2 > ---,
=1

m
=0 ifrx +j > -,

m--r--j
[m/2--ri--j] o,,erw;se’’"

where

I{el(1 <_ e <_ r) A (be 1)}[ rl

and r2 r- rl. This can now be derandomized as shown in our initial discussion in

3.2.
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NONREDUNDANT I’S IN F-FREE MATRICES *

JEREMY P. SPINRAD

Abstract. This paper studies a new method for representing F-free matrices, which occur in
characterizations of chordal bipartite and strongly chordal graphs. We show that the number of F-free
matrices with n rows and columns (and thus the number of chordal bipartite and strongly chordal

graphs with n vertices) is proportional to 20(nlg2n) and give an asymptotically space optimal
method for storing these matrices.

Key words, chordal bipartite graphs, totally balanced matrices, strongly chordal graphs,
f-acyclic hypergraphs
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1. Introduction. A matrix is F-free if it has no pair of rows and columns that
induce a F, as described in the next section. F-free matrices were introduced by Lovz
[10]. Hoffman, Kolen, and Sakarovitch [8] used F-free matrices to characterize when
a particular linear programming problem could be solved using a greedy algorithm.
They also showed that a graph is chordal bipartite, as defined below, if and only if
the bipartite adjacency matrix has a F-free ordering. Anstee and Farber [13] showed
that a graph is strongly chordal if and only if the neighborhood matrix has a F-free
ordering. Lubiw [11] developed an efficient algorithm to determine whether a matrix
has a F-free ordering, which led to efficient recognition algorithms for chordal bipartite
and strongly chordal graphs. The fastest known recognition algorithms for these cases
of graphs, both refinements of Lubiw’s algorithm, are [13] for sparse graphs and [14]
for dense graphs, with time complexities of O(m log n) and O(n2), respectively.

This paper studies the number of F-free matrices and therefore the number of
chordal bipartite and strongly chordal graphs. We show that there are 2(hig2 n)F-
free n by n matrices.

We derive this bound by using a new method for representing F-free matrices.
We show that this representation is optimal in the sense that the number of bits used
in the representation of an n by n F-free matrix is at most a constant times the
logarithm of the number of F-free matrices.

2. Definitions. A F in a matrix is a pair of rows and columns that induce the
submatrix

1 1
1 0"

A matrix that has a permutation of the rows and columns that are F-free is called
a totally balanced matrix. Totally balanced matrices are useful in the study of linear
programming [1], [8].

A bipartite graph is chordal bipartite if every cycle of length of at least 6 has a
chord. Hoffman, Kolen, and Sakarovitch [8] showed that a graph is chordal bipartite
if and only if the bipartite adjacency matrix has a F-free ordering.

* Received by the editors March 25, 1991; accepted for Publication (in revised form) May 31,
1994. This research was supported by National Security Agency grant R592-9632.

Department of Computer Science, Vanderbilt University, Nashville, Tennessee 37235.
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F-free matrices can also be used to characterize strongly chordal graphs, which
are studied in [3], [7]. Farber [6] showed that a graph is strongly chordal if and only
if its neighborhood matrix has a F-free ordering.

Totally balanced matrices also arise, under the name -acyclic hypergraphs, in
database theory [4], [5].

For a summary of work on totally balanced and F-free matrices, see Lubiw [11].
Lubiw also gives the key algorithms for fast recognition of F-free matrices and F-free
ordering of totally balanced matrices.

3. Nonredundant l’s. This section introduces a new representation method
for F-free matrices. We represent the matrix by giving the positions of a subset of the
1 entries. The subset must have the property such that if you know the subset and
you know the resulting matrix is F-free, the matrix can be completely reconstructed.

A 1 entry in position i, j of the matrix is called redundant if the replacement of
the entry by a 0 would result in a F. For example, in the matrix

0 1 1 0
1 1 1 O,
1 1 1 1

the l’s in positions (2, 3), (3, 2), (3, 3) are redundant. As 1 entry that is not redundant
is called nonredundant. The term redundant is used because these 1 entries can be
deduced from the l’s in the other positions. We propose storing a F-free matrix by
storing only the positions of the nonredundant l’s.

We note that it is possible to find all nonredundant l’s in the matrix in O(n + m)
time, where m is the number of I entries in the matrix, if we are given the 1 entries in
"adjacency list" form. The idea is similar to the algorithm developed by Lubiw [11]
for verifying that a matrix is F-free in O(n + m) time.

THEOREM 1. There is an algorithm that can identify all nonredundant l’s in a

F-free matrix A in O(n + m) time, where m is the number of nonzero entries in A.
Proof. For each 1 entry A[i,j], let j be the next 1 in row i that comes after

column j, and let i be the next 1 in column j that comes after row i. We mark the 1
in position A[i, j] as redundant. It should be clear that any 1 we mark as redundant
is redundant.

Suppose some element A[x, y] is redundant. Consider the "smallest" F that would
be formed if A[x, y] 0; by smallest, we mean that the area contained within this
F is minimal. Let A[i, j] be the upper left position of this F. Either column y is not
the next 1 entry in row i, or row x is not the next 1 entry in column j, or we would
mark A[x, y] redundant. Without loss of generality, assume j y is the next 1 entry
after j in row i. Then A[x, j] 1, or the rows i, x and columns j, j induce a F. Then
rows i and x, columns j and y induce a F if A[x, y] is replaced by 0, contradicting the
assumption that A[i, j] is the upper left position of the smallest F formed. Therefore,
every redundant 1 is marked by this algorithm, v1

A similar procedure allows us to take the set of nonredundant l’s and reconstruct
the entire matrix.

THEOREM 2. Given the set of nonredundant 1 ’s in a F-free matrix A, we can
reconstruct A in O(n2) time.

Proof. We search the matrix from row 1 to row n and each row from column 1 to
column n. For each 1 entry (whether this is originally redundant or nonredundant),
we find the next 1 in the row and column and add a 1 to avoid a F if it is not there
already.
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Let A[x, y] be the first matrix entry scanned that should be 1 which is left at 0
by our algorithm. All entries above and to the left are filled in correctly. Consider the
smallest F formed if A[x, y] 0; let u and v be the row and column number of the
upper left corner of this F.

There cannot be any 1 entries of the matrix between columns v and y in row u;
otherwise assume that w < y is the next column number after column v that contains
a 1 in row u. A[x, w] 1, or the rows u, x and columns v, w form a F. Therefore, the
rows n, x and columns w, y form a F, contradicting the assumption that the F under
consideration was smallest. For similar reasons, there cannot be any 1 entries between
rows u and x in column v.

Since we did not change A[x, y] to 1 when we examined position A[u, v], and A[u, y]
and A[x, v] are the next 1 entries of the matrix in row u and column v, respectively,
at least one of the entries A[u, y] or A[x, v] must have been changed from 0 to 1 after
position A[u, v] was examined. There are no 1 entries examined between A[u, v] and
A[u, y], so A[u, y] will not be changed from 0 to 1 after A[u, v] is examined. For A[x, v]
to change from 0 to 1, there must be an entry examined between rows u and x that has
a 1 in column v. There are no such entries, since row x has the next 1 entry in column
v after row u. Therefore, when A[u, v] is examined, the value of A[x, y] is changed
to 1.

We note that it is relatively easy to modify the algorithm presented in Theorem 2
to get an O(m log n) bound for reconstructing the matrix from the set of nonredundant
l’s, which will be better for sparse matrices.

Therefore, a F-free matrix can be stored by giving the position of all nonredun-
dant l’s. The space used to store the matrix in this fashion is O(log n) the number of
nonredundant l’s in the matrix. To determine whether this is a good form of storage,
we would like to know the maximum number of nonredundant ones in a F-free matrix
and the number of F-free matrices. If the size of the representation is at most a con-
stant times the logarithm of the number of F-free matrices, we say the representation
is optimal. We show that any F -free matrix has O(n log n) nonredundant l’s and
that the number of F-free matrices is f(2n(g: n)), which means that storing the
nonredundant l’s is space optimal.

4. Lower bounds. In this section, we give lower bounds on the number of
nonredundant l’s and the number of F-free matrices. We show that there are F-
free matrices with (n log n) nonredundant l’s and that there are f(2n( g: n))F_free
matrices.

This shows, for example, that there is no constant bound on the boxicity of a
chordal bipartite graph. Any boxicity k graph can be stored using O(k log n) bits per
vertex by storing the coordinates of the box corresponding to each vertex. Thus, the
number of boxicity k graphs is O(20(nklgn)). Similar arguments show that chordal
bipartite graphs must have arbitrarily high interval number. More sophisticated ar-
guments can be used to show that graph classes such as circle intersection graphs and
visibility graphs contain O(2(nlgn)) graphs with n vertices and thus cannot contain
all chordal bipartite graphs [2].

We construct a matrix with f(n log n) nonredundant l’s recursively. Divide a
matrix of size n into four quadrants. Place the identity matrix in the upper left
quadrant and a matrix with all values 1 in the lower right quadrant. Repeat this
construction recursively within the other two quadrants.

We first show that this procedure will never produce a F. The F cannot contain
any entry from the bottom right quadrant since these values are all 1. Therefore, the
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F cannot contain any entry from the upper left quadrant, since the next 1 in the row
would be in the upper right, the next 1 in the column would be in the lower left, and
the bottom right of such a F is in the quadrant filled with l’s. No F can span both
the upper right and bottom left quadrant, unless some other quadrant is involved.
Therefore, assuming the submatrices of size n/2 were constructed to be F-free, the
matrix of size n is also F-free.

We now show that the matrix constructed above has t(n log n) nonredundant
ones. Clearly, every 1 in the upper left quadrant is nonredundant. Any nonredundant
1 in the upper right and lower left quadrant taken individually is also nonredundant
in the entire matrix. Let NR(n) be the number of nonredundant l’s in an n by
n matrix constructed as above. We can construct a recurrence relation NR(n)
2NR(n/2) + n/2, NR(1) 1, which solves to O(nlogn). Therefore, the number of
nonredundant l’s in the matrix constructed above is t(n log n).

We can get a lower bound on the number of F-free matrices by using a slight
modification of the construction above. Suppose that we are given two arbitrary F-
free matrices M1, M2 of size n/2. Place an arbitrary perfect matching in the upper
left-hand quadrant of an n by n matrix, place M1 and M2 in the upper right and lower
left quadrants, and fill the bottom right quadrant with l’s. For the same reasons given
above, the matrix we construct must be F-free.

THEOREM 3. The number of F-free matrices is ’/(22(nlg n)).
Proof. Let NG(n) be the number of F-free 2n by 2n matrices. Since there are n!

perfect matchings in the upper left quadrant, NG(n) >_ n!, NG(n/2), NG(n/2).
By expanding this recurrence relation, we get NG(n) >_ n!, (n/2!)2 (n/4!)4.., (n/n)!n. We know that n! > (n/2)n/2 2(n/2)lgn/2. Therefore, NG(n) >
2(n/2) log/2 , 2(n/2) log n/4 , 2(n/2) log n/8 , NG(n) > 2n/2(lg n/2+log n/4+log n/S+...)

2n/2((lgn--1)+lgn--2)+’’’+1)) 2(n/2)(lgn)(lgn--1)/2, which is (2gt(nlg n)).
We note that when this result is translated back to the number of chordal bipar-

tite or strongly chordal graphs, it is not necessary to worry about different matrices
producing isomorphic graphs. Even if we divide the number of F-free matrices by n!,
(the number of possible graphs with n vertices isomorphic to a graph G), the result
is t(2gt(n lg n) ).

5. Upper bounds. In this section, we show that the number of nonredundant
l’s in a F-free matrix is O(n log n). This shows immediately that the number of F-free
matrices (and thus strongly chordal and chordal bipartite graphs) is O(2(lg: )),
since any such matrix can be stored by giving the positions of all nonredundant 1s
using O(n log2 n) bits.

We will read the matrix from row 1 to row n. Create a graph G with vertices
corresponding to columns of the matrix. We will read the matrix row by row, updating
the graph G as we go. Add an edge from colunn i to column j if < j, and we see
a row in which i and j both have value 1. Note that if there is an edge from i to j,
any future row that has a 1 in column i must have a 1 in column j as well, or we
would get a F. When we read a new row, we cannot have nonredundant ones in two
columns that are already connected by an edge in G. We also show that there cannot
be a pair of nonredundant l’s in a row if there is already an edge between these rows
in the transitive closure of G.

LEMMA 4. After any row has been read, the transitive reduction of the transitive
closure of G has maximum outdegree 1.

Proof. We note that G is a directed acyclic graph, since every edge goes from a
lower-numbered vertex to a higher-numbered vertex. Thus, the transitive reduction
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of G is uniquely defined. Suppose a has two outedges in the transitive reduction to b
and c, where b < c. Since these are edges of the transitive reduction, there must be a
row for which a and b have a 1 and a row for which a and c have a 1. There cannot be
a previous row for which b and c share a 1, or we would have a - b -- c in G. There
are two possibilities, depending on which shared row comes first. These are shown
below; both have F’s, so they cannot occur if G is F-free.

1 1 0 1 0 1
1 0 1 1 1 0"

LEMMA 5. If there is already an edge from i to j in the transitive closure of G,
there cannot be nonredundant 1 ’s in both column and column j of a new row.

Proof. Let r be a row with nonredundant l’s in positions and j, and consider
the path cl --* c2 Ck j in the transitive reduction of the transitive
closure of G. We claim that row r has redundant l’s in columns cl,..., Ck, j. Consider
the first of these columns that does not have a redundant 1; call this Zm. Let z,_ be
the predecessor of Zm in the path from to j in G. Since z,-i and Zm share a 1 in
some previous row, and Zm-1 is a 1 in row r (either it is earlier than Zm and thus a
redundant 1 or it is and a nonredundant 1), Zm must be a redundant 1. Therefore,
the 1 in column j is redundant, contradicting our original assumption. [:]

Let A1 be the first nonredundant 1 in each row and let B be the first two
nonredundant l’s in each colunn that is not in A. Let Ai be the first nonredundant
1 for each row that is not in A... Ai_l or B... Bi_ and let Bi be the first two
nonredundant l’s for each column that are not in A... Ai or B... Bi-. We show
that the set Alog n+2 is empty. Since each Ai and Bi contain at most 2n nonredundant
l’s, the number of nonredundant l’s in the matrix is therefore O(n log n).

We use the following matrix M to give concrete examples of the sets defined here.
Certain entries will be marked "n," meaning that these are positions of nonredundant
ones. Other entries will be marked "x," meaning that these are either 0 entries or
redundant l’s. Generating an actual example to illustrate the concepts would involve
creating a very large matrix, so the matrix below does not correspond to a valid pattern
of "n"s and "x"s; specifically, the entries (3, 4), (5, 5), and (6, 5) would be redundant
in any actual example containing the other values as nonredundant l’s.

n x n n x x
x n x x n x
n x x n x n
x n x n x x
x x x n n x
x n x x n x

In the matrix M above, A is the set of entries at positions (1, 1), (2,2), (3, 1),
(4, 2), (5, 4), (6, 2). B corresponds to (1, 3), (1, 4), (3, 4), (2, 5), (5, 5), (3, 6), and A2 con-
tains the entries at positions (4, 4) and (6, 5).

THEOREM 6. There are O(n log n) nonredundant 1 ’s in a F-free matrix.

Proof. Consider a nonredundant 1 that is in Alogn+2. Call this nonredundant
1Ylogn+2. For each nonredundant 1 in Y, there are 2 nonredundant l’s that share
this column but have lower row number in B,i-, and for each of these members of
Bi_ there is a member of Ai_ that has the same row number but an earlier column
number. Let Xi_ be the two members of Bi_ in the sane column as each member of
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Y and let Y-I be the nonredundant l’s from Ai-1 in the same rows as these members
of Xi-1.

As an example, consider the matrix M described immediately before the state-
ment of this theorem; let Y2 be the entry at position (6, 5). Then X1 corresponds to
(2, 5) and (5, 5), and Y1 is the set of entries at positions (2, 2) and (5, 4).

We show that no members of any Xi can share the same row number and no
members of Y/ can share the same column number. This is certainly true for i
log n + 2; consider the largest value of such that some pair of nonredundant l’s in
Y/share the same column number or some pair of members of Xi share the same row
number.

For each element of Y or X, we consider the parent of the element to be the
nonredundant 1 from ]Q+I that caused the element to be added to or Xi. Any
pair of elements in Y or Xi must have a least common ancestor, since the data
structure formed is a tree. If we look at the first pair that share a row or column, the
two elements are descendants of the two different elements of B that correspond to
children of their least common ancestor. We show that one of these (the 1 value with
larger row number) is redundant, contradicting the assumption that it is in B.

Each time we add an element to Y/, it is because there is a row that has a
nonredundant 1 in both this column and the column of its parent. Let p be a parent
of c. Before the row corresponding to p is read, the graph G already has an edge from
the column of c to the column of p.

If two elements of Xi share a common row, let cl be the column number of the
earlier column that has a 1 in the shared row. If two elements of Y share a common
column, let cl be the column number that is shared by two different members of Y.
Let ct be the column number of the least common ancestor of the pair that shares a
row or column. Tracing back from the parents of each nonredundant 1 in this column
to the least common ancestor, we know that G has edges from cl to dl to d2 to to
dj to ct, where the d values are the column number of the parent, grandparent, and
so forth of one of the nonredundant l’s that shares a common row/column and also
edges from Cl to el to e2 to to ej to ct, where the e values are the column numbers
of the parent, grandparent, .and so on, of the other nonredundant 1. Without loss
of generality, assume that the row sharing ej and ct comes after the row sharing dj
and c.

Let us look at the transitive reduction of the transitive closure of G immediately
before we read the row that shares nonredundant l’s in columns ey and c. Since the
outdegree in the transitive reduction of G is 1 and we already have a path from Cl to
ey and a path from cl to ct, there is a path in G from ey to ct. This implies that there
cannot be nonredundant l’s in both position e and ct of this row, contradicting our
assumption.

Since each nonredundant 1 in Y generates two nonredundant l’s in Y+I and
no members of any Y can share the same column number, Alogn+2 must be empty
(each member would generate 21"+1 members of Yo,+l, none of which can share
a column). Therefore, the number of nonredundant l’s is O(n log n). cl

6. Open problems. This paper gives asymptotic estimates of the number of F-
free matrices and thus gives estimates on the number of strongly chordal and chordal
bipartite graphs. We present a natural storage scheme for F-free matrices that is
asymptotically space optimal.

There are other desirable aspects of a representation scheme for graphs besides
space optimality. The issues we discuss here are closely related to local structure [12]
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or implicit representation of graph classes [9], when generalized to graph classes with
more than 2( log n) graphs on n vertices.

There are a number of drawbacks to the new storage scheme. Let us contrast
this scheme with an interval representation for an interval graph. In an interval
graph, we can store for each vertex the positions of the two endpoints in an interval
representation, and this is asymptotically space optimal. In the case of interval graphs,
we also have the property that the minimum possible amount of information is stored
at each vertex, and we can test whether there is an edge between two vertices in
constant time using only the information stored at that vertex.

We would like to achieve similar results for graph classes that are defined by
F-free matrices. First, is there a storage method using O(n log2 n) space that allows
us to determine whether two vertices are adjacent efficiently? Second, can we make
this representation local, in the sense that the adjacency of two vertices can be tested
using only O(log2 n) information that is stored at each of the two vertices? Chordal
bipartite graphs form a hereditary class of graphs; there is an open question [9] as
to whether every hereditary graph class with 2(nlgn) graphs on n vertices has a
space optimal representation that allows this form of adjacency testing. As far as the
author knows, the more general question of whether every hereditary class of graphs
with 2nf(n) members has a representation with O(f(n)) bits per vertex that allows
local adjacency testing is also open.
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SLICEABLE FLOORPLANNING BY GRAPH DUALIZATION *
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Abstract. Previous algorithms on rectangular dual graph floorplanning generate general floor-
plans which include the class of nonsliceable floorplans. We examine the framework of generating
sliceable floorplans using the rectangular dual graph approach and present an algorithm that gener-
ates a sliceable floorplan if the input graph satisfies certain sufficient conditions. For general input,
the algorithm is still able to generate sliceable floorplans by introducing pseudomodules where the
areas occupied by the pseudomodules are used for wiring. For an n-vertex adjacency graph, the
algorithm generates a sliceable floorplan in O(n log n + hn) time where h is the height of the sliceable
floorplan tree.

Key words, very large scale integration (VLSI) floorplanning, sliceable floorplans, planar
graphs, graph dualization

AMS subject classifications. 05C85, 68Q20, 68Q35, 68Q25, 68R10

1. Introduction. The rectangular dual graph approach to very large scale in-
tegration (VLSI) floorplanning, introduced in [1], is based on the idea of preserving
the planar adjacency of input modules. The adjacency requirements of a floorplan
are specified by an adjacency graph. Each vertex represents a rectangular partition
(module) of the chip and each edge represents an adjacency requirement between two
modules. A iloorplan and its adjacency graph exhibit a certain duality relation. To
ensure the existence of a floorplan, the adjacency graph must be restricted to a special
class of planar triangulated graphs. We call it a rectangular admissible graph. The
characterization of the graph was introduced by Kozminski and Kinnen [1], [2]. They
also introduced algorithms to generate floorplans based on this dual graph approach.
Bhasker and Sahni [4] improved the time complexity by providing an algorithm which
finds a floorplan in linear time if one exists. Sun and Sarrafzadeh [5] and Yeap and
Sarrafzadeh [6] generalized the approach to incorporate modules with shapes more
complicated than rectangles.

Previous approaches yielded general floorplans which include the class of nonslice-
able floorplans. We focus our interest on generating the class of sliceable floorplans.
A sliceable floorplan has several attractive features. Since it is inherently a tree struc-
ture (as opposed to a graph structure), it facilitates later phases of layout process-
ing [9]. For example, a version of the floorplan sizing algorithm has been shown to
be NP-complete for general floorplans but is optimally solvable for sliceable floor-
plans [10].

For some classes of rectangular adInissible graphs, only nonsliceable floorplans
exist. For example, the graph in Fig. 1 has a rectangular floorplan as shown. By
inspection, one can verify that no sliceable floorplans exist for the graph. The exact
characterization of this class of graphs is still unknown. Finding a sliceable floorplan
for a rectangular admissible graph, if one exists, is an open problem.. One major
condition on the rectangular admissible graph is that it contains no complex cycle

* Received by the editors November 1.3, 1991; accepted for publication (in revised form) April
19, 1994. This work was supported in part by National Science Foundation grant MIP-8921540.

Motorola, 2100 East Elliot Road, MD EL510, Tempe, Arizona 85284.
: Department of Electrical Engineering and Computer Science, Northwestern University, Evans-
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FIG. 1. A nonsliceable rectangular admissible graph.
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FIG. 2. A floorplan F(G), extended dual EPTG(G), and dual G.

of length 3. We will prove that with the additional constraint that the input graph
contains no complex cycle of length 4, sliceable floorplans always exist.

When an adjacency graph does not admit a sliceable floorplan, one could intro-
duce pseudovertices to the input graph. We add a pseudovertex on an edge when
adjacency cannot be satisfied. Pseudovertices represent, rectangular areas created
purely to satisfy the adjacency requirements. The areas consist of only routing wires
and contain no devices. The areas consumed by the pseudovertices depend on the
density of the wires carried by the edges. If the wiring density of an edge is zero,
adding pseudovertices will not waste any chip space. Zero edge density occurs when
the original adjacency of modules is not a fully triangulated graph. In our algorithm,
heuristic measures can be imposed to minimize the areas consumed by pseudovertices.

Section 2 of this paper defines the formal terminologies. Section 3 discusses a
formal framework for sliceable rectangular floorplans. The sliceability requirements on
the primal floorplan are translated to the dual graph, and the corresponding properties
in the dual are examined. Section 4 presents an algorithm for generating sliceable
floorplans based on the dual graph approach. Section 5 presents some application
aspects of the floorplanning algorithm.

2. Preliminaries. A rectangular floorplan (RFP) F is a plane graph where
(a) each edge is either a vertical or a horizontal line segment,
(b) each face is a rectangle,
(c) each vertex has degree 3,
(d) the boundary of F is a rectangle.
The restriction of a floorplan to degree 3 vertices does not lose generality. A

floorplan with degree 4 vertices can be transformed into one with only degree 3 vertices
by a minor modification [1]. We assume that F is bounded by four infinite faces r, u, l, b
as shown in Fig. 2. Given F, the extended dual EPTG(G) of F can be constructed as
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FIG. 3. A sliceable floorplan (left) and a nonsliceable floorplan (right).

follows:
(a) Each face of F corresponds to a vertex of G.
(b) There is an edge between two vertices of G if the two corresponding faces in

F are adjacent.
If the vertices r(G),u(G),l(G),b(G) and their incident edges are deleted from
EPTG(G), the resulting graph G is called the dual of F. The rectangular dual ap-
proach to floorplanning consists of obtaining a floorplan F from a given dual graph
G.

Two different F’s may have an identical dual G. A vertex in G which is adjacent
to more than one vertex of {r(G), u(G),/(G), b(G)} is called a corner vertex. The four
corner vertices in G correspond to the four corner faces of F. The corner vertices in
G need not be distinct if the corner faces of F are not distinct. An F with dual G
is denoted by F(G). If G is the dual of some floorplan F, we say that G admits a
floorplan F.

Given G, unless otherwise stated we assume that the four corner vertices of
G have been fixed, thus EPTG(G) is known. We denote the corner vertices as

NW(G), NE(G), SE(G), and SW(G) (northwest, northeast, southeast, and southwest).
The selection of corner vertices is not a trivial process. If the corners are not selected
carefully, the extended dual EPTG(G) may not be rectangular admissible. Basically,
the corners should be selected so that the addition of vertices r(G), u(G),/(G), b(G)
does not result in complex triangles (to be defined). The external edges (edges inci-
dent to the infinite face) of G are divided into four mutually disjoint subsets (possibly
empty), denoted by TOPe(G), LEFTe(G), BOTTOMe(G), and RIGHTe(G). The cor-
responding vertices (incident to the infinite face) are denoted by TOPv(G), LEFTv(G),
BOTTOMv(G), and RIGHT(G). If G is a dual of F, all internal faces of EPTG(G)
are triangles because vertices of F have degree 3. This is also true for G since it is a
subgraph of EPTG(G). For example, in Fig. 2,

NW(G) 1, NE(G) 2, SE(G) 5, SW(G) 3;

TOPe(G) {(1, 2)},LEFTe(G)= {(1,a)},
BOTTOMe(G) { (3, 4), (4, 5)}, RIGHTe(G) { (2, 5)},
TOPv(G) {1, 2}, LEFTv(G) {1, 3},
BOTTOMv(G) {3, 4, 5}, RIGHTv(G) {2, 5}.

An RFP F is called sliceable if it is a rectangle or can be decomposed into two
nonempty RFPs, F1, F2 by a vertical or horizontal line such that F and F2 are both
sliceable. Examples of sliceable and nonsliceable floorplans are shown in Fig. 3. A
sliceable RFP can be represented by a tree.

A path is an ordered set of adjacent vertices. A path can also be equivalently
denoted by the set of edges in the path. If the two end vertices of a path are identical,
it is called a cycle. A complex cycle (of length n) is a cycle C, of n edges (of a
plane graph) where there is at least one vertex in the finite region bounded by Cn. A
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complex cycle with vertices (vl,..., Vn} is denoted by C,(vl,..., Vn). In particular,
we are interested in C3 and Ca.

A chord free path (CFP) in G is a path P- (v,..., vn), where for all j,
(a) vi vj, and
(b) if (vi, vj) E G then li- Jl-- 1.

If a path Q (ql,..., qn) is not a CFP in G, then either qi qj for some 7 j or
there exist some edges (q, qj) G, where li- j[ _> 2. In the latter case, the edges
(qi, qj) are called chords of path Q.

A vertical slice is an ordered set of edges Es (e,..., en) in G, where
(a) el TOPe(G), en BOTTOMe(G),
(b) for 1 < < n, ei TOPe(G) U BOTTOMe(G) t LEFTe(G) RIGHTe(G);
(c) G is decomposed into exactly two nonempty components Gz (left subgraph)

and Gr (right subgraph) when Es is removed;
(d) for any e Es, adding e causes Gz and Gr to be connected.

A horizontal slice is defined similarly where e LEFTe(G) and en E RIGHTe(G),
and G is decomposed into G (upper subgraph) and Gb (lower subgraph). A slice is
either a vertical or horizontal slice. Let e (vl, Wl) TOPe(G) and en (Vn, Wn)
BOTTOMe(G) be edges of a vertical slice with Vl, Vn Gt and Wl, Wn G. When G
is decomposed into Gt and G by the vertical slice, the four corner vertices of Gt and
G are well defined:

NW(Gt) NW(G), NE(Gz) Vl,

NW(G) Wl, NE(Gr) NE(G),
SE(G/) Vn, SW(G/) SW(G);
SE(ar) SE(a), SW(ar) Wn.

EPTG(Gt) can be constructed by adding r(Gt) and edges {(r(Gl),Vl),...,(r(Gl),
Vn)}.EPTG(G) can be constructed similarly by adding l(G). Note that we may
have Vl Vn and/or wl Wn. Figure 4 shows an example of decomposition by a
vertical slice.

A vertical slice E on EPTG(G) defines a left boundary path P(E) (u(G), vl,

v, b(G)), vi RIGHTv(Gt), and a right boundary path P(E) (u(G),w,
Wm, b(G)), wi e LEFTv(G) (see Fig. 4). Note that (Vl,..., Vn) N (Wl,..., Wm)

and (Vl,..., Vn)[.J (Wl,..., Wm) is the set of vertices of E. Boundary paths of a hor-
izontal slice are defined similarly. When a vertical slice is specified, the left and right
boundary paths are well defined; conversely, when the left or right boundary paths are
specified, vertical slice can be defined. Given a right boundary path P (Vl,..., Vn),
where Vl TOPv(G) and Vn BOTTOMv(G), we can construct a slice Es by taking
all edges incident to vertices of P and on the left (but excluding edges) of P. If such E
satisfies the condition of a slice, we call E the left-induced slice of path P. Similarly,
we can define the right-induced slice of P. If an E so constructed is not a slice, the
left- (right-) induced slice of P is undefined.

A vertical slice in F (not in G) is a set of edges S (el,..., en) of a nonboundary
path in F, where

(a) all ei’s are on a common vertical cut-line;
(b) el is incident to the top boundary of F(G); and
(C) en is incident to the bottom boundary of F(G).

Horizontal slice and slice on F are defined similarly. In a sliceable RFP, at least one
slice exists.

3. Properties of sliceable floorplans and their duals. Many properties of a
floorplan are reflected on its corresponding dual and vice versa. Some of the properties
have been investigated in earlier literature [1]-[6]. Lemma 1 below was proved in [1].
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r(a )  (Vr \

FIG. 4. Decomposition by a vertical slice. E8 {(1,4), (2,4), (2, 5), (2, 6), (3,6), (3, 7)},Pl(Es)
(u(G), 1, 2, 3, b(G)), Pr(E) (u(G), 4, 5, 6, 7, b(G)).

LEMMA 1. Let G be a planar triangulated graph with corner vertices fixed. G
admits an RFP if and only if EPTG(G) contains’no C3 (complex cycle of length 3).

LEMMA 2. Let G be a planar triangulated graph which admits an RFP. Let E8 be
a vertical slice on G, and Gt, Gr be two subgraphs decomposed by Es. If both boundary
paths PI(E), Pr(E) are CFPs, then both GI and G admit RFPs.

Proof. Let Pt(E) (pl,... ,pn). Since G admits an RFP, by Lemma I EPTG(G)
contains no C3. Consider the EPTG(Gt). Suppose for the sake of contradiction that
Gt does not admit an RFP. By Lemma 1, there is a C3(a, b, c) in EPTG(Gt). Since
EPTG(G) contains no C3, at least one of the edges of C3(a, b, c) is not in EPTG(G).
The only edges that exist in EPTG(GI) but not in EPTG(G) are incident to r(Gt)
(refer to Fig. 4). Since Pt(E) is a CFP, any edge incident to r(Gt) cannot form
a C3. Thus, EPTG(Gt) contains no C3, a contradiction. By Lemma 1, EPTG(CI)
admits an RFP. Similarly, EPTG(G) also admits an RFP. A similar lemma applies
to horizontal slices. [1

A slice E8 that satisfies the conditions that both boundary paths PI(E) and
P2 (E) are CFPs is called a proper slice. When a left floorplan Ft and a right floorplan
F are placed side by side to form a floorplan, we denote it as Ft]EIF where E is
the corresponding slice of the floorplan.

LEMMA 3. Let E8 be a proper vertical slice on G which admits an RFP. Let
G and Gr be the left and right subgraphs decomposed by E. F(G)IEIF(G has
dual G.

Proof. The dual of F(GI)IEIF(G can be constructed by embedding Gt on
the left and G on the right with Es connecting them. The resulting graph is ex-
actly G.

LEMMA 4. Let F(G) be a sliceable REg. Let S (e,..., en) be a slice of F(G).
The corresponding set of dual edges E (e,..., e) in G is a proper slice.

Proof. Since S consists of only vertical (horizontal) line segments, it is a union of
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FIG. 5. Slicing G for special cases. (a) nondistinct corner vertex v. (b) G contains a cut vertex vc.

two floorplans Fl and Fr with S as the common boundary. Let Gl and Gr be the dual
of Ft and F. By Lemma 1, EPTG(Gt) and EPTG(G) contain no C3. Therefore,
there are no chords on the left and right boundary paths of Es.

THEOREM 1. Let G be a planar triangulated graph which admits an RFP. If G
contains no C4 (complex cycle of length 4), then it admits a sliceable RFP.

Proof. We prove the theorem by showing that, given an arbitrary planar trian-
gulated graph G, where EPTG(G) contains no C3 and G contains no Ca, there exists
at least one proper slice Es.

If G contains only one vertex, the proof is trivial. Since EPTG(G) is given, the
corner vertices are fixed. If there is a vertex v E G which occupies exactly two corners
(no vertex can occupy exactly 3 corners), simply let E be the set of edges incident to
v. Since G contains no C3, E is a proper slice. If G contains a cut vertex vc, let E
be the set of edges incident to the left (or right) of vc. The graphs in these cases are
shown in Fig. 5. Thick lines show proper slices E.

We are only left with the cases where the four corners of G are distinct and
G contains no cut vertices. We label the vertices of EPTG(G) using the following
procedure:

(a) Delete u(G),/(G), b(G) and their incident edges.
(b) Perform a breath first search (BFS) traversal on the remaining graph with

r(G) as the root. Label a vertex v at level in a BFS tree with a superscript i,
i.e., vi.

We "redraw" the graph such that vertices on the same BFS level are aligned ver-
tically. Figure 6 shows such a BFS drawing. Solid lines indicate edges that must exist
in EPTG(G). Dashed lines indicate that there may be zero or more edges/vertices.
For the purpose of discussion, u(G) and b(G) are special vertices which can be at levels
1 and 2. In fact, we need not redraw the whole graph because we are only interested
in the vertices and edges up to level 2. We will show that we can construct a proper
vertical slice by considering the BFS drawing of the EPTG(G).

Let E(i, j) be the set of edges between levels i and j and let the vertices at level
i be labeled v,...,v from the top (see Fig. 6). Consider the vertical slice

(1) So E(1, 2) {(u(G),x)lx e V} {(b(G),y)ly e V}
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FIG. 6. BFS drawing of an extended graph EPTG(G).

and its corresponding boundary paths

Pr(So) (v u(G), v, vn,, vn,+l
p,(so) vL vn2+1

Since the corner vertices are distinct, hi, n2 >_ 2. An example of EPTG(G) and So is
given in Appendix I.

If S0 is a proper slice, we are done. If So is not a proper slice, the right boundary
E(1,1 apath Pr(So) is still a CFP because any edge e (v, vj) E is not chord of

Pr(S0); otherwise there exists a complex triangle C3(v,vj,r(G)). Thus the chords
must be in P(S0). Because of the way So is selected, the chords must appear on the
left of P (S0).

V2 2A chord i, v), < j, where there are no other chords (v, v), where k _< <
j _< l, is called a maximal chord. Let Ec {el,..., ec} be the set of maximal chords of
Pt(So). For any chord (v2, v) E Ec, there is no chord (v, v), where k [i + 1,j 1]
and [i,j] (i.e., chords are pairwise "noncrossing"). This observation allows us
to perform local modifications in the neighborhood of a maximal chord (v, v) to
construct a proper slice.

V2 2The neighborhood of a maximal chord ep , vj Ec, < j can be depicted
by the general configuration in Fig. 7(a). Vm is the vertex to the right of ep which

2contributes to the triangular face (v/2, vj, Vm). v, must be located at level 2 or above.
Figures 7(b) and (c) show some special cases of the general configuration when Vm is
at level 2. Again, dashed lines indicate zero or more edges/vertices.

V2 2For each maximal chord ep i, vj Ec, < j, let
Etz(a, b, c, d) C_ E(1,2) be the set of edges bounded by the trapezoid region

(v2, v, v, v), including the edges (Va2, v), (v, v);
Ep(i) C E(2,2) be the set of edges from (including) (v/2, Vi+I) to ep 2

2 clockwise; if i 0, i.e. edge(not including) if we scan the edges incident to vertex v
ep is incident to u(G), Ep(i 0) ;

Ep(j) C E(2, 2) be the set of edges from (not including) ep (v, v) to (v], vj_12
2 clockwise; if j n2 + 1 i.e. edge(including) if we scan the edges incident to vertex vj

ep is incident to D(G), Ep(j n2 + 1) .
The regions of the edge sets Eta(i, j, l, k), Ep(i), Ep(j) of a maximal chord ep

(v/2, vy) are depicted by the shaded regions in Fig. 8.
For each maximal chord ep (v2i, v) e Ec,p 1, 2,..., c, we identify the two

vertices v and v at level 1 (see Fig. 7) and obtain a new set Sp by

Sp Sp-1 Etz(i + 1,j 1, l, k)+ Ep(i) + Ep(j), p 1, 2,..., c,
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FIG. 7. Configurations of a maximal chord: (a) general configuration; (b) configuration

Vm v_ (c) configuration when 2 2
vi+ Vm vj_

p

FIG. 8. The regions of the sets Etz(i, j, l, k), Ep(i), and Ep(j) of a maximal chord ep.

where S0 is defined by equation (1). The above operation is called bypassing a maximal
chord corresponding to ep. An example of bypassing operation is shown in Fig. 9. The
original slice (in thick lines) is shown on the left and the bypassed slice is shown on
the right with maximal chord ep (5, 8). After the bypassing operation is performed
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FIG. 9. Bypassing a maximal chord Cp" original slice (left) and bypassed slice (right).

on all maximal chords of Ec, we claim that the set E8 Sc is a proper slice (c
This implies that there exists at least one proper slice in G. Since the subgraphs
and Gr also contain no C3 or Ca, the theorem applies recursively and a sliceable RFP
exits.

To prove the claim, we observe that because of the bypassing operation for con-

structing Es, the left boundary path P(E) of EPTG(G) is a CFP. It remains to
show that Pr(E) is also a CFP. There are two types of vertices in P(E). Type 1
vertices are vertices at level 1 which are also found in the original Pr(S0) before by-
passing. The other vertices are called type 2 vertices. They are added when a chord
is bypassed, and by definition all type 2 vertices are not located at level 1 (see Fig. 8).
If a type 2 vertex is added when a maximal chord ep (v, v) is bypassed, we call it

2 2 Suppose for thea type 2.p vertex. Each type 2.p vertex is adjacent to either v or vj.
sake of contradiction that P(E) contains a chord (x, y). The chord must be located
on the right of P(Es). Consider the following cases.

Case 1 (x, y are both type 1 vertices). Since x and y are level 1 vertices, x, y
Pr(So). However, (x, y) cannot be a chord of P(So) since P(So) is a CFP. Therefore,

V2 2(x, y) must be an edge of P(So). It became a chord when we bypassed ep , v)
for some p. Referring to Fig. 7, we can see that this condition implies the existence of

2 2).C4(x,y,v ,Vj
Case 2 (x, y are both type 2 vertices). From the construction of E, both vertices

2must belong to identical subtype 2.p. Suppose both vertices x, y are adjacent to v
2This implies the existence of C3(x,y, vi (the chord (x, y) is on the right of P(E)).

22 If x is adjacent to vThe same argument applies if both vertices are adjacent to vj.
2 2and y is adjacent to vy, it implies the existence of C4(x, y, vj, v ).

2 be theCase 3 (x is type 1 and y is type 2.p). Without loss of generality, let vi
vertex adjacent to y. From Fig. 7, a chord (x, y) exists only when x is v or v. If

2 2 2x v, there exists C3(x v, y, vi ). If x v, there exists C4(x v, y, vi, vj ).
All possible cases above lead to contradictions by implying the existence of C3 or

C4. Thus Pr(E) is a CFP.
An example illustrating an application of Theorem 1 is given in Appendix I. The

converse of Theorem 1 is certainly not true, that is, there exist sliceable floorplans
whose duals contain some Ca, for example, a Ca with one vertex inside.

To help the development of a slicing algorithm, we observe the following lemma.
LEMMA 5. The intersection of a slice E and any C4 is either empty or contains

exactly two edges.
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Gr Gr
FIG. 10. The two cases of slicing a C4: corner-sliced (left) and center-sliced (right).

Proof. The proof of the lemma follows immediately from the definition of Es.
Let I be the set of edges from the intersection of Es and Ca. III must be no greater
than 4 since IC41 4. Let Gl.and Gr be the left and right subgraphs sliced by Es.
Suppose [I 1. Since the vertices of Ca are still connected, they must belong to the
same connected component. Thus we can add the edge in I without increasing the
number of connected components in G- Es. This contradicts the fact that Es is a
slice. If III 3 and G- E contain exactly two components, there must be at least
one edge in I that can be added to G- Es without reducing the number of connected
components, a contradiction. If III 4, there are at least three connected components
in G- E, i.e., G1, Gr, and the vertices in the area bounded by the Ca; this is another
contradiction.

4. An algorithm for generating sliceable floorplans. In this section we
discuss some issues of slicing a planar triangulated graph (PTG) to generate a sliceable
floorplan. The slicing operation is complicated by the presence of C4 in a PTG. We first
examine the properties of slicing a C4. We then present an algorithm that generates
a sliceable floorplan from a PTG. If the PTG contains no Ca, the algorithm always
generates a sliceable floorplan. Otherwise, pseudovertices may be added to maintain
sliceability in the floorplan. Special considerations are made when slicing a PTG
containing Ca.

4.1. Slicing a Ca. Consider a C4(a, b, c, d) and a slice E. Let Ei be the set of
edges in the intersection of C4(a, b,c, d) and E. If Ei is not empty, then by Lemma
5, Ei contains exactly two edges. Without loss of generality, we can classify the two
edges of Ei as follows:

(a) corner-slice: Ei { (a, b), (b, c)};
(b) center-slice: Ei { (a, b), (c, d)}.
The two cases are shown in Fig. 10. When a C4 is corner-sliced, b G (without

loss of generality) and a, c, d Gt, where a, c are vertices of the slice E. Consider
the vertices of Es which are adjacent to vertex b. Let P {a v,..., Vn c} be
the vertices. The existence of a chord (vi, vy) in P would imply a complex triangle
C3(v, vj, b). Thus no chords exist in P. Furthermore, edges (c, d) and (d, a) can never
be chords of Pt(E) because d Pt (Es).

For a center-sliced Ca, a, d E Gt, b, c E G, and a, b, c, d E. Since the Ca
contains some vertices, either (a, d) is a chord of PI(E) or (b, c) is a chord of P(E)
(or both). Bypassing operation on the chords does not help because the condition
holds regardless of the slice E. Thus, when a Ca is center-sliced, we have to modify
the input graph G to produce a sliceable floorplan.

From the above observations, we conclude that we need to corner-slice as many
Ca’s as possible to avoid chords on boundary paths of a slice. The number of Ca’s in
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a PTG may exceed O(n) where n is the number of vertices of the PTG. If we have
to identify all Ca’s, the time complexity will be dominated by the search for all Ca’s.
However, we could process C4 hierarchically: a complex cycle C may contain other
complex cycles in the region bounded by the edges of C. We define a maximal C4
(denoted by MC4) to be a C4 which is not contained in any other C4 of the PTG. The
number of MC4’s in a PTG is O(n). By definition, an MC4 cannot contain another
MC4. When a PTG contains no C3, two MCa’s do not intersect. We only consider
an MC4 of a PTG when searching for a proper slice. We try to find a corner-slice
for each MCa. Due to rotation symmetry, there are four different corner-slicings of
an MC4.

4.2. Slicing a planar triangulated graph. The proposed algorithm for gen-
erating a sliceable floorplan from an EPTG(G) is a divide-and-conquer algorithm.
The fundamental task of the algorithm is to construct a proper slice Es from the
EPTG(G). From now on we will assume that the corners of EPTG(G) are distinct
and G contains no cut vertices. If G has nondistinct corners and/or contains cut
vertices, generating a proper slice is trivial (see Fig. 5).

In general, an EPTG(G) may have an exponential number of proper slices, while
for others no proper slice may exist. The proof of Theorem 1 provides a method to
construct a proper slice of an EPTG(G). When G contains no Ca a proper slice always
exists. In the proof, the initial slice So is chosen to be the edge incident to the vertices
on the right boundary of G. The choice of such So ensures that the right boundary
path Pr(So) is a CFP since EPTG(G) contains no C3. We could have chosen any
slice S as long as P(S) is a CFP. Different choices of S will yield different floorplans.
Choosing an S where Pr (S) is a CFP is not a difficult task. We start with an arbitrary
path P, where the end vertices of P are vertices u(G) and b(G). If P is a CFP we
construct S from the edges incident to P and on the left of P (the left-induced slice
of P). If P is not a CFP we choose a maximal subset P of vertices of P by traversing
the chords so that P is a CFP. We then choose the edges on the left of P as S.

To search for a vertical CFP P, we define a search graph Gs, which is a directed
subgraph of EPTG(G), using the following procedure:

P1. For each MC4 C4(a, b, c, d) in G:
PI.1. Delete all vertices (and incident edges) contained in MC4(a, b, c, d).

Do not delete vertices a, b, c, d.
P1.2. Add four directed edges (a, b), (b, c), (c,d), (d, a) where the vertices

a, b, c, d are in counterclockwise order. If adding such edges results in
two directed edges (u, v) and (v, u), delete both edges.

P1.3. Add two undirected edges (a, c) and (b, d).
P2. Delete all edges incident to LEFTv(G).
P3. Delete all edges incident to r(G).
P4. Delete all edges in TOPe(G)t BOTTOMe(G).
P5. Change all undirected edges incident to u into directed edges away from u.
P6. Change all undirected edges incident to b into directed edges toward b.
PT. Change all undirected edges on RIGHTe(G) into directed edges pointing

downwards.

An example of EPTG(G) and its search graph Gs is shown in Fig. 11. The
undirected edges in Gs can be traversed in both directions. We search for a directed
CFP Ps from u(G) to b(G) in Gs. If a diagonal edge (a,c) in an MCa(a, b, c, d) (in
counterclockwise order) is traversed in Gs, the corresponding path in G should traverse
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FIG. 11. An EPTG( G) (left) and its search graph Gs (right).
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FIG. 12. Modifying initial slice to satisfy the first condition of CFP.

all vertices adjacent to vertex b in MCa(a, b, c, d). For example, if we traverse the edge
(4, 6) of Gs in Fig. 11, we should traverse all vertices adjacent to vertex 5, i.e., (4, 8,
6) in G. From Ps in G, we find the corresponding path Pr(So) in G. The left-induced
slice So of Pr(So) serves as an initial slice. For example, in Fig. 11,

P (u, 4,6,7, b) E

P(So) (u, 4, S, 6, 7, b) EPTG(G),
So {(4,10), (a, (8, (7, (7,13)}.

Procedure P1 guarantees that an MCa is corner-sliced and not center-sliced.
P1.2 is needed to avoid center-slicing an MC4 on the right of path P. P1.3 allows an

MC4 to be corner-sliced. P2 is needed since Gl must contain all vertices of LEFTv(G).
(We have assumed that G contains no cut vertices.) P3 eliminates paths through
r(G). The rest of the procedure simplifies the analysis: if P(So) traverses TOPe(G)
or BOTTOMe(G), then it must contain a chord; P4 excludes this possibility. Since
the end vertices of Pr(S0) are u(G) and b(G), P5 and P6 are included. P7 is included
since RIGHTv(G) must be on G.

In general, there is more than one path in Gs. Heuristic measures can be employed
to choose a good path. The search heuristics should try to corner-slice as many MCa’s
as possible. Corner-slicing is equivalent to traversing a diagonal edge of an MC4 or
traversing exactly one vertex of an MCa when searching for P in G. If corner-slicing
an MC4 is not possible, we should try to avoid traversing any vertices of the MCa.
The unsliced MC4 will appear in either G1 or Gr (exclusively). The MC4 will be
sliced when its subgraph is decomposed.
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FIG. 13. Initial slice (left) and modified initial slice (right).

If no path exists in Gs, then there is no proper slice. In this case we have to accept
an improper slice by center-slicing some MCd. Again, we could impose heuristics to
select an improper slice. When the presence of a chord is inevitable, we have to fix
the chord. This will be discussed later in this section.

When the path Ps on Gs has been chosen, Pr(So) in EPTG(G) is determined. We
obtain the left-induced slice So of Pr(So). By definition, Pr (So) is also the right bound-
ary path of the slice So. P(So) is a CFP since we only accept CFPs when searching
for Ps. There are two cases where the left boundary path Pt(So) (Vl,..., Vn) fails
to be a CFP:

(a) For some 7 j, vi vj.

(b) There are some chords in Pt (S0).
The two cases are derived from the definition of a CFP. The first case is easy

to solve. We construct a path P[ by excluding vertices v, < k < j from Pt(So).
The process is repeated until we obtain a path P* where the first condition is not
violated. The right-induced slice of P* must exist and serves as the modified initial
slice S. An example of the procedure is shown in Fig. 12. The original slice is shown
on the left with P-(So) (2, 3, 4) and P(So) (1, 8, 7, 8, 5). On the right of the figure,
P,.(So) (2, 7, 4) and P(So) (1, 8, 5).

We claim that the right boundary path P,.(S) of modified slice SD is still a CFP.
Let vi vj, < j in the original slice So. The neighborhood of the graph for the
modified slice S is shown in Fig. 13. Thick edges represent edges in the slices So and
SD. Dotted edges may or may not exist. Solid edges and vertices must exist as shown
in the configuration. From the figure, we can see that all vertices between vertices a
and b in Pr(S) are adjacent to vi vj. Thus there are no chords (x, y) among the
vertices or we would have C3(x, y, vi vj). Also, the vertices cannot form any chords
with any vertices in the original Pr(So) due to the subpath of Pr(So) between vertices
a and b (shown on the right with a dotted vertical line).

From the above construction, we can thus assume that the first condition of an
initial slice So is always satisfied. The only conditions that need to be examined
are the chords of P(So). If G does not contain any Ca, we can apply the bypassing
operation described in Theorem 1 to obtain a proper slice. In the presence of Ca, the
operation is still successful if the maximal chord is not part of any C4.
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FIG. 14. Fixing the chords of an improper slice.

When all of the above methods fail and a chord cannot be avoided, the algorithm
has to accept an improper slice. When this occurs, each chord will contribute a C3
in one of the subgraphs, say EPTG(Gr). We delete the chord, add a vertex in the
middle of the chord and four new edges. The operation is called fixing a chord, as
shown in Fig. 14. Fixing a chord eliminates the C3 caused by the chord and maintains
triangulation of graph EPTG(Gr). Note that when we fix a chord, a new Ca is created
(e.g., C4(1,2,3,4) of Fig. 14). However, three vertices of the Ca fall in the boundary
of G. This ensures that the Ca will be corner-sliced in the future. C3’s of EPTG(Gz)
are handled similarly.

A summary of the algorithm is described as follows.

ALGORITHM SLICE(EPTG(G)

INPUT: An extended dual EPTG(G).
OUTPUT: A planar triangulated graph G and a sliceable floorplan F(G1). G is G

with some pseudovertices added. If EPTG(G) contains no C3 and G contains
no Ca, then G G.

BEGIN
1. Check if:

1.1. the corners of EPTG(G) are not distinct.
1.2. G contains a cut vertex.
if so, a slice is trivially generated.

2. Find all MCa’s of G.
3. Determine the orientation of the slice: Horizontal or Vertical.
4. Construct the search graph
5. Search for a path Ps in G which satisfies the following criteria:

Priority 1: Maximize the number of MC4’s which are corner-sliced by P.
Priority 2: Minimize the number of MCa’s which are center-sliced by P.

6. Find the left-induced slice So in G from P.
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12.
13.

END.

7. Modify the slice So to eliminate vertices of Pt(So) so that the first condition
of CFP is not violated.

8. Find the maximal chords of Pt (S0).
9. For each maximal chord ep, perform a bypass operation on ep and obtain a

final slice E. /* see Theorem 1 */
Decompose G into Gl and Gr and obtain EPTG(GI) and EPTG(Gr).
If EPTG(G) or EPTG(G) contains a C3 due to chords, fix the chords by
adding a pseudovertex and corresponding edges. Update G if pseudovertices
are added. /* see Fig. 14 */
Recursively call SLICE(EPTG(G)) and SLICE(EPTG(Gr)).
Construct floorplan F(G) by merging the floorplans of F(G) and F(Gr).

The MC4 of a graph can be found in O(n log n) time, where n is the number
of vertices of G. The operation need not be repeated during the recursive steps since
the MC4’s of Gt and G are also those of G. An O(n log n) algorithm for finding all
MC4’s is described in Appendix II.

The search graph Gs can be constructed in linear time. The path P can also
be found in linear time using simple heuristics, e.g., using a depth-first search which
incorporates some cost measure to achieve balanced slice. The bypassing operation
also has linear time complexity since the number of edges in a planar graph is O(n).
Standard planar graph data structures like a doubly connected edge list [11] are suf-
ficient for the algorithm. All other steps in the algorithm are standard operations on
planar graphs which can be achieved in O(n) time.

The time complexity of the recursive part of the algorithm is

T(n) T(n) + T(n,.) + O(n),

where nl and nr are the number of vertices of Gt and G, respectively, with nt +n
n. The operation of fixing a chord adds at most c vertices where c is the number of
chords. Since c < n, the time complexity remains unchanged. At each level of the
recursion, we spend O(n) time. If we consider the output floorplan tree, we spend
O(n) time in total to construct the tree nodes at each level. Thus we have

T(n) O(hn),

where h is the height of the floorplan tree.
In general, n and nr are not balanced. In fact, there exist instances of input

EPTG(G) where the trees are extremely unbalanced. The graph shown in Fig. 15 is
an example. The graph belongs to a class of EPTG(G) called 4-contractable. The
floorplan of a 4-contractable graph is unique [8] as given by the figure; thus h O(n).
h is 0(log n) when a balanced partition can be achieved for the nonterminal nodes of
the floorplan tree. Since finding MC4 requires O(n log n), the time complexity of the
algorithm is O(n log n + hn).

5. Algorithm improvements and extensions.

5.1. Minimizing wasted area. When a proper slice does not exist, we perform
a chord fixing operation. For each chord, a pseudovertex is added to the original G.
These pseudovertices contain no circuit elements in VLSI layout. They are added
merely to satisfy the adjacency requirements specified by G. In the final chip layout,
the rectangles corresponding to the pseudovertices contain only routing wires with
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FIG. 15. An inherently unbalanced ]oorplan.

2

FIG. 16. Choosing a slice to minimize wasted area.

no devices. Minimizing the area consumed by these pseudovertices becomes a major
concern. The routing area depends on the number of routing wires of the edge being
fixed. Therefore, the slicing algorithm should prefer chords with less routing wires.

Proper choice of a slice also helps in reducing the wasted area. Consider C4(1, 2, 3,
4) in Fig. 16. Suppose corner-slicing of the C4 is not possible. We have to slice the C4
with edges (1, 2), (3, 4). If we choose the slice {(1, 2), (1,5), (1, 7), (1,9), (4,9), (4,8),
(4, 6), (4, 3)}, we have three chords (2, 3), (5, 6), and (7, 8). However, if we choose
{ (1, 2), (2, 5), (3, 5), (3, 6), (3, 4) }, we have only one chord (1, 4). The proper choice of
slicing depends on the wiring density of the edges and the configuration of the C4.
The objective is to find a slice with less wasted area after pseudovertices are added to
fix the chords.

5.2. Generating families of sliceable floorplans and sizing. In general,
there is a family of floorplans which have identical dual G. An algorithm for generating
all floorplans in the family is an immediate extension of the basic algorithm. In [2],
algorithms for generating all floorplans for an input planar triangulated graph were
discussed. In [7], an algorithm that generates all floorplans with linear time complexity
per floorplan was reported. It should be noted that the number of floorplans in a family
may be exponential in terms of the number of vertices.

Our algorithm is immediately extended to generate all sliceable floorplans of the
input graph. Two sliceable floorplans are distinct if and only if their tree representa-
tions are distinct. The problem of enumerating all floorplans is reduced to the task of
enumerating all proper slices on the search graph Gs. Any algorithm for enumerating
paths can be employed.

5.3. Pseudovertices. Figure 17 demonstrates the outputs of the algorithm
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FIG. 17. Adding pseudovertices to maintain sliceability.

where pseudovertices are added to satisfy the sliceability requirement. The inputs
are taken from graph of Fig. 1, which does not admit any sliceable floorplan. The two
extended graphs show identical adjacency graphs with different corner assignments.
The outputs of the program are also shown in the figure. The negative numbered
rectangles in the floorplans represent pseudomodules.

Experiments using randomly generated planar triangulated graphs have shown
that the number of pseudovertices added to the input graph is approximately 22%
of the number of input vertices. On the pseudovertices added, approximately 70%
(16% of the number of input vertices) are generated by C3 of the original input. This
represents the inherent price we have to pay for using the rectangular dual graph
approach. But with only an additional 6% more vertices, we are able to generate
sliceable floorplans. Since sliceable floorplans have many desirable characteristics, it
is justifiable to pay some extra cost by applying our algorithm.

6. Conclusions and future work. An algorithm for generating sliceable floor-
plans based on a re,ctangular approach has been presented. If the input graph contains
no Ca (complex cycle of length 4), then the algorithm always generates a sliceable
floorplan. In the presence of Ca, a sliceable floorplan is also possible though not guar-
anteed. With minor modifications to the adjacency requirements of an input graph,
the algorithm always generates a sliceable floorplan even when the input graph is
known to be inherently nonsliceable. Typically, the sliceability requirement only in-
troduces a small number of pseudovertices to the original input graph, which makes
the algorithm very suitable for practical applications.

Many problems remain unsolved in the rectangular dualization approach to floor-
planning. An important issue is the planarization and triangulation of the given
adjacency graph to obtain a "good" planar triangulated graph. For example, the
qualitative effect of planarization to the final floorplan is still unknown. Practical
issues such as incorporating weights to vertices and edges of the graph are not well
formulated. In particular, the effects of weight measures on the choice of slices are not
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(a) (b)

FIG. 18. Construction of a proper slice when four corner vertices are distinct. (a) an EPTG(G)
with no C3 and C4. (b) breadth first search drawing of EPTG(G).

well understood. The problem of incorporating sizing in the floorplanning system is
currently under investigation. Another interesting problem is the enumeration of all
sliceable floorplans, currently being investigated by the authors.

Appendix I. An example for the proof of Theorem 1.
Figure 18(a) shows an EPTG(G) with no C3 and G with no Ca. The BFS drawing

of the graph is depicted in Fig. 18(b). The construction of a proper slice E8 is as
follows:

So {(1, 7), (2, 7), (2, 8), (2, 9), (3, 9), (3, 10), (4, 10),
(4, 11), (5, 11), (6, 11), (6, 12), (6, 13)},

Pt(So) {u, 1,2,3,4,5,6, b},
Pr(So) {u, 7, 8, 9, 10, 11, 12, 13, b},
chords of Pt(So) {(u, 8), (u, 9), (10, 12)},
maximal chords Ec(S0) { (u, 9), (10, 12) },
v u,v 1, v2 2, v3 3, va 4, v 5, v 6, v b,

v u, Vl
2 7, v22 8, v 9, v 10, v 11, v6

2 12, v 13, vs2 b.

For maximal chord el (v/2, vy) (v, v) (t, 9),

0,j 3, k 1,1 2, Vm 8,

Etz(i + 1,j 1,/, k) Etz(1,2,2,1) {(1,7),(2,7),(2,8)},
E1 (i) E1 (0) , E1 (j) El (3) { (8, 9) }.
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For maximal chord e2 -(v2, v)= (v42, v62) (10, 12),

4,j 6, k 4,/= 6, Vm 11,

Etz(i + 1,j 1,/, k) Etz(5, 5, 6,4) ((4, 11), (5, 11), (6, 11)},
Ee(i) Ee(4) {(10, 11)}, Ee(j) Ee(6) {(11, 12)}.

To construct

$1 So Etz(1, 2, 2, 1) + El(i O) + EI(j 3)
{(s, 9), (e, 9), (a, 9), (a, 0), (4,10), (a, 1), (, ), (, 1), (, le), (, la)},

Es $2 $1 Etz(5, 5, 6, 4) + E2(i 4) + E2(j 6)
{(s, ), (, ), (, ), (, 10), (4,10), (0,11), (11,1), (, 1), (, )},

P(E) (u, 9, 10, 12, 13, b),
Pr(E)=(u, 8,2,3,4,11,6, b).

It can be easily verified that E is a slice and Pr(E),/(Es) are CFPs.

Appendix II. Finding maximal C4 of a planar triangulated graph.
The algorithm requires a subalgorithm to detect MC4. We present a divide-and-

conquer algorithm to find all MC4 of a PTG.
We partition the input graph G into vertex-balanced left and right subgraphs

G1, G with a slice C (el,... ,ec). The slice need not strictly satisfy the condition
that e E TOPe(G) and ec E BOTTOMe(G). We only require that e and ec be
external edges while ei, 1 < i < c, are not external edges. We call C a cutset. A
vertex-balanced cutset can be easily generated by some tree search techniques (e.g.,
breadth first search) until half of the vertices are visited.

Let PI(C) (v0,..., v) and P(C) (v,..., v) be the left and right boundary
paths of C. By Lemma 5, the intersection of an MC4(a, b, c, d) consists of either zero
or two edges. At each recursion step, the algorithm finds all MC4’s that intersect the
slice C. Referring to the discussions of 4.1, an MC4(a, b, c, d) is either corner-sliced
or center-sliced. We consider both cases separately.

Case 1 (center-sliced: (a, b), (c,d) C). Without loss of generality, we assume
that a,d G and b,c G (see Fig. 10). Since vertices a,b,c,d P(C) U P(C),
we can delete all vertices not in Pt(C) J Pr(C). Now, the edges of Gt(G) are only
incident vertices of Pt(C)(P(C)). Let the remaining graph be Gd.

For the purpose of discussion, we assume that the vertices of/(C) and P(C)
are distinct. The modifications needed when their vertices are not distinct will be
discussed later. For each vertex v of P(C) and P(C), we find the minimum and
maximum edge indices of C whose edges are incident to v. Let Vmin and Vmax be the
indices. For example, if v is incident to edges e3, e4, eh, Vmin 3 and Vmax 5. Let
u, v be two vertices of P(C) where u precedes v when Pt (C) is traversed. There is an
important monotonic property:

Umin

_
Umax Vmin

_
Vmax.

The property also holds for Pr(C).
Let the first edge of C, e (a, b) with a E Gt and b G. Let (a, d) e Gt and

(b, c) G be the two external edges of Gd incident to vertices a and d, respectively.
The situation is depicted in Fig. 19(a). We search for the existence of MC4(a, b, c, d).
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c) p,(c)
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(b)

FIG. 19. Finding MCd(a, b, c, d), where (a, b), (c, d) e C. (a) finding MC4 in Case 1.1; (b) dupli-

cating vertices to maintain monotonic property.

Let [i, j] denote the set of integers between and j (inclusive). Consider the min and
max indices carried on vertices c and d. There are two possibilities:

(1) [Cmin, Cmax] f"l [dmin, dmax] ;
(2) [Cmin, Cmx] 3 [dmin, dmx] K # .

In the first case, edge (c, d) does not exist. If Cmin > dmax, we delete the external
edge (b, c) in Gd. By the monotonic property, any subsequent vertex visited by the
algorithm d’ Pt(C) incident to vertex a will have

dmax < dmin <_ dmax < (min,

because d’ precedes d in Pt (C). Thus d’ is not adjacent to c. Conversely, if dmin >
we delete edge (a, d) for the same reason.

For the second case, MCa(a, b, c, d) exists with edge (c, d) in C. However, K must
contain exactly one integer. Otherwise, we would have at least two distinct edges ei, ej
with i, j E K, # j, simultaneously incident to vertices c and d. This is a contradiction
since there are no duplicate edges in G.

If an MC4 is found, all vertices and incident edges in the area bounded by the
MC4 are deleted. After all external edges incident to vertices a and b are exhausted,
we delete (a, b) and select the first remaining edge in C (which is an external edge).

When P(C) contains nondistinct vertices, the monotonic property fails. How-
ever, by duplicating the nondistinct vertices, we are able to maintain the monotonic
property. Each time we encounter a vertex v which has been traversed in P(C), we
make duplicate vertices v at a very small distance from v and redistribute the incident
edges. The resulting graph may not be planar but it does not affect the solution. The
operation is shown in Fig. 19(b). The thick edges represent edges in C. A similar
procedure is applied to Pr(C).

Case 2 (corner-sliced: (a, b), (b,c) E C). Assume a, c,d G and b Gr (see
Fig. 10). First, we delete the following edges and vertices since they will not be part
of any MCd(a, b, c, d) we are searching for:

(a) all edges not incident to vertices of Pt (C) (2 Pr (C);
(b) all remaining edges of
(c) all remaining vertices of degree less than 2;
(d) all remaining vertices not incident to the infinite face.
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d

FIG. 20. Duplicating vertices and edges to find MC4(a,b,c,d), where (a,b), (b,c) E C.

Let Gd be the resulting graph. Consider a vertex d E Gt- Pt(C). Let {(d, vl),...,
(d, Vn) be the incident edges in Gd. Since d P(C), d cannot be adjacent to vertices
of Gr. If vi Pt (C) for some i, then the edge (d, vi) would have been deleted in step
(a). Thus v P(C) for all i.

If an edge (d, v) is incident to the infinite face of Gd, we do nothing. If (d, v)
is not incident to the infinite face, we duplicate the vertex vi and the edge (d, vi) as
shown in Fig. 20. (The thick edges represent edges in C.) The duplicate vertices vil
and Vi2 are spaced a sufficiently small distance apart. Let (d, Vl) and (d, Vi2) be the
duplicate edges. Since the original v is incident to the infinite face (by step (d)), edges
(d, Vl) and (d, vi2) are now incident to the infinite face. We perform such modification
for all vertices vi and all vertices d Gt -/(C).

Consider an MC4(a, b, c, d) in Gd, where a, c, d Gt and b in Gr. Because of the
above modification, the edges (a, d) and (c, d) of the MC4 are now incident to the
infinite face. MC4(a, b, c, d) can be easily identified by considering all vertices b in
P(C). There is at most one MC4 corresponding to each vertex b P(C).

The algorithm is repeated with left and right subgraphs interchanged for
MC4(a, b, c, d), where b G and a, c, d E G.

Combining the two cases above, we find all MC4 with edges in the cutset C. The
algorithm can be recursively applied to Gt and G to find other MCa’s. The algorithm
is shown in pseudoinstructions below.

ALGORITHM FIND__MC4(G)

INPUT: A planar triangulated graph G.
OUTPUT: All MC4 of G.
BEGIN

1. Find a balanced cutset C where the left subgraph Gt and right subgraph Gr
are connected. For example, use breadth first search until half of the vertices
in G are visited.

2. FIND MC4 CASE__I(Gt,G,C).
3. FIND Mca__CASE__2(G,G,C).
4. FIND__MC4 CASE__2(Gr, Gt,C).
5. FIND__MC4(G).
6. FIND_MC4(G).

END.

PROCEDURE FIND MC4 CASE__I(G, Gr, C)

INPUT: A cutset C and left and right subgraphs Gl, G.
OUTPUT: All MC4(a, b, c, d) where a, d Gt and b, c Gr.
BEGIN

1. Delete all vertices v Pt U P.
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2. If Pl(C) or Pr(C) is nondistinct, make duplicate vertices and redistribute the
edges. See Fig. 19(b).

3. Let Gd be the resulting graph. The vertices of PI(C) and P.(C) now have
monotonic property.

4. FOR v E P(c) t2 Pr(C) DO
4.1. Vmin min index of incident edges in C.
4.2. Vmax max index of incident edges in C.
END FOR.

5. WHILE exist (a, b) E C which is an external edge DO
5.1. Let a G, b Gr.
5.2. Let (a, d) G and (b, c) Gr where (a, d) and (b, c) are external edges.
5.3. IF [Cmin, Cmax] N [dmin, dmax] THEN

5.3.1 IF Cmin > dmax THEN delete the external edge (b, c).
5.3.2 IF dmin > Cmax THEN delete the external edge (a, d).

5.4. ELSE
5.4.1. IF there are vertices in the cycle (a, b, c, d) THEN

5.4.1.1. Report MC4(a, b, c, d).
5.4.1.2. Delete edges and vertices inside MCa(a, b, c, d).

END WHILE.
END.

PROCEDURE FIND MC4 CASE__2(G,G,C)

INPUT: A cutset C and left and right subgraphs Gl, G.
OUTPUT: All MC4(a, b, c, d) where a, b, d E G and c G.
BEGIN

1. Delete all edges (u, v) where both u, v P(C)t2 P(C).
2. Delete all edges in G.
3. Delete all vertices with degree less than 2.
4. Delete all vertices not incident to infinite face.
5. Let Gd be the resulting graph.
6. FOR d (Gd G) P(C) DO

6.1. FOR vi incident to d DO
6.1.2. IF (d, vi) is not incident to the infinite face THEN

Duplicate vertices vii, vi2, edges (d, vii), (d, vi2) as shown in
Fig. 20.

END FOR.
END FOR.

7. FOR b Gd CI Gr C P(C) DO
7.1. If external edges (a, b) and (b, c) exist THEN

7.1.1. Let (b, dl) and (c, d2) be the external edges where d,d2 (Gd N
G) PI(C).

7.1.2. IF d d2 and there are vertices in the cycle (a, b, c, d) THEN
Report MC4(a, b, c, dl ).

END FOR.
END.

At each recursive step, the algorithm FIND MC4() visits the edges of G at
most a constant number of times. Although step 6 of FIND__MC4 CASE 2()
contains two nested loops, the time complexity remains linear because each edge (d, vi)
is visited a constant number of times in 6.1.2. Therefore, the time complexity of the
algorithm is O(n log n).
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TWO-WAY ROUNDING*

DONALD E. KNUTH]

Abstract. Given n real numbers 0 _< Xl,... ,xn < 1 and a permutation a of {1 n}, we

can always find 1,... ,n E {0, 1} so that the partial sums 1 + + k and al + +k differ
from the unrounded values Xl -t- + xk and Xal + -t- xak by at most n/(n + 1), for 1 <_ k <: n.

The latter bound is best possible. The proof uses an elementary argument about flows in a certain

network, and leads to a simple algorithm that finds an optimum way to round.

Key words, rounding, partial sums, network flows, discrepancy

AMS subject classifications. 90C27, 90B10, 05A05

0. Introduction. Many combinatorial optimization problems in integers can
be solved or approximately solved by first obtaining a real-valued .solution and then
rounding to integer values. Spencer [11] proved that it is always possible to do the
rounding so that partial sums in two independent orderings are properly rounded. His
proof was indirect--a corollary of more general results [7] about discrepancies of set
systems--and it guaranteed only that the rounded partial sums would differ by at
most 1 2-2 from the unrounded values. The purpose of this note is to give a more
direct proof, which leads to a sharper result.

Let x1,..., Xn be real numbers and let a be a permutation of {1,..., n}. We will
write

Sk Xl -[-"" nt- Xk zk Xal nt- + Xak 0 <_ k <_ n,

for the partial sums in two independent orderings.
:1, n such that

[x J < <

and such that the rounded partial sums

Our goal is to find integers

also satisfy

(,) [s J _< _< _< <_

for 0 _< k _< n. Such 1,... ,n will be called a two-way rounding of Xl,... ,Xn with

respect to a.
LEMMA. Two-way rounding is always possible.

Proof. We can assume without loss of generality that Sn m is an integer, by
adding an additional term and increasing n if necessary. We can also assume that
0 < xk < 1 for all k. Construct a network with nodes {s, al am, U,...,Un,

v,..., vn, bl,..., bin, t} and the following arcs:

s aj and bj --. t for 1 _< j _< m;

*Received by the editors December 20, 1993; accepted for publication (in revised form) April 6,
1994.

[Computer Science Department, Stanford University, Stanford, California 94305-2140.

1Here and in what follows [a.. b) denotes the half-open interval { x a

_
x < b }. This notation,

due independently to Hoare and Ramshaw, is recommended in [5].
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Uk --* Vk for 1 <_ k <_ n;

aj Uk [j 1.. j) N [Sk-1 Sk) # 0;

Yak bj if

Each arc has capacity 1. This network supports a natural flow of rn units, if we send
1 unit through each arc s --, ay and by --, t, and xk units through uk Vk; the flow
in ay -- Uk is the measure of the interval [j 1 j) A [S-1 Sa), and the flow in

vk --* by is similar. Deleting the arcs s ay defines a cut of capacity m, so this must
be a minimum cut.

Since the arc capacities are integers, the max-flow/min-cut theorem implies that
this network supports an integer flow of rn units. Let 2k be the amount that flows
throughu -- vk, for 1_< k <_ n, in one such flow. Then2k E {0,1}. Ifj
we have S 1 --’’’-- k flow into {Ul,..., u} _< flow out of {al,..., aj} j,
because all arcs a -, ut for _< k have _< j. Ifj [Ski then Sk flow into

{ul, Uk} >_ flow out of {a,..., aj} j, because all arcs a --, ut for _< j have
<_ k. A similar argument proves that [EJ _< k _< [Ek], hence (,) holds. 71

COROLLARY. Given any fixed k, two-way rounding is possible with 2k [x, as
well as with 2

Proof. We may assume as before that 0 < xk < 1. The construction in the
lemma establishes a feasible flow of xk units in the arc uk ---* Vk. It is well known that
the polytope of all feasible flows has vertices whose coordinates are integers (see, for
example, Application 19.2 in Schrijver [10]). Therefore the arc uk--- vk is saturated
in at least one maximum flow, and it carries no flow at all in at least one other.

Incidentally, it is important to impose a capacity of 1 on the arcs uk vk in
the construction of this proof. Otherwise we might get solutions in which 2k 2.
Condition (,) does not by itself imply that 2 <_ Vxk or that 2 _> [xJ.

1. An application. Sometimes it is desirable to round "spreadsheet" data to
larger units while preserving row and column sums and the grand total.

THEOREM 1. Given mn real numbers xj for 1 <_ <_ rn, 1 <_ j <_ n, we can
round them to integers 2ij in such a way that

[xiyJ <_ 2j <_ [xj .for all and j;

xj <- E 2J <_ xiy for all i;
j=l

E xij ij xij for ally;
i=1 i=1 i=1

and xy
== = j= ==

Proof. Let ai -i=1 m -m nEi=I Xij i=1xiy, b. and s ai :i= b, and
consider the (m + 1) x(t+. 1) array

Xl.1 X12 Xln 01

X21 X22 X2n 02

Xm X,m2 Xmn Olrn

1 ]2 fn S
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where ai -ai and y -by. Apply two-way rounding to these numbers, when
ordered by rows and by columns. The resulting integers 2ij and i satisfy the condition

(Ej=I Xij --(i) 0 for all k, by (,), hence y= xij + i 0 for all i’, it
follows that [aiJ =-I-all <_ -( j= xiy <_ -[-aiJ [ai. Similarly [by] _<
m m-i= xiy <_ [bj] for all j. We also have y’im__ a + s 0; hence Y= i + 0. The

m nsum 2i-1 j=l zij therefore equals , which is either Is] or Is].
2. A sharper bound. Notice that (.) is equivalent to the conditions

ISk-Skl < 1 and ILk--kl <1, for 0_<k_<n,

since Sk and k are integers. Let us say that two-way rounding has discrepancy
bounded by 5 if ISk Ski <_ and ILk kl --< 5 for all k. A slight extension of the
construction in the lemma makes it possible to prove a stronger result.

THEOREM 2. If Sn m is an integer, the sequence (xl,... ,Xn) can be two-way
rounded with discrepancy bounded by (2m + 1)/(2m / 2).

Proof. We will prove that two-way rounding bounded by 5 is possible for all 5 >
(2m + 1)/(2m + 2). Only finitely many roundings exist, so the stated result follows
by taking the limit as 5 decreases to (2m + 1)/(2m + 2).

The proof uses a network like that of the leinma, but we omit certain arcs that
would lead to discrepancies near 1. More precisely, if e is any fixed positive number
< 1/(2m + 2), we have

if [j 1 + e.. j e) gl [Sk-1.. :k) 0;

if [j 1 + e.. j e) C [k-1 zk) 0.

We also allow these arcs to have infinite capacity. But the capacity of the "source"
arcs s ay, the "middle" arcs uk -- vk, and the "sink" arcs bj t remains 1.

The minimum cut in this reduced network has size m. For if any m- 1 of the
unit-capacity arcs are cut, we will prove that we can still connect s to t. Suppose we
remove p source arcs, q middle arcs, and r sink arcs, where p + q + r m- 1. We
send 1 2e units of flow from s through each of the m-p remaining source arcs.
From every aj reached in this way, we send as many units of flow from aj --, Uk as
the size of the interval [j 1 + e.. j e) gl [Sk_l Sk). Some of the flow now gets
stuck, if uk is one of the q vertices for which the arc uk --* Vk was removed. But at
most 1 2e units flow into each uk, so we still have at least (m -p- q)(1 2e)
(r + 1)(1 2e) units of flow arriving at {v Vn}. Now consider an "antiflow" of
1 2e units from t back through each of the m r remaining sink arcs by t. From
every such by we send the antiflow back through vk by according to the size of
[j 1 + e.. j e) C [k-1 E’k). In this way (m r)(1 2e) units of antiflow come
from t to {v,..., Vn}. Each vertex vk contains at most xk units of flow and at most
xk units of antiflow. We know that the total flow plus antiflow at {Vl vn} is at
least (r+l)(1-2e)+(m-r)(1-2e) m+l-(2m+2)e > m x + + xn.
Therefore some vertex vk must contain both flow and antiflow. And this establishes
the desired link between s and t.

Since m is the size of a minimum cut and all capacities are integers, the network
supports an integer ttow of value m. Let 2k be the flow from uk to Vk; we will prove
that (2,..., 2n) is a two-way rounding with discrepancy < 5 1 -e. Note that



284 DONALD E. KNUTH

If j [Sk- e we have Sk 21 +... + 2k flow into {Ul,...,Uk} <_ flOW out of
{al,...,aj}
hence i- 1 +
flow out of {a1,..., aj} j, because all arcs a --* ut for <_ j have <: k. (If > k
we would have St-1 _> S _> j -e _> i- e, contradicting St-1 < i- e.) A similar proof
shows that

3. A lower bound. The bound of Theorem 2 is, in fact, best possible, in the
sense that no better bound can be guaranteed as a function of m.

THEOREM 3. For all positive integers m there exists a sequence of real numbers
(xl,... ,Xn) with sum m and a permutation a of {1,...,n} that cannot be two-way
rounded with discrepancy < (2m + 1)/(2m + 2).

Proof. Let n 2m + 2 and e 1In. Define

X X2 X3 ; Xm+3 (2m-

Xk+3 2e, Xk+m+3 2me, for 1 _< k < m;

a1=2, a2=1, a3 m + 3 a(2m + 2) 3

a(2k+2)=k+3, a(2k.+3)=k+m+3, for l<k<m.

For example, when m 4 we have (xl,... ,Xl0) (.1, .1, .1, .2, .2, .2, .7, .8, .8, .8)
and (al, al0) (2, 1, 7, 4, 8, 5, 9, 6, 10, 3). Hence

($1,... ,$10) (.1, .2, .3, .5, .7, .9, 1.6, 2.4, 3.2, 4.0),

(Zl,..., 210) (.1, .2, .9, 1.1, 1.9, 2.1, 2.9, 3.1, 3.9, 4.0).
We will prove that this sequence and permutation cannot be two-way rounded with
discrepancy less than (2rn + 1)/(2rn + 2) 0.9; the same proof technique will work
for any m >_ 1.

The main point is that whenever S or 2k has the form + 0.1 where is an
integer, it must be rounded to in order to keep the discrepancy small. This forces
$1 Z:I 0, 23 24 1, 25 26 2, 27 2s 3, 29 4, hence
/1 /2 /3 :4 /5 /6 0. But then $6 21 -..--}- ;6 0 differs by 0.9
from $6. [:]

4. A uniform bound. Although Theorem 3 proves that Theorem 2 is "opti-
mal," we can do still better if m is greater than 1/2n, because we can replace each xk
by 1- Xk. This replaces m by n- m, and the bound on discrepancy decreases to
(2n- 2rn + 1)/(2n- 2rn + 2). Then we can restore the original x and change
to 1 2k. This computation preserves ISk Ski and 12k 2kl, SO it preserves the
discrepancy.

Further improvement is also possible when rn [n/2J, if we look at the construc-
tion closely. The following theorem gives a uniform bound in terms of n, without any
assumption about the value of

THEOREM 4. Any sequence (xl, Xn) and permutation (al,..., an) can be two-
way rounded with discrepancy bounded by n/(n + 1).

Proof. We will show in fact that the discrepancy can always be bounded by (n-
1)In, when xl +... + xn rn is an integer. The general case follows from this special
case if we set Xn+l [Snl Sn and increase n by 1.

If 2m + 2 <_ n or 2n- 2m+ 2 <: n, the result follows from Theorem 2 and possible
complementation. Therefore we need only show that a discrepancy of at most (n- 1)/n
is achievable when m [n/2J.
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Consider first the case n 2m/ 1. We use the network in the proof of Theorem 2,
but now we allow e to be any number < 1In. Suppose, as in the previous proof, that
we can disconnect s from t by deleting p source arcs, q middle arcs, and r sink arcs,
where p + q / r m- 1. Let q be minimum over all such ways to disconnect the
network. We construct flows and antiflows as before, and we say that xk is green if
vk contains positive flow and red if vk contains positive antiflow. No xk is both green
and red, since there is no path from s to t. The previous proof showed that there are
at least (r / 1)(1 2e) units of green flow and (m r)(1 2) units of red flow, hence
there are at least m + 1 (2m + 2)e units of flow altogether. If we can raise this lower
bound by e, we will have a contradiction, because m + 1 (2m + 1)e > m.

Suppose q > 0, and let uk -- vk be a middle arc that was deleted. At most two
arcs emanate from vk in the network. Since q is minimum, there must in fact be two;
otherwise we could restore Uk --* vk and delete a nonmiddle arc. The two arcs from v
must be consecutive, from vk --. by and vk -- bj+l for some j. Furthermore the arcs
bj t and b+l --. t have not been cut. If k al we have Z’_ < j-e and > j +.
Our lower bound on antiflow can now be raised by 2e, because it was based on the
weak assumption that no antiflow runs back from j- e j / e). This improved lower
bound leads to a contradiction; hence q 0.

Divide the interval [0 m) into 3m regions, namely "tiny left" regions of the
form [j- 1.. j- 1 + e), "inner" regions of the form [j- 1 -t-e.. j- e), and "tiny right"
regions of the form e j), for 1 <_ j _< m. If we color the points of [Sk- Sk)
with the color of xk, our lower bound (r -t- 1)(1 2e) for green flow was essentially
obtained by noting that m-p r -t- 1 of the inner regions are purely green. Similarly,
if we color the ponts of [Zk- Zk) with the color of Xk, our lower bound for red
flow was obtained by noting that m-r p/ 1 inner regions in this second coloring are
purely red. Notice that there is complete symmetry between red and green, because
we can invert the network and replace a by a-.

Call an element xk large if it exceeds 1- e. If any xk is large, the interval
[Sk- Sk) occupies more than e units outside of an inner region; this allows us to
raise the lower bound by e and obtain a contradiction. Therefore no element is large.
It follows that no element xk can intersect more than 2 tiny regions, when Xk is placed
in correspondence with [S_ Sk) or with [Uk- k).

Let’s look now at the 2m tiny regions. Each of them must contain at least some
red in the first coloring; otherwise we would have at least (p-t- 1)(1 2e) red units
packed into at most 2m- 1 tiny regions and p inner regions, hence (p / 1)(1 2e) _<
(2m- 1)e-t-p(1- 2e), contradicting e < 1/n. This means there must be at least m-t- 1
red elements xk, since no red element is large and since m non-large red intervals can
intersect all the tiny regions only if they also cover all the inner regions (at least one
Of which is green). Similarly, there must be at least m-t- 1 green elements. But this is
impossible, since there are only 2m-t- 1 elements altogether. Therefore the network has
minimum cut size m, and the rest of the proof of Theorem 2 goes through as before.

Now suppose n 2m. Then we can carry out a similar argument, but we need
to raise the lower bound by 2e. Again we can assume that q 0. We can also
show without difficulty that there cannot be two large elements. When n 2m the
argument given above shows that at least 2m- 1 of the tiny regions must contain
some red, in the first coloring.

Suppose there are only m- 1 red elements. Then, in the first coloring, m- 2 of
them intersect 2 tiny intervals and the other is large and intersects 3; we have raised
the red lower bound by e. But (p+ 1) (1 2e) / e red units cannot be packed into 2m- 1
tiny regions and p inner regions, because (p / 1)(1 2e) / e > (n 1)e / p(1 2e).
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A symmetrical argument shows that there cannot be only m- 1 green elements.
Therefore exactly m elements are red and exactly m are green. Suppose no element
is large. Then we have at least one purely green tiny interval in the first coloring and
at least one purely red tiny interval in the second--another contradiction. Thus, we
may assume that there is one large red element and that the 2m tiny intervals in the
first coloring contain a total of less than e units of green. In particular, each of them
contains some red. Either the first interval [0 e) or the last interval [m- e m)
is intersected by a nonlarge red element, which intersects at most e units of space in
tiny intervals. The other rn- 1 red elements intersect at most 2e units of tiny space
each, so at most (2m- 1)e such units are red. This final contradiction completes the
proof.

The result of Theorem 4 is best possible, because we can easily prove (as in
Theorem 3) that the values

Xl
1 {(n-1)/(nq-1), keven, 2_k_n,

n+ l Xk 2/(n+ l), kodd, 3_<k_<n,

and a "shuffle" permutation that begins

2k-1 for l <_ 2k- l <_ n, nodd,
ak

2k for 1 _< 2k <_ n, n even,

cannot be two-way rounded with discrepancy less than n/(n + 1).
5. An algorithm. So far we have discussed only worst-case bounds. But a par-

ticular two-way rounding problem, defined by values (xl,... ,xn) and a permutation
(al,. an), will usually be solvable with smaller discrepancy than that guaranteed
by Theorems 2 and 4. A closer look at the construction of Theorem 2 leads to an
efficient algorithm that finds the best possible discrepancy in any given case.

THEOREM 5. Let e be any positive number. There exists a solution with discrep-
ancy less than 1 to a given two-way rounding problem if and only if the network
constructed in the proof of Theorem 2 supports an integer flow of value m.

Proof. The final paragraph in the proof of Theorem 2 demonstrates the "if" half.
Conversely, suppose 21,.o., 2n is a solution with discrepancy < 1 e. If k 1, let
j Sk. Then j-1 Sk-1, so the condition [Sk-l--Sk-l[ < 1--e implies Sk-1 < j--e.
Also [k Ski < 1 --e implies S > j- 1 + e. Therefore there is an arc aj --. uk.
Similarly, there is an arc Yak bj when "ak 1 and j E:k. Thus the network
supports an integer flow of value m. D

In other words, the optimum discrepancy 5 1- e is obtained when e is just large
enough to reduce the network to the point where no m-unit flow can be sustained, if
5 _> 1/2. We can in fact find n optimum roundifig as follows. Let

f(j, k) min(j S_., Sk j + 1)

be the desirability of the arc aj uk, and

g(j, ak) min(j 5;_ 1, k j + 1)

the desirability of Vk b. (Thus the arcs aj -- u, vk bj are included in the
network of Theorem 2 if and only if their desirability is greater than e.) Sort these arcs
by desirability and add them one by one to the initial arcs {s a, uk Vk, bj -, t}
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TABLE 1.
Empirical optimum discrepancies.

m--1 m--2 m-- [lg nJ m-- [VJ m-- 1/2n
n 10 .566 4- .06 .619 4- .07 .627 4- .07 .627 4- .07 .622 4- .08
n 100 .537 4- .02 .575 4- .03 .664 4- .03 .710 4- .03 .759 4- .02
n 1000 .513 4- .007 .527 4- .01 .582 4- .01 .662 4- .02 .794 4- .02
n 10000 .504 4- .002 .509 4- .003 .535 4- .005 .612 4- .01 .818 4- .01
n 100000 .502 4- .001 .503 4- .001 .513 4- .002 .570 4- .005 .838 4- .007

until an integer flow of m units is possible. Then let k be the flow in uk ---* Vk, for
all k; this flow has discrepancy equal to 1 minus the desirability of the last arc added,
and no smaller discrepancy is possible.

Notice that the arc ay uk has desirability > 1/2 if and only if Sk-1 < j- 1/2 < Sk,
so at most m such arcs are present. If all xk lie between 0 and 1, at most m + n 1
arcs of the form ay ---, uk will have positive desirability, since both ay_l ua and
ay uk will be desirable if and only if Sk- < j < Sk.

The following simple algorithm turns out to be quite efficient, assuming that
m _< 1/2n: Begin with the network consisting of arcs (s ay, u ---, vk,bj t} for

Call an arc1 <_ j _< m and 1 _< k _< n, plus any additional arcs of desirability > 5"
ay uk or vk by "special" if its desirability lies between 1/min(2m + 2, n) and 5,
inclusive; fewer than 2m+ 2n arcs are special. Then, for j 1,..., m, send one unit of
flow from ay to t along an "augmenting path," using the well-known algorithm of Ford
and Fulkerson [2, pp. 17-19] but specialized for unit-capacity arcs. In other words,
construct a breadth-first search tree from ay until encountering t; then choose a path
from ay to t and reverse the orientation of all arcs on that path. If t is not reachable
from ay, add special arcs to the network, in order of decreasing desirability, until t is
reachable.

6. Computational experience. The running time of this algorithm is bounded
by O(rnn) steps, but in practice it runs much faster on random data. For example,
Tables 1 and 2 show the results of various tests when the input permutation a is
random and when the values (x,...,xn) are selected as follows. Let yl ,Yn be
independent uniform integers in the range 1

_
Yk

_
N, where N is a large integer

(chosen so that arithmetic computations will not exceed 31 bits). Increase one or more
of the y’s by 1, if necessary, until y +... + Yn is a multiple of rn; then set xk yk/d,
where d-- (yl +... + yn)/m. Reject (x,... ,Xn) and start over, if some Xk >_ 1. (In
practice, rejection occurs about half the time when m 1/2n, but almost never when
m << 1/2n.)

Table 1 shows the optimum discrepancies found, and Table 2 shows the running
time in memory references or "mems" [6, pp. 464-465] divided by n. All entries in
these tables are given in the ibrm # =t=_ a, where # is the sample mean and a is an
estimate of the standard deviation; more precisely, a is the square root of an unbiased
estimate of the variance. The number of test runs t(n) for each experiment was 106/n;
thus, 105 runs were made for each m when n 10, but only 10 runs were made for
each m when n 105. The actual confidence interval for the tabulated # values is
therefore approximately 2a/V/(n)= .002av/-.

Notice that when m << n, the optimum discrepancy is nearly 1/2. Indeed, this is
obvious on intuitive grounds: When n is large, approximately en values of k will have

3Sk within 1/2e of { 5, ,"" ,m--1/2 }, and approximately e2n will also have equally good
values a-k. So we are essentially looking for a perfect matching in a bipartite graph
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TABLE 2.
Empirical running time, in mems/n.

m----1 m--2 m-- [lgn] m---- [x/J m--1/2n
n-- 10 104-4 194-6 274-8
n 100 2.9 4- 1.3 6 4- 2 18 4- 5
n 1000 0.9 4- 0.5 1.9 4- 0.7 8.5 4- 2.2
n 10000 0.3 4- 0.2 0.6 4- 0.2 3.6 +/- 0.8
n----100000 0.14-0.1 0.2 4-0.1 1.4 4- 0.4

27 4- 8 37 4- 11
294- 7 764- 15
25 4- 6 152 4- 32
22 4- 7 289 4- 49
17 4- 4 540 4- 72

with m vertices in each part and e2n edges. For fixed m as n --, , the matching will
exist when e2n is sufficiently large, hence the mean optimum discrepancy is 1/2+O(n-1/2 ).

However, the behavior of the mean optimum discrepancy when m 1/2n is not
clear. It appears to approach 1, but quite slowly, perhaps as 1 c/log n.

When n is fixed and m varies, the mean optimum discrepancy is not maximized
when m 1/2n. For example, when n 10, Table 1 shows that it is .622 when m 5
but .627 when m 3.

The running times shown in Table 2 do not include the work of constructing
the network or sorting the special arcs by desirability. Those operations are easily
analyzed, and in practice they take am + bn steps for some constants a and b, because
a straightforward bucket sort is satisfactory for this application. Therefore only the
running time of the subsequent flow calculations is of interest.

The average running time to compute the flows appears to be o(n) when m <_
v/, and approximately proportional to n1.3 when m 1/2n. So it is much less than
the obvious upper bound mn of the Ford-Fulkerson scheme. The author tried to
obtain still faster results by using more sophisticated max-flow algorithms, but these
"improved" algorithms acttially turned out to run more than an order of magnitude
slower.

For example, the algorithm of Dinitz, as improved by Karzanov and others, seems
at first to be especially well suited to this application because the network of Theorem 2
is "simple" in the sense discussed by Papadimitriou and Steiglitz [9, pp. 212-214]. Ev-
ery internal vertex has in-degree 1 or out-degree 1, hence edge-disjoint paths are ver-
tex disjoint and the running time with unit-capacity arcs is O( IYl/2 IAI) 0(n3/2).
Using binary search to find the optimum number of special arcs gives us a guaran-
teed worst-case performance of O(min(m,n/2)nlogn). Unfortunately, in practice
the performance of that algorithm actually matches this worst-case estimate, even on
random data. For example, when m n the observed running time in mems/n was
15284 2455 when n 104, compared to 289 +/- 49 by the simple algorithm. Each flow
calculation consumed more than 1000n mems, and binary search required lg 2n 14
flow calculations to be carried out.

When modern preflow push/relabel algorithms are specialized to unit-capacity
networks of the type considered here, they behave essentially like the Dinitz algorithm
and are no easier to implement (see Goldberg, Plotkin, and Vaidya [4]). Such algo-
rithms do allow networks to change dynamically by adding arcs from s and/or deleting
arcs to t (see Gallo, Grigoriadis, and Tarjan [3]); however, our application requires
adding or deleting special arcs in the middle of the network, so the techniques of [3]
do not apply. Thus the simple Ford-Fulkerson algorithm seems to be a clear winner
for this application, in spite of a lack of performance guarantees.

7. Comments and open problems. How complex can the networks of Theo-
rem 2 be? If we have any bipartite graph with m vertices in each part and with n edges,
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and if every edge can be extended to a perfect matching, then we can find real num-
bers (Xl,...,Xn) in the range 0 < xk <_ 1 and a permutation (al,...,an) such that
xl +... + Xn m and the two-way roundings are in one-to-one correspondence with
the perfect matchings of the given graph. We can take (xl,..., Xn) tl Cl +"" +tnn
where tl +... + tn 1 and ak is the characteristic vector of a perfect matching that
uses edge k. The sum of xk over all the edges touching any vertex is 1. Represent an
edge from u to v by the ordered pair (u, v) and label the edges 1,..., n in lexicographic
order of these pairs; then define the permutation al,..., an by lexicographic order of
the dual pairs (v, u). It follows that if k is the final edge for vertex j in the first part,
we have Sk j, and if ak is the final edge for vertex j in the second part, we have
k j. The correspondence between matchings and roundings is now evident.

This construction shows that the networks arising in Theorem 2 are general
enough to mimic the networks that arise in bipartite matching problems, but only
when the bipartite graphs contain no unmatchable edges; the corollary preceding
Theorem 2 shows that the latter restriction cannot be removed. This restriction on
network complexity might account for the excellent performance we obtain with the
simple Ford-Fulkerson algorithm.

If the capacity constraint on uk --* Vk is removed, our network becomes equivalent
to a network for bipartite matching, in which we want to match {al,...,am} to
{bl,..., bin} through edges ay by, whenever aj --, Uk and Vk --* by,. The problem
of finding the best such match, when the edge ay by, is ranked by the minimum
of the desirabilities f(j,k) and g(j’,k), is then a bottleneck assignment problem [1],
[2]. (It is an open question whether there is a nice way to characterize all bottleneck
assignment problems that arise from two-way rounding problems in this manner.)

The problem of optimum two-way rounding is, however, more general than the
bottleneck assignment problem, because the unit capacity constraint on uk Vk is sig-
nificant. Consider, for example, the case n 7, m 3, (xl,... ,xT) s(8,8, 24, 11,
11, 11, 11), (al,...,a7) (2, 1, 3, 5,4, 7,6). Then ($1,..., $7) (Zl, Z’7)
+/-(8,16,40 51 62 73 84) and the arcs (ay - uk Vk "--* by} ranked by desirability28
are

a3 ---* t6 V7 -’* b3
al u2 Vl "-- bl a2 ---* lt4 V5 --’ b2
al -- lt3 V3 bl a2 3 V3 b2
a37 v6 b3
al1 v2 bl
a3 Ub v4 b3
a2 Ub v4 b2

Thus the edges a bj, ranked by desirability are

a--b, a--b2, a2--b, a2--b2

a3 b3
a b
a2 b3, a3-- b2
a2 b2

desirability min (
_ __
.2217 17

desirability 16

12desirability

desirability 11

8desirability
6desirability
5desirability

12 via u3v3)
(11 via t6 V6 or

s via ul, vl or u2, v2)
(s via u4, va or u5, Vb)

or

The bottleneck assignment problem is solved by matching a bl, a2 b2, and
a3 b3 with desirability min 12 12 11 11-, --,28 --28 ) . But this matching does not cor-
respond to a valid two-way rounding because it uses the intermediate arc u3 v3
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twice; it rounds X3 to 2 and x6 (or xT) to 1. The optimum two-way rounding uses
another route from a: to b: and has desirability min ( s :2 :1

2-’’ )--" 8’ discrepancy
I- 8 20

2- 2-; it rounds x: (or x2), x3, and x6 (or xT) to i, the other x’s to 0.
In closing, we note that a conjecture of JSzsef Beck [7], [11] remains a fascinating

open problem: Is there a constant K such that three-way rounding is always possible
with discrepancy at most K? (In three-way rounding the partial sums are supposed
to be well approximated with respect to a third permutation (T1,..., Tn), in addition
to (1,..., n) and (al,..., an).) It suffices [7], [111 to prove this when xk 1/2 for all k.

Can any of the methods of this paper be extended to find better bohnds on the
discrepancy of arbitrary set systems (or at least of set systems more general than those
for two-way rounding), in the sense of [11]?

Acknowledgments. I thank Joel Spencer for proposing the problem and for
showing me a simple construction that forces discrepancy n/(n + 1). Thanks also to
Noga Alon, Svante Janson, and Serge Plotkin for several stimulating discussions as I
was. working out the solution described above. Shortly after I had proved Theorems
2-4, a somewhat similar construction was found independently by Jacek Ossowski,
who described it in terms of common systems of distinct representatives instead of
network flows; see 9.2 in [8].
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DEGREE-CONSTRAINED NETWORK SPANNERS
WITH NONCONSTANT DELAY*

ARTHUR L. LIESTMANt AND THOMAS C. SHERMERt

Abstract. A spanning subgraph S (V, E’) of a connected simple graph G (V, E) is a
f(x)-spanner if for any pair of nodes u and v, ds(u, v)

_
f(dG(u, v)) where dG and ds are the usual

distance functions in graphs G and S, respectively. The delay of the f(x)-spanner is f(x) x. In
this paper (2.5V/(3x T 6)/4 + 6+ x)-spanners for two-dimensional grids with maximum degree 3 are
found and it is proven that the delay of these spanners is within a constant factor of optimal. A
(x + k + 8 + x)-spanner of the X-tree with maximum degree 3 is described, and it is proven
that the delay of this spanner is within a constant factor of optimal. In addition, a (2 + x)-spanner
of the pyramid with maximum degree 6 and a (x -t- k + 8 + x)-spanner of the pyramid with
maximum degree 5 are described, and it is proven that the delay of the latter spanner is within a
constant factor of optimal.

Key words, grid, pyramid, X-tree, spanner, parallel network
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1. Introduction and definitions. There are several popular topologies used
for constructing parallel computers. Our goal is to determine substructures of such
topologies with smaller maximum degree. We require also that these substructures,
called spanners, have the property that the distance between two vertices in the
substructure is not significantly larger than the corresponding distance in the original
structure. In this paper we consider spanners of the two-dimensional grid that have
maximum degree 3, spanners of the X-tree with maximum degree 3, and spanners of
the pyramid with maximum degrees 5 and 6.

Spanners were introduced by Peleg and Ullman [7] who used these structures for
efficient simulation of synchronous networks on asynchronous networks. A second
motivation for studying spanners is their possible use as network topologies. A span-
ner can be used as a substitute for a desired network, often giving a much sparser
network with a similar structure and only slightly larger communication costs. A
third motivation is to provide a relatively inexpensive way of improving the quality of
a network. For example, if one wished to construct a network using specialized links
(perhaps links with higher bandwidth or higher reliability), an alternative would be to
construct a spanner with these links and to use normal connections for the remaining
links in the network.

A network is represented by a connected simple graph G (V, E). We use the
notation dG(u, v) to denote the distance between vertices u and v in graph G. The
subscript G may be omitted if it is clear from context.

Let f(x) be a function from the nonnegative integers to the nonnegative reals.
A spanning subgraph S of a connected simple graph G is called a f(x)-spanner if
for any pair of nodes u and v in G, ds(u, v) <_ f(dG(u, v)) [4]. This definition has
natural generalizations for edge-weighted graphs, digraphs, and hypergraphs. We call
ds(u, v) d(u, v) the delay between vertices u and v in S, denoted d(u, v). For an
f(x)-spanner S, we let f’(x) f(x)-x and refer to f’(x) as the delay of the spanner.
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Note that f(x) is actually an upper bound on the maximum delay in S between any
pair of vertices at distance x in G.

It may be possible to express the delay f(x) in several ways. In particular, any
spanner S of a finite graph G is an (x + c)-spanner where c is the maximum delay
between any pair of vertices in S. A more careful analysis of S may reveal a closer
relationship between the distance in G and the delay in S. For example, the (x -t-c)-
spanner mentioned above may also be determined to be a 2x-spanner. In general, we
prefer to express f(x) in a manner that bounds the delay as clearly as possible.

Peleg and Schffer [6] investigated the existence and constructability of sparse
spanners for various classes of graphs. They showed that to determine for a given
graph G and integer m >_ 1 whether G has a 2x-spanner with m or fewer edges is
NP-complete. Cai [1] showed that, for any integer t >_ 2, to determine for a given
graph G and integer m >_ 1 whether G has a tx-spanner with m or fewer edges is
NP-complete. Degree-constrained spanners were studied by Richards and Liestman
[8] (for pyramids) and by Liestman and Shermer [3] (for multidimensional grids). In
[4], we provided the more general formulation of spanners and initiated the study of
(t + x)-spanners, giving constructions fo low-degree (t + x)-spanners of hypercubes.
We showed [5] that for any integer t >_ 1, to determine for a given graph G and
integer m whether G has a (t / x)-spanner with m or fewer edges is NP-complete. In
the same paper, we also described how to construct low-degree (t + x)-spanners for
X-trees, pyramids, and two-dimensional grids (both finite and infinite). Other related
work is discussed in the recent paper of Cai and Corneil [2] and the survey of SoireE

In this paper, we return to the study of degree-constrained spanners. Section 2
details our results on spanners of two-dimensional grids. We begin by proving a lower
bound of X/2 on the delay of a maximum degree 3 spanner of the grid in 2.1. In 2.2,
we describe the construction of (2.5V/(3x + 6)/4-6-x)-spanners for two-dimensional
grids with maximum degree 3. The delay of these spanners is within a constant factor
of the lower bound.

Section 3 contains our results on spanners of X-trees and pyramids. In 3.2, we
prove that the delay of a maximum degree 3 spanner of the X-tree must be at least
linear in x. In 3.3, we describe the construction of a (x / k / 8 / x)-spanner for
X-trees with maximum degree 3. In 3.5, we show how to construct a (2 + x)-spanner
for pyramids with maximum degree 6. In 3.6, we prove that the delay of a maximum
degree 5 spanner of the pyramid must. be at least linear in x. In 3.7, we present a
construction of a (x + k + 8- + x)-spanner for pyramids with maximum degree 5.

2. Spanners of two-dimensional grids. A grid Gn,n., where n, n2 >_ 2, has
the vertex set V {(i,i2)11 <_ i <_ u, 1 <_ i2 <_ n2}. Its edges are between pairs
of vertices whose labels differ by 1 in exactly one position, that is, vertex (i,i2)
is connected to vertex (i,i2 + 1) for all i and 1 <_ i2 < n2 and vertex (i,i2) is
connected to vertex (i + 1, i2) for all i2 and 1 _< i < n. In order to simplify some
of the notation and terminology, we assume the natural embedding of these grids in
the plane.

2.1. Lower bound on delay. In this section we show that any maximum degree
3 spanner of a sufficiently large finite grid must have delay at least V2"

THEOREM 2.1. Any spanner S with maximum degree 3 of any grid Gn,n. with
n, n2 >_ 2k2 + 1 for any even k >_ 2 has a pair of vertices u and v such that d(u, v)
2k2 and d(u, v) >_ v/d(u, v)/2 k.
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FIG. 1. A highway spanner.

Proof. Let S be any spanner of G Gn,n with maximum degree 3. Consider
the paths in G and in S between pairs of vertices (ki+ + 1, 1) and (ki+ + 1, 2k2 + 1)
where 0 _< i _< 2k- 1. In G, the shortest path between such a pair of vertices contains
exactly 2k2 vertical edges. In S, any path between such a pair of vertices u and v
must contain at least 2k2 vertical edges and, possibly, some horizontal edges. Thus,
the delay between u and v in S is at least as large as the number of horizontal edges in
the shortest path between u and v in S. This implies that the shortest path between
any such pair must stay in the subgrid with x-coordinates between ki + 2 and ki + k,
otherwise the number of horizontal edges (and thus the delay between these vertices)
is at least k and we are done.

Similarly, each shortest path in S between a pair of vertices (1, kj + + 1) and

(2k2 + 1, kj + + 1) where 0 <_ j _< 2k- 1 must have delay at least as large as the
number of vertical edges and thus stay in the subgrid with x2-coordinates between
kj + 2 and kj + k.

Consider the subgrid with x-coordinates between ki / 2 and ki + k and x2-
coordinates between kj + 2 and kj + k. The paths between (ki + + 1, 1) and

(ki + + 1,2k2 + 1) and between (1, kj + + 1) and (2k2 / 1, kj + + 1) must
intersect in this subgrid. Since these paths cannot intersect at a degree 4 vertex, at
least one of the paths must turn upon meeting the other, thereby incurring at least
one unit of delay.

As there are 4k2 subgrids of this type, and these subgrids are disjoint, the 4k
paths must incur a total of at least 4k2 units of delay. Thus, some particular path P
must incur at least k k units of delay, proving the claim.

Letting u and v be the endpoints of P, dG(u, v) 2k2 and d(u, v) >_ k. D
Thus, a spanner S of a sufficiently large grid G must have various pairs of vertices

at distances x in G that have delay at least V/ in S.

2.2. Constructions. We present two methods to construct (O(v/)+x)-spanners
with maximum degree 3 for finite grids.

In [5], we constructed highway spanners for finite grids by using all of the edges
of every/th row and every kth column (referred to as highways) to subdivide the grid
into k rectangles as illustrated in Fig. 1. To complete the spanner, we added some
additional edges from within each rectangle. These edges can be added so that the
only vertices of degree 4 are the intersections of the highways.

These highway spanners can be modified to produce spanners of maximum degree
3. One simple modification is to replace each highway intersection by a roundabout
as shown in Fig. 2. In this scheme, each highway becomes a union of segments and
is now contained in two horizontal or two vertical lines. Let u and v be two vertices
at distance x in G on the same horizontal (or vertical) highway in such a spanner
S. The shortest path between u and v in S follows that highway and passes through
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FIG. 2. A modified highway spanner.

FIG. 3. Collapsing a roundabout.

approximately roundabouts, incurring a delay of at least 1 unit in each roundabout.
x O(x). We note that this delay can beThus, the delay of such a spanner is at least or

eliminated in one of the dimensions by "collapsing" the roundabout into one straight
path and one path with a one unit jog as shown in Fig. 3. The resulting spanner,
illustrated in Fig. 4, has smaller average degree and a constant delay for pairs of
vertices that are separated mainly in the x2-direction. However, this type of spanner
still has O(x) delay for pairs of vertices that are separated mainly in the xl-direction.

2.2.1. Roundabout spanners. A smaller maximum delay can be obtained by
collapsing some of the roundabouts horizontally and some vertically. One possible
method of doing this yields the roundabout spanner, which has delay within a constant
factor of optimal.

To construct a roundabout spanner R2k,2k for the square grid G2k,2 first include
the edges along the border of this grid, forming two horizontal and two vertical high-
ways. These highways are said to have index k. Next, construct a roundabout on
the four center vertices of the grid and extend highways in all four directions to the
borders as shown in Fig. 5(a). The resulting structure consists of a roundabout with
four highway sections radiating from it. These sections form one horizontal and one
vertical highway, both of which have index k- 1. In order to include the remain-
ing vertices on these lines in the spanner, we add some additional edges as shown in
Fig. 5(b). When we include these edges in our discussion, we refer to highways as
augmented highways and highway sections as augmented highway sections. We recur-
sively apply this construction to each of the four quadrants of the grid, placing in each
a roundabout and its four radiating augnented highway sections (see Fig. 5(c)). Note
that although we have just added 16 augmented highway sections, we have only added
4 augmented highways, each with index k- 2. A further level of subdivision is shown
in Fig. 5(d). This recursion continues with index decreasing by one at each further
level of subdivision until the remaining quadrants are 2 2 grids. The last augmented
highways added have index 1. At this point, the structure forms a connected span-
ning subgraph of G2,2. The roundabout spanner R32,32 is shown in Fig. 6, with the
indices of vertical highways indicated.

Consider a vertex u of G2,2k. If u is on the border of G2,2, then it has degree



DEGREE-CONSTRAINED NETWORK SPANNERS 295

FIG. 4. A further modified highway spanner.

a b

c d

FIG. 5. Building a roundabout spanner.

at most 3 in the grid and, therefore, degree at most 3 in the spanner. Otherwise, the
vertex u is first encountered during the construction of R2a,2 when a roundabout or
augmented highway section is added. Note that u is included in and is a border vertex
of one quadrant in which the recursive construction is applied. Being a border vertex,
it could receive at most one additional incident edge from this recursive construction.
Thus, if u has degree at most 2 at this point of the construction, it will have degree
at most 3 when the construction is completed. If u is a roundabout vertex, then
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FIG. 6. A 32 x 32 roundabout spanner.

FIG. 7. The frame of R32,32.

it has degree 3 at this level of the construction and is not connected to during any
subsequent level. If u is a degree 3 vertex which is not on the roundabout, then it is
on the "clockwise" border of its quadrant when viewed from the roundabout and is at
odd distance from the roundabout. However, the recursive construction ensures that
only the vertices at even distance on this border are given additional incident edges.
Thus, in all cases, the degree of u is at most 3.

We use the term frame to refer to the maximum 2-connected subgraph of this

(or any) spanner. The frame of R32,32 is shown in Fig. 7. The natural embedding of
the frame divides the plane into areas that we referred to as tiles in [3]. We use the
term rectangular frame to refer to any frame whose tiles are rectangles. Note that,
aside from the corners of such frames, all degree 2 vertices are incident on either two
horizontal or two vertical edges in the frame.

Consider any two vertices u and v of a grid G. All shortest paths between u and
v are contained in the rectangle defined by u and v and either increase or decrease
monotonically in both the x and x2 directions. Due to the shape of such paths, we
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FIG. 8. Finding the intersection point.

call them staircase paths.
LEMMA 2.2. From any vertex u on a rectangular frame F, there is a staircase

path in F from u to each of the four corners of F.
Proof. Let v be the upper right corner of F. By symmetry, we need only establish

that there is a staircase path from u to v. We observe that, for any vertex w of F,
there must be a vertex w adjacent to w that is on F and lies either above or to the
right of w, unless w v. Thus, we can construct a staircase path from u to v by
including an edge to a neighbor above or to the right at each step. [:1

LEMMA 2.3. Let u and v be two vertices in a rectangular frame F. There exists
a vertex u in F such that:

1. u and v have either the same x1-coordinate or the same x2-coordinate,
2. d(u’, v) < dv(u, v), and
3. dF(U’, v) > dF(U, v).

Proof. If u and v already share an xl- or x2-coordinate, let u u. Otherwise, by
symmetry, assume that v is above and to the right of u. Find a staircase path from u to
the upper right corner of F. This path must intersect either the upper or right side of
the rectangle defined by u and v in the grid G. Let the first such intersection point be
u, as shown in Fig. 8. This vertex satisfies properties 1 and 2. Noting that dG(u, u)
dR(u, u’) as there is a staircase path from u to u’, we get dF(U, v) dR(u, v)-d(u, v)

dR(u, v) (da(u, u’) + dG(u’, v)) <_ (dR(u, u’) + dF(u’, v)) da(u, u’) dG(u’, v)
dF(u’, v) de(u", v) dF(U’, v), satisfying property 3.
This lemma implies that we need only consider co-horizontal and co-vertical pairs

of vertices to determine the delay function fF(X) for a rectangular frame F"
COROLLARY 2.4. Let F be a rectangular frame with nondecreasing delay function

ff(x). For any positive integer x, if fF(X) > fF(X- 1), then there exists a pair of
co-horizontal or co-vertical vertices u and v with da(u, v) x and dF(U, v) fF(X).

Proof. Assume, by way of contradiction, that fF(X) > fF(X-- 1) but that no such
u and v exist. There must be a pair of vertices a and b that are not colinear but with
da(a, b) x and dF(a, b) fF(X). By Lemma 2.3, we can find an a’ such that a’ and
b are colinear, dG(a’, b) < d(a, b) x, and dF(a’, b) > dF(a, b) fF(X). Let u a’
and v b. If dG(u, v) x, then dF(U, v) fF(X), contradicting our assumption.
Otherwise, dv(u, v) < x. In this case, dF(U, v) >_ fF(X) contradicts either the property
that fF(X) is nondecreasing or the hypothesis that fF(X) > f’F(x- 1).

LEMMA 2.5. If u and v are two vertices of S R2k,2 that are on a vertical (or
horizontal) highway with index i, then ds(u, v) _< d(’)2 ]+1.

Proof. Without loss of generality, we consider a pair u, v on a vertical highway.
The proof for u, v on a horizontal highway is similar.
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A vertical highway with index is composed of sections consisting of a roundabout
and its associated vertical highway sections. These sections are separated by horizon-
tal highways of index > i. The intersections with these horizontal highways consist of
one horizontal and one vertical edge. The order of these edges on the vertical highway
is unimportant but depends on the index of the horizontal highway and the position
of the vertical highway. The net effect of the roundabouts and intersections is that
a vertical highway of index i consists of segments of 2 1 vertical edges alternating
with "turn" sections composed of one horizontal and one vertical edge in some order.

Consider the path from u to v along this highway. The vertical distance from
u to v is at most x. We are interested in the number of turn sections encountered
in the path from u to v. Since both u and v may be in turn sections and since one
turn section is included in every vertical interval of length 2, the total number of
turn sections encountered is <_ [2-2 [x2- / 1. Since no vertical backtracking
occurs, the delay on this path is no more than the number of horizontal edges, which
is no more than the number of turn sections encountered. Thus, d(u, v) <_
1.

Although this lemma gives us a bound on the delay between the two vertices, in
general we may be able to achieve a smaller delay by following paths through highways
of larger index.

THEOREM 2.6. R2k,2k i8 a (2.5V/(3x + 6)/4 + 6 + x)-spanner of G2k,2 with
maximum degree 3 and average degree -(1 ).

Proof. By Corollary 2.4, we need only consider co-vertical (or co-horizontal) pairs
of vertices. We first consider the case where u and v are co-vertical vertices on the
frame but not on the border of the grid. Note that for any i, 1 _< < k, the number
of columns between augmented highways of index _> i is 2 2. Thus, u and v are
either on an augmented highway of index _> i or lie in a column which is distance c
from an augmented highway of index i and distance 2- 1- c from an augmented
highway of index > i.

Let u and v be vertices at the same horizontal positions as u and v, respectively,
on the vertical highway of index i. Then _< dc(u, u’) _< c + 1 and
a + 1. Let Pu,,v, be the path from u to v along that vertical highway of index i.

Without loss of generality, we assume that u is below v and that u (and v) are to
the left of u and v. Consider the staircase path Pu from u to the upper left corner and
the staircase path Pv from v to the lower left corner as guaranteed by Lemma 2.2. If
P and Pv intersect at a vertex w to the right of Pu,,,,, then the path P constructed
by following P, from u to w and then P. from w to v gives a path from u to v with
delay <_ 2a (see Fig. 9(a)). Otherwise, P and P must intersect P,,v, at vertices u"
and v", respectively (see Fig. 9(b)). In this case, the path P from u to v following P
from u to u, P,,, from u to v, and P. from v to v gives a path from u to v with
delay _< 2(c + 1)+ the delay from u to v" along P,,.,. This latter quantity is at

most the delay from u to v along P,,., which is at most dc(u’,v’.) ]+lbyLemma
dc(u,v)2.5. Thus, the delay along P is at most 2(a + 1) + 2, + 1.

We now consider the path Q along the augmented highway of index
distance 2- 1- a from u and v. A similar argument establishes that the delay on

da(u,v)such a path is at most 2(2- a) + 2,+1 + 1 (The denominator 2TM is due to
the fact that this highway has index >_ + 1.)

Thus, the delay between u and v is at most the minimum of the delay along P
and the delay along Q. To find an upper bound on this delay, we consider
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P,

FIG. 9. Paths between u and v.

continuous variable and maximize

min(2(a + 1) + [do(u,v)2 + 1 2(2i- a)+ + 1)2i+

This minimum is maximized when both delays are the same or when a 2i- x
2 2i+3

3xand the delay is 2 + + 2.
The above bound on delay holds for any between 1 and k- 1 inclusive. Consid-

ered together, these imply an upper bound of

3x
min 2 + + 2

l<i<k-i

3xon the delay between u and v. This is, in turn, bounded above by 2 + + 2 for

any particular choice of i. Consider i= [log2(v/3x/4)]. (Note that i= log2(v/3x/4
3xminimizes the continuous function 2 + + 2.) This gives an upper bound on the

delay of

3x
2 [lg2(’/-)j -+- q- 2,

4" 2[1g2()j

which we claim is at most 2.5V3x/4 + 2.

Let y V/3X/4. Substituting y and subtracting 2 from both sides, the claim
becomes

2[logyj + y2 1
2[logy

_
2.5y.

Let log y- [log yJ Thus, 0 < < 1 Then 2 [lgyj 2lgy- 2’g -y-- Let2 2"
2 As 0 < < 1, we have that 1 < < 2 and 2 [lgyj g The claim now

becomes

Y +y2 1
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Y- + ey _< 2.5y,

1
+ s _< 2.5,

1 + e2 <_ 2.5e,

e2 2.5e / 1 _< 0,

which is true for 1/2 _< < 2. Recalling that 1 <_ < 2, the claim is proved.
This gives an upper bound of 2.5v/3X/4+ 2 for pairs of vertices on the frame that

are separated by distance x in the grid.
Consider a pair of vertices u and v that are not necessarily on the frame. As

any non-frame vertex is at distance 1 from a frame vertex in S, we can find u and
vt, both on the frame, such that ds(u,u) _< 1 and ds(v, v) _< 1. This implies
dG(u’, v’) _< dG(u, v) + 2 and ds(u’, v’) dG(u’, v’)+ 2.5v/3dG(u’, v’)/4 + 2. This

means that ds(u’, v’) _< (riG(u, v) + 2) + 2.5V/3(dG(u, v)+ 2)/4 + 2 or ds(u, v) <_
ds(u’, v’) <_ (dG(u, v) + 2 + 2.5V/3(dG(u v) + 2)/4 + 2) + 2. Simplifying gives a delay
of at most 2.5v/3dG(u v) + 6/4 + 6 between u and v.

To calculate the average degree, we begin by summing the number of edges in
highways of each index. The borders of the grid constitute the highways of index k.
There are 4(2k- 1) edges in these highways. A single roundabout of index i with its
four associated augmented highway sections contributes 2i+3- 8 edges. Since there
are 4k-i-1 roundabouts of index i, there are a total of 4k-i-1(2i+3--8) edges on
augmented highways of index i. Summing over all indices, this gives

k-1

+ s)
i----1

k-1 k-1

2k+2 4 + E 22k-i+1 2" E 4k-i
i=l i=l

k-1 k-1

2+ 4 + 2+1 2- 2. 4-i=1 i=1

k-1 k-1

+ 4 + +1. . 4
i=1 i=1

2k+2 --4 T 2k+l (2k 2) 2
3

2k+2 12 22k+1 2k+2 22k+1 8
3 3 3

22k+2 4
3 3

edges in the spanner. The average degree is

:.(
2. 2 3
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To construct a (2.5V/(3 + 6)/4+6+x)-spanner for Gn,,n. with maximum degree
3, first construct R2k,2 where k is chosen to be as small as possible such that nl _< 2k

and n2

_
2k. Add all of the edges of column nl and all of the edges of row n2.

Discard the portion of the resulting structure that lies outside of Gnl,n. to obtain
the spanner. The delay between any pair of vertices in the resulting spanner cannot
exceed the delay between the corresponding vertices of R2,2.

Note that in the roundabout spanner we have collapsed about of the round-
abouts that occurred in the simple construction. If we collapse all of the roundabouts,
we obtain a different spanner with smaller average degree.

2.2.2. Jogging spanners. To construct the jogging spanner J2,2, for the square
grid G2,2 first include the edges along the border of this grid. Add the edges of
row 2k-1 - 1 and alternate edges of row 2k-1 as shown in Fig. 10(a). This creates
three augmented horizontal and two augmented vertical highways of index k. Next,
we construct an augmented vertical highway of index k- 1 on columns 2k-1 and
2k- / 1. The highway consists of the column 2k-1 edges from row 1 to row 2-1 / 1
where it jogs to column 2k-1 + 1 and continues to row 2k. In addition to these edges,
the augmented highway includes every second edge in the unused portion of these
columns as shown in Fig. 10(b). We now insert two augmented horizontal highways
of index k- 1 in the same fashion: For every adjacent pair of existing augmented hori-
zontal highways, insert a new augmented horizontal highway on the two rows midway
between the existing highways. To insert a highway, begin on the even numbered row
at column 1, insert horizontal edges across to column 2k- 1, jogging to the other row
of the highway whenever encountering the solid section of a vertical highway. Include
every second edge in the unused portion of these rows as before to form augmented
highways. The result is shown in Fig. 10(c). Repeat this step in the vertical direction
to achieve the structure shown in Fig. 10(d); this figure also indicates the indices of
the augmented highways created so far. The construction continues by repeating this
step, alternating between the vertical and horizontal augmented highway insertions.
Each set of insertions creates augmented highways with index one less than the previ-
ous set of insertions in that direction. A full construction for a 32 x 32 grid is shown
in Fig. 11 (d).

THEOREM 2.7. J2,2 i8 a (2.5V/(3x + 6)/4 + 6 + x)-spanner of G2,2 with
5 2maximum degree 3 and average degree -.

Proof. Note that since J2k,2 has a rectangular frame, Lemma 2.2, Lemma 2.3,
and Corollary 2.4 apply. By our assignment of index numbers to highways, Lemma
2.5 also holds.

To prove the upper bound 2.5V/(3x / 6)/4 / 6 on the delay of J2,,2, we proceed
as in the proof of Theorem 2.6 noting that the number of columns between augmented
vertical highways of index >_ is 2i- 2 (as in the previous proof) while the number of
rows between augmented horizontal highways of index >_ is 2i- 2. Following the
analysis of the proof of Theorem 2.6 gives delay between co-vertical pairs of vertices
of at most 2.5V/(3x + 6)/4 / 6 while the delay between co-horizontal pairs of vertices
is smaller.

To calculate the average degree, we begin by summing the number of edges in
augmented highways of each index. The borders of the grid contribute 4(2k 1)
edges. The other index k augmented highway is the first horizontal highway added,
which contributes (2k 1) / (2k- 1) edges. Generally, each of the 2k- index
i augmented horizontal highways contributes (2k 1) + 2k-(2- 1) edges. We
construct augmented horizontal highways for each index from 2 to k. Similarly, each
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FIG. 10. Building a jogging spanner.

of the 2k-- index augmented vertical highways contributes (2k 1) /2-(2- 1)
edges. We construct augmented vertical highways for each index from 1 to k-1. Thus,
the total number of edges added during the construction of J2k,2k is
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FIG. 11. Final steps in construction of jogging spanner.

k-1
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The average degree is

2. (5.4k- 1) 5 2
[:1

2k. 2k 2 4k"

As with the roundabout spanner, we can construct a (2.5V/(3X + 6)/4 + 6 / x)-
spanner of this type for Gnl,n2. First construct J2,2k where k is chosen to be as
small as possible such that nl _< 2k and n2 _< 2k. Add all of the edges of column nl
and all of the edges of row n2. Discard the portion of the resulting structure that lies
outside of Gnl,n2 to obtain the spanner. The delay between any pair of vertices in
the resulting spanner cannot exceed the delay between the corresponding vertices of
J2k,2. This spanner has maximum degree 3 and average degree less than that of the
spanner of (n,n derived from the roundabout construction.

3. Spanners of X-trees and pyramids.

3.1. X-tree spanners with maximum degree 3. We begin our investigation
of spanners of X-trees by reviewing the previous results in this area. Richards and
Liestman [8] investigated degree-constrained (tx)-spanners of X-trees. In particular,
they constructed a 3x-spanner with maximum degree 3 and a 2x-spanner with maxi-
mum degree 4. Liestman and Shermer [5] constructed a (1 + x)-spanner of the X-tree
with maximum degree 4. In this section, we are interested in constructing spanners
with maximum degree 3 and improved f(x).

An X-tree consists of a full balanced binary tree with all the leaves on the same
level plus some additional edges. Edges are added to the tree such that the vertices on
each level are connected, from left to right, in a path. We will use the term horizontal
edge to denote an edge of such a path. Horizontal edges are of two types. The term
sibling edge denotes a horizontal edge that connects two vertices with the same parent
and the term cousin edge denotes any of the remaining horizontal edges. The term
vertical edge denotes a tree edge. Vertical edges from a parent to a left or right child
will be referred to as left or right vertical edges, respectively. We will imagine that the
tree is positioned with the root on level 0 at the top and will refer to movement up
and down the tree and use the terms above and below with that orientation in mind.
Note that an X-tree has maximum degree 5, a non-boundary vertex has degree 5, and
the average degree of a vertex in the X-tree is approximately 4. Let height(G) denote
the number of levels in the X-tree G and let levelc(v) denote the level associated with
vertex v the X-tree G. We will use Tu to denote the subtree of the X-tree rooted at
vertex u.

The following result (from [5]) will be useful in our proofs.
LEMMA 3.1. Given any two vertices a and b in an X-tree, there is some shortest

path between a and b that contains at most one sibling edge and at most two cousin
edges with these horizontal edges at the top of the path.

We note that Richards and Liestman [8] produced results under the original defi-
nition of spanner, which is concerned only with the delay between vertices adjacent in
the original graph G. Among these results, they showed that (in their terminology)
"2-spanners" of sufficiently large X-trees cannot be constructed with maximum de-
gree 3. Although "2-spanner" corresponds to "2x-spanner" in our terminology, their
lower bound proof only shows that f(x)-spanners of sufficiently large X-trees cannot
be constructed with maximum degree 3 and f(1) 2. (The upper bounds translate
readily between the terminologies: their 3-spanner is a 3x-spanner.) Consequently,
we are still left with the problem of constructing good spanners of the X-tree with
maximum degree 3.
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FIG. 12. The funnel of u.

3.2. Lower bound for X-tree spanners with maximum degree 3. In this
section, we show that any X-tree spanner with maximum degree 3 must have delay
that is linear in x.

THEOaEM 3.2. There is no f(x) such that f’(x) e o(x), and there exist f(x)-
spanners Sh with maximum degree 3 for X-trees of every height h + 1.

Proof. If we can show that such a spanner S must contain some horizontal edges,
we observe that as we are limited to maximum degree 3, any endpoint of an included
horizontal edge must also be the endpoint of a vertical edge that is not included in S.
We now show that some horizontal edges must be included in S.

The funnel of a non-leaf vertex u, denoted F(u), is the subgraph induced by u and
all of the endpoints of the horizontal edges directly below u in the usual embedding
of the X-tree as shown for the example in Fig. 12.

We claim that given a funnel F(u) of such a spanner S, there must be a horizontal
edge of S in that funnel within f(1)+ 1 levels of u. Consider the horizontal edge (a, b)
of F(u) that is [f(1)+12 ] levels below u. If this edge or any horizontal edge above
it in F(u) is contained in S, then the claim is satisfied. Otherwise, any path from
a to b in S either ascends at least as far as u or crosses the funnel below (a, b). In
the former case, the path must go up at least 2 levels and then down at least
f(1)q-I

2 ] levels and thus be at least f(1) + i edges long. Since S is assumed to be an

f(x)-spanner, a shortest path from a to b must cross the funnel on a horizontal edge
below (a, b) If this horizontal edge is more than f(1)-I levels below (a, b) then this2

path is of length greater than 2. 2 + 1 f(1), a contradiction. Thus, in this

case there must be a horizontal edge within J’(12)-1 levels below (a, b). This implies

that there is a horizontal edge within [f(1)-12] + f(1)--12 < f(1) + 1 levels of u.
Since these horizontal edges must be included, we know that some corresponding

vertical edges are not included in S.
Let u and v be two vertices of an X-tree. We call v an interior descendant of u if

v is a descendant of u and the vertical path from u to v includes both left and right
vertical edges. If v is an interior descendant of u, then Tv is said to be properly nested
in Tu, that is, no node of Tv is adjacent to a node that is not in

Consider a shortest path in the X-tree between the root r and some node w at
level h. In the X-tree, this path consists of h vertical edges. In a spanner of the
X-tree, such a path will include at least h vertical edges and may also include some
horizontal edges. Thus, the delay in the spanner is at least as large as the number of
horizontal edges. Now suppose that u is an ancestor of w such that the edge from u
to its parent in the X-tree is not included in the spanner. As this is the only vertical
edge out of the subtree Tu rooted at u, then any path from w to r in the spanner
must include a horizontal edge out of Tu.

We can extend this argument. Suppose that we have a sequence of vertices r
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a b

FIG. 13. Candidates for xi+l.

Xo, Xl,X2, ,Xl, W such that w is in Tx, each xi is an interior descendant of xi-1, and
the edge from each xi to its parent is not included in the spanner. In this situation, any
path from w to r in the spanner must contain at least horizontal edges and, hence,
have delay at least l. (Due to the definition of interior descendant, any horizontal
edge with an endpoint in Tx has its other endpoint in Tx_l .)

We now show how to find a sequence of vertices r xo,xl,x2,... ,xl, w as de-
scribed above with h:f(1)44J in any f(x)-spanner with maximum degree 3 of an
X-tree of height h -4- 1. Start with x0 r. We obtain xi+l from xi as follows. Let
li be the "left interior grandchild of xi", i.e., the vertex that is the right child of the
left child of xi. Note that li and all of its descendants are interior descendants of
x. Consider the funnel F(l). There is a horizontal edge (a, b) in this funnel that is
included in the spanner and is at most f(1)+ 1 levels below li. The endpoint a of this
edge must have degree no more than 3. Thus, either the edge from a to its parent is
not in the spanner or the edge from a to one of its children a is not in the spanner
as indicated in Fig. 13. In the former case, let x+l a and in the latter case let
xi+l a’. Thus, we can find x+l, which is at most f(1) / 4 levels below x. (The
vertex l is two levels below x, a is at most f(1) + 1 levels below l, and a is one level
below a.)

If the X-tree has h + 1 levels, we may repeat this process h
f(i)+4 times. We,

therefore, let [ h
xl. Choosing w x, wef(1)+4J and have obtained Xo, Xl,X2,

have found the desired sequence in the spanner.
By the preceding argument, this implies that the path from w to r in the spanner

has delay at least [f(l+4J" Furthermore, the path from r to any descendant of
w also has delay at least I.

Assume by way of contradiction that we can construct an f(x)-spanner Sh of any
X-tree of height h + 1 such that f’(x) E o(x). This implies that for any constant c
there exists x0 such that f(x) < cx for all x >_ x0. We choose c I(1)+4" By our

assumption, some x0 exists satisfying f(x) < f(1+4 for all x >_ x0. Consider the
spanner Sh of an X-tree of height h / 1 where h is the smallest multiple of f(1) / 4
that is greater than x0. By the above argument, we can find a vertex w at the bottom
of the X-tree (i.e., at a distance greater than x0 from r) such that the path from the
root r to w has delay at least (1+4 (1)+" This contradicts f(x) <
and, therefore, our assumption that f’(x) o(x).

3.3. Construction of X-tree spanners with maximum degree 3. Before
describing some new spanners of this type, we note that the 3x-spanner of Richards
and Liestman [8], which has maximum degree 3, can be shown to be a (2x+ 1)-spanner
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FIG. 14. 2-, 3-, and 4-level shrubs.

FIG. 15. 2-level shrub spanner.

of the X-tree. The proof is simple and is omitted here.
A k-level shrub is a spanner of an X-tree of height k, for k >_ 2. To construct

a k-level shrub, connect the root r to its right child rl and continue adding right
vertical edges to form a path of k- 1 right vertical edges from the root through
vertices rl, r2,..., rk-1. At each vertex ri along this path, add the sibling edge to its

lft sibling li. Include the edges of a complete binary tree of height k rooted at l,
1 _< <_ k- 1. Add all of the cousin edges at the bottom of each of these binary trees

(that is, k levels below r) and those cousin edges on the bottom level that connect
these binary trees. Add the left vertical edge from rk-1 to lk and the sibling edge from

lk to rk. The resulting structure is a k-level shrub. Figure 14 shows k-level shrubs
for k 2, 3, 4. Note that the root has degree 1 and the vertices on level k below the
root have degree at most 2.

To construct a k-level shrub spanner of an X-tree of height h / 1, begin by
constructing a k-level shrub rooted at the root of the X-tree. As long as k levels
remain below the level of the lowest vertices included in the structure, add a k-level
shrub rooted at each vertex on the lowest level of the existing structure. Connect
these newly added k-level shrubs by adding cousin edges between adjacent vertices

from different shrubs on the bottom level of these shrubs. Note that adding these
edges does not increase the degree of the vertices beyond 2. When <_ k levels
remain, add the top levels of a k-level shrub rooted at each vertex on the lowest
level of the existing structure. Add all of the missing cousin edges of the bottom level
of the X-tree. Figure 15 shows a 2-level shrub spanner for an X-tree of height 5.

LEMMA 3.3. The largest face on a k-level shrub spanner is bounded by at most
2k + 6 edges.

Proof. The largest face within a k-level shrub for k >_ 3 is the face below the
sibling edge between 11 and rl that is bounded by 2(k- 1) vertical and 3 horizontal
edges, in total 2k / 1 edges. The 2-level shrub has no faces. Other faces are formed
by edges from two consecutive layers of k-level shrubs. The largest face of this type
is the face lying below a sibling edge between vertices lk-1 and rk-1 of some k-level
shrub. This face is bounded by 2(k/ 1) vertical and 4 horizontal edges, in total, 2k
edges. Due to the inclusion of cousin edges at the bottom of each layer, no faces are

bounded by edges from more than two consecutive layers.
THEOREM 3.4. The k-level shrub spanner S is a (x + k + 8 + x)-spanner of
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3the X-tree with maximum degree 3 and average degree < 2-.
Proof. From Lemma 3.1, we know that the shortest path P between any pair

of vertices a and b in an X-tree can be divided into two vertical sections and one
horizontal section. Let vl and v2 denote the number of edges in the two vertical
sections and h denote the number of edges in the horizontal section.

Given a k-level shrub spanner S, we note that a vertical path of length v can
touch upon at most v-2[%--J + 2 d shrubs. Since each shrub can add at most one
horizontal edge (and no vertical edges) to a vertical path, the maximum number of
horizontal edges added to a vertical path of length v is d. Thus, the vertical sections
of the path P in the X-tree correspond to path sections in the spanner containing no
more than k. J / 2-t- [-2j / 2+ < [v+w.-ajk k / 4 units of delay.

Let dh denote the delay in S between the endpoints of the horizontal section of P.
The total delay along the path in S corresponding to P is at most k -t-4-t-dh
x-h-4J+a+d.

If the horizontal section of P consists of a single sibling edge that is missing from
the k-level shrub spanner, it can be replaced by the two edges to the parent, giving
dh 1. In this case, the total delay along the path in S corresponding to P is at
most [x-1-4 x k-1

k J +4+1 -+5--< +-
If the horizontal section of P consists of a single cousin edge that is missing from

the k-level shrub spanner, its endpoints are on a face of no more than 2k + 6 edges,
so it can be replaced by a path of length at most k / 3 giving dh

_
k + 3- 1

k / 2. In this case, the total delay along the path in S corresponding to P is at most

[-1-4! (k 2) k 6 < k2+6k-.5...
If the horizontal section of P consists of one sibling and one cousin edge and both

are missing from S, then the edges to the parent (x) of the sibling vertices are in the
spanner. This vertex and the remaining endpoint (w) of the cousin edge are on the
same face of S. Thus, there is a path between w and x of no more than k -t- 3 edges
giving delay of dh _< (k + 3 + 1)- 2 k + 2. In this case, the total delay along the path
in S corresponding to P is at most [-2-4kJ+4+ (k + 2) -q+ k+6 __< --x k2+6k-6k
Note that if the horizontal section of P is of this form and only one of the edges is
missing, then one of the previous cases applies.

If the horizontal section of P consists of one sibling edge (v, w) and two cousin
edges, (u, v) and (w, x), both of which are missing from S, then one of the cousin edges
(say (w,x)) must be immediately below a sibling edge. Let y be the parent of v and
w, and let z the parent of x (and sibling to y). By the structure of k-level shrubs, we
know that there is a path in S from x to z of at most 2 edges. There is also a path in
S from z to y of at most 2 edges consisting of either the sibling edge between them or
the two edges to their parent. Finally, there is a path in S from y to u of at most k-t-3
edges since y and u are on the same face of S. Thus, there is a path in S from u to x of
length at most k/7 giving delay of dh

_
(k/7)-3 k+4. In this case, the total delay

along the path in S corresponding to P is at most x-3-4J+4+ (k + 4) _!+ k + 8

_< / +Sk-7 If the horizontal section of P is of this form and either of the cousins
is present, then one of the previous cases applies.

Thus, the total delay along the path in S corresponding to P is at most
k-8k-7 ,so y(x) <_ --x + k + 8 .

To bound the average degree, we note that most of the vertices that are not at the
bottom level of the spanner are of degree 3. Consider a vertex not at the bottom level
of the spanner. If this vertex is the second vertex from the right on the bottom level
of its shrub, then it has degree 2; if it is the root of either the leftmost or rightmost
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shrub on its level, then it has degree 2; if it is the root of the X-tree, then it has degree
1. Otherwise, it has degree 3. As the vertices of degree < 3 are relatively sparse, we
can obtain a good upper bound on the average degree by assuming that all vertices
not at the bottom level of the X-tree have degree 3.

Consider now the vertices at the bottom of the X-tree. By our construction, at
most one such vertex in each shrub (or partial shrub) is of degree 3. The other vertices
at this level are of degree at most 2. There are at most 2h- shrubs (or partial shrubs)
at this level. As there are 2h vertices at the bottom level and 2h 1 vertices not on
the bottom level, the average degree is at most

3.2h-1 + 2.2h-1 + 3(2h 1) 11.2u-1 3 . 2h+1 11 11 34 4 <2h+l 1 2h+ 1 2h+ 1 -- 2.
3.4. Pyramid spanners. We begin our investigation of spanners of pyramids

by reviewing the previous results in this area. Richards and Liestman [8] investigated
degree-constrained (tx)-spanners of pyramids. In particular, they constructed a 2x-
spanner with maximum degree 6, a 3x-spanner with maximum degree 4, and a 7x-
spanner with maximum degree 3. Liestman and Shermer [5] constructed a (1 + x)-
spanner of the pyramid with maximum degree 7. In this section, we are interested in
constructing spanners with lower maximum degree and improved f(x).

A three-dimensional pyramid consists of a series of levels with 4 vertices on level
i, starting with 1 vertex on level 0. The vertices on each level are arranged in a 2 x 2
square grid graph or "mesh," where each vertex is connected to its four orthogonM
neighbors. Further, each vertex is connected to the four corresponding vertices on
the level below it. A pyramid is shown in Fig. 16. As with X-trees, we can partition
the edges of the pyramid into horizontal and vertical edges, further classifying the
horizontal edges as sibling or cousin edges. The horizontal edges also naturally fall
into two classes of parallel edges corresponding to dimensions that we call x and
x2. We will use the terms left and right to refer to the relations < and > in the x
dimension and similarly use the terms front and back to refer to the relations < and
> in the x2 dimension.

Let P be a maximum length path in one dimension (x or x2) in the bottom
level of the pyramid. The set Ap consisting of nodes of P and all of their ancestors
induces an X-tree Xp in the pyramid. If P is in dimension x, we call such an X-tree
an induced X-tree in dimension x. An induced X-tree is shown in Fig. 17.

Let height(G) denote the number of levels in the pyramid G, and let level(v)
denote the level associated with vertex v in the pyramid G. We will use Tu to denote
the subpyramid of the pyramid rooted at vertex u.

The following result (from [5]) will be useful in our proofs.
LEMMA 3.5. Given any two vertices a and b in a pyramid, there is some shortest

path between a and b that contains at most one sibling edge and at most three cousin
edges with these horizontal edges at the top of the path.

As discussed above, the lower bounds given by Richards and Liestman [8] do not
directly apply with our definition of f(x)-spanner. Their bounds show that there is
no f(x)-spanner of sufficiently large pyramids with:

1. maximum degree 5 and f(1) 2;
2. maximum degree 3 and f(1) 3;
3. maximum degree 2 and f(1) O(1).

Below, we give improved bounds on f(x) for degree-constrained f(x)-spanners of
pyramids.
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Fi(. 16. A pyramid.

3.5. Construction of pyramid spanners with maximum degree 6. Al-
though the focus of this paper is on spanners with nonconstant delay, we include the
following result for the sake of completeness. In [5], we showed how to construct a

(1 + x)-spanner of the pyramid with maximum degree 7. A constant delay spanner
with maximum degree 6 can also be constructed.

THEOREM 3.6. For any pyramid P, there exists a (2 + x)-spanner S with maxi-
15mum degree 6 and average degree < .

Proof. To construct such a spanner S, omit all of the sibling edges from P. Omit
all of the cousin edges in one dimension on even levels and all of the cousin edges
in the other dimension on odd levels of the pyramid. All of the cousin edges on the
lowest level of the pyramid can remain. The resulting graph has maximum degree 6
and average degree less than .

To prove that S is a (2 + x)-spanner is relatively straightforward and can be done
as in the proofs of [5]. We omit the details here.

h 4i 4h+l --1To calculate the average degree, note that the spanner contains =0 3
h 4 ’-h- 2h+l (2h- 1) cousin edgesvertices, -=1 vertical edges, and z_,=2 ((2-1 -1)2) -F
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FIG. 17. An induced X-tree.

where h -t- 1 is the number of levels in the pyramid P. The total number of edges in
S is

h h-1

E 4i+ E((2:-
i=1 /=2

1)2i) + 2h+l(2h-1 1)

h h-1 h-1

E 4i + E 22-l E 2i + 22h 2h/l

i=1 i=2 i=2

h h-1 h-1

=E4i+ E4--E2+22h--2h+l

i--1 i’-2 i=2

i hh 1 4i 4h 2 2h 22h 2h+1=E4i+ --4- -’E +2+ +
i=1 i=1 i=1

hh 1 h

4h 2h 2i
i=1 i=1 i=l
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= 1--4 - -b 4h 2h 2h+1+ 2

14h+l 14h 32h
_5 4h 3 2h-1

2

The average degree is

3.6. Lower bound for pyramid spanners with maximum degree 5. In
this section, we show that any pyramid spanner with maximum degree 5 must have
delay that is linear in x.

THEOREM 3.7. There is no f(x) such that f(x) E o(x), and there exist f(x)-
spanners Sh with maximum degree 5 for pyramids of every height h + 1.

Proof. If we can show that such a spanner S must contain some horizontal edges,
we observe that as we are limited to maximum degree 5, any endpoint of an included
horizontal edge must be incident on a vertical edge that is not included in S. We now
show that some horizontal edges must be included in S.

The funnel of a non-leaf vertex u of the pyramid, denoted F(u), is the subgraph
induced by u and the four innermost descendants of u on each level below u. A funnel
is shown in Fig. 18.

We claim that there must be a horizontal edge of S, in T, within f(1) + 1 levels
of u. Consider a horizontal edge (a, b) of F(u) that is f(+ levels below u. Any
path of length f(1) between a and b is contained in T. If (a,b) or any horizontal
edge at least as high as (a, b) in T is contained in S, then the claim is satisfied.
Otherwise, a shortest path from a to b in S either ascends at least as far as u or
includes a horizontal edge parallel to (a, b) below (a, b). In the former case, the path
must go up at least [j’(1)+l2 2 ’] levels and thus
be at least f(1) + 1 edges long. This is a contradiction, so a shortest path from a to b
must include a horizontal edge below (a, b) If this horizontal edge is more than f(1)-1

2

levels below (a,b), then this path is of length greater than 2. (f(-l) + 1 f(1),
()+a contradiction. Thus, there must be a horizontal edge within 2 1 levels below

(a,b). This implies that there is a horizontal edge within [f(12) ’-bl -[- f(1)--12 < f(1)+ 1
levels of u.

Since these horizontal edges must be included, we know that some corresponding
vertical edges are not included in S.

Given any f(x)-spanner with maximum degree 5 of a pyramid of height h + 1,
we may proceed, as in the proof of Theorem 3.2, to construct a sequence of vertices
r xo, xl,x2, ,xt,w with h(i44J such that w is in T, each xi is an interior
descendant of xi_, and the edge from each xi to its parent is not included in the
spanner. (In a pyramid, vertex v is considered to be an interior descendant of vertex u
if v is an interior descendant of u in induced X-trees in both the x
As before, this implies that the path from r to w (or any descendant of w) in the

hspanner has delay at least f()+4J"
Again, as in the proof of Theorem 3.2, by assuming that we can construct an

f(x)-spanner Sh of any pyramid of height, h + 1 such that f’(x) o(x), we arrive at
a contradiction.
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FI(. 18. The funnel of u.

3.7. Construction of pyramid spanners with maximum degree 5. A k-
level hedge is a spanner of a pyramid of height k, for k > 2. To construct a k-level
hedge, connect the root r to its two right children and continue adding all right vertical
edges to form a binary tree of height k 1 on the right face of the pyramid. From
each vertex in this tree, add the sibling edge to its left sibling. Under each such left
sibling, construct a tree by including all of the vertical edges down to the bottom level
of the pyramid. Add all of the cousin edges at the bottom of each of these trees (that
is, k levels below r) and those cousin edges on the bottom level that connect these
trees. Note that the binary tree constructed on the right face of the pyramid has its
leaves one level above the bottom of the pyramid. From each of these leaves, l, add
the vertical edges to connect to the two left children. From each of these children,
add the sibling edge to the right sibling. From all four children of l, add cousin edges
in the x2 dimension (from front to back). The resulting structure is a k-level hedge.
Figure 19 shows the vertical and sibling edges of a 3-level hedge where the solid areas
indicate complete trees of vertical edges with no horizontal edges present except those
horizontal edges explicitly included on the bottom level. Figure 20 shows the cousin
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FIG. 19. Vertical and sibling edges of a 3-level hedge.

and sibling edges on the bottom level of a 3-level hedge. Note that the root has degree
2 and the vertices on lowest level have degree at most 3.

To construct a k-level hedge spanner of a pyramid of height h-b 1, begin by
constructing a k-level hedge rooted at the root of the pyramid. As long as k levels
remain below the level of the lowest vertices included in the structure, add a k-level
hedge rooted at each vertex on the lowest level of the existing structure. Connect
these newly added k-level hedges by adding cousin edges between adjacent vertices
from different hedges on the bottom level of these hedges. Note that adding these
edges does not increase the degree of the vertices beyond 3. When _< k levels remain,
add the top levels of a k-level hedge rooted at each vertex on the lowest level of the
existing structure, Add all of the missing cousin edges of the bottom level of the
pyramid.

Consider a k-level hedge spanner S of the pyramid. We note that, by our con-
struction, if P is a path in dimension xl, then Ap induces a k-level shrub spanner S’
of Xp. An induced shrub spanner is shown in Fig. 21. If P is a path in dimension x2,
then Ap induces a structure Yp in Xp (and in the pyramid). Yp can be constructed
as follows: The vertices of Ap are on h+ 1 different levels of Xp (and of the pyramid).
From the top of Xp, group these levels into [-] groups of k levels each (.except the
bottom group that may have < k levels). Frorn each of these groups, choose at most
one level. Include all vertical edges of Xp except those going down from the chosen
levels. Beginning at the root, include all cousin edges at each kth level. Finally,
include all horizontal edges at the bottom level. An example of Yp in a single hedge
is shown in Fig. 22. Note that the vertical edges missing from Yp are the endpoints
of a path of length 2 in the spanner S consisting of a left to right sibling edge and a
vertical edge.

THEOREM 3.8. The k-level hedge spanner S is a (x q- k q- 8 , --x)-spanner of
the pyramid with maximum degree 5 and average degree < 3.

Pvof. Consider a k-level hedge spanner S. From Lemma 3.5,. we know that the
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FIG. 20. Cousin and sibling edges on the bottom level of a 3-level hedge.

shortest path P between any pair of vertices a and b in a pyramid can be divided
into two ascending vertical sections and one horizontal section. Let v-, and v2 denote
the number of edges in the vertical sections and h denote the number of edges in
the horizontal section. Note that any ascending vertical path is contained in some
induced X-tree in dimension xl. Since this X-tree induces a k-level shrub spanner,
the analysis in the proof of Theorem 3.4 holds. Thus, the vertical sections of the path
P in the pyramid correspond to path sections in the spanner S containing no more
than vl /v2-4

k / 4 units of delay. Let dh denote the delay in S between the endpoints
of the horizontal section of P. The total delay along the path in S corresponding to
P is at most x=.,4 + 4 + dh.

The horizontal section of P consists of at most one sibling edge and at most three
cousin edges. Using c to denote a cousin edge and s to denote a sibling edge, the
horizontal section of the path must be of one of the following forms: ccsc csc ccs
cc sc s, or c. The possible layouts of these forms are shown in Fig. 23. These
layouts are either entirely in the x or x2 dimension or consist of a section in the X

dimension and a section in the x2 dimension. In any case, if we consider only the
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FIG. 21. An induced shrub spanner.

sections in one dimension, the only forms that appear are the straight layouts of csc
sc s, and c.

Consider the x dimension. Any horizontal path section in this dimension is
contained in an induced X-tree in dimension xl. From the proof of Theorem 3.4, we
know that the delay between the endpoints of this section in the induced k-level shrub
spanner is at most 1, k + 2, k + 2, and k / 4 for sections of forms st c sc, and csc,
respectively.

Consider the x2 dimension. Any horizontal path section in this dimension is
contained in a structure Yp as described above.

If the horizontal path section in dimension x2 is a single sibling edge, then either
the two edges to the parent vertex are in S or these two edges are missing. In the
former case, the delay is 1 and in the latter case the delay is 3 (using the two paths
of length 2 to the parent).

If the horizontal path section in dimension x2 is a single cousin edge (u, x), then
consider Yp augmented with the paths of length 2 that substitute for the missing
vertical edges. The two endpoints of the cousin edge are on a cycle in this structure
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FIG. 22. An induced Yp in a single hedge.

(the augmented Yp) of length at most 2k + 4. The cycle includes paths from u and x
upward in the structure to either a common ancestor or up to the next level on which
cousin edges are included. The cycle also includes paths from u and x down to the
next level on which cousin edges are included. These paths are chosen so that the
bottom vertices are connected by a cousin edge that is included in the cycle. This
cycle is concluded by joining these upward paths at the common ancestor of u and x
or by adding a cousin edge at the top level. The upward and downward paths consist
entirely of vertical edges except for there being possibly two horizontal edges included
as part of the length 2 paths replacing missing vertical edges. Thus, there is a path
from u to x of length at most 2+4 k + 2 so the delay is at most k + 1

If the horizontal section consists of one sibling edge (u, v) and one cousin edge
(v, x), then the parent of u and v lies on the same cycle of length 2k + 4 as v and x
(as described in the preceding case). There must be a path in S of length at most 2
from u to the parent of u and v. Thus, there is a path of length at most k + 4 between
u and x and the delay is at most k + 2.

If the horizontal section consists of one sibling edge (v, w) and two cousin edges
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FG. 23. Possible layouts of the horizontal section.

(u, v) and (w, x), then one of the cousin edges (say (w, x)) must be immediately below
a sibling edge. Let y be the parent of v and w, and let z be the parent of x (and sibling
of y). We now consider two cases depending on whether cousin edges are present at
the level of z. If there are cousin edges at this level, then we obtain a path of length
at most 9 by going from u to its parent, across the cousin edge to y, from y to its
parent, down to z, and then down to x. By the structure of the augmented Yp, each
of these vertical steps can be accomplished with at most two edges. If there are not
cousin edges at this level, then we obtain a path of length at most k + 7. As in the
analysis of the sc case, there is a path from u to y of length at most k + 2. To this
path we append a path from y to its parent, down to z, and then down to x. In this
case, however, at most 2 of these appended vertical edges are missing from Yp and
thus the appended path is of length at most 5, giving a path of length at most k + 7.
Because k >_ 2, we have in either case that the length of the path from v to x in S is
at most k + 7, giving a delay of at most k + 4.

We now consider the layouts that contain edges in both dimension.
If the horizontal section consists of one sibling edge (u, v) and one cousin edge

(v, x) where (u, v) and (v,x) are in different dimensions, then let y be the parent of
u and v. If (u, v) is in the x2 dimension and (v,x) is in the xl dimension, then there
is a path of length at most 2 from u to y and, as noted above, there must be a path
from y to x of length at most k + 3. Thus, the delay is at most k + 3. If (u, v) is in
the x dimension and (v, x) is in the x2 dimension, then either (u, v) is in S or (u, y)
is in S. As in the case of the straight layouts in the x2 dimension, x, y, and v all lie
on a cycle of length at most 2k + 4 in S. Thus, there is a path from u to x of length
at most k + 3, giving a delay of at most k + 1.

Consider the layout of cc where one cousin edge (u, v) is in the x dimension and
the other (v, x) is in the x2 dimension. In the pyramid, there are ascending paths from
u and x to either a common ancestor or up to the first level on which cousin edges
are included. In the pyramid, there are also descending paths from u and x (such
that at each level the vertices on these paths are also separated by two cousin edges)
that continue down to the first level encountered on which cousin edges are included.
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We follow the convention that if u, v, and x are on a level with cousin edges, then
the upward paths are empty and the downward paths are of length k. We use the
term vertical path on u to denote the union of the upward and downward paths from
u described above. In S, at most one edge of the vertical path on u (or x) is missing.
Such a missing edge corresponds to a path of length 2 in S, and thus the path in S
corresponding to the vertical path on u is of length at most k + 1 (and similarly for
x). The two cousin edges separating the bottom vertices of these vertical paths are

present in S, as the only missing cousin edges on this level are directly below sibling
edges. The top vertices of these paths are either the same (a common ancestor of u
and x) or they are separated by one or two cousin edges in the pyramid. The cousin

edges are present unless (at most) one of them is directly below a sibling edge. This
would occur if the missing cousin edge was a rightmost cousin inside a k-level hedge.
This missing edge corresponds to a length 3 path in S (two vertical edges and one

sibling), and thus the top vertices of the vertical paths on u and v are connected by
a path of length at most 4 in S. The vertical paths on u and x in S together with
the two cousin edges at the bottom and the connection at the top comprise a cycle of
length at most 2k + 8 in S. Thus, there is a path from u to x of length at most k + 4,
giving a delay of at most k + 2.

If the horizontal section consists of two cousin edges (u, v) and (v, w) followed by
a sibling edge (w,x), then let y denote the parent of w and x. As in the previous
case, we can find a cycle in S of length no more than 2k + 8 including vertices u and
w. If no cousin edges are included on the level of u, v, w, and x, then y is also on this
cycle and, thus, a path from u to y of at most k + 4 edges. There is also a path in S
from y to x of at most two edges, giving a path from u to x of at most k + 6 edges
and a delay from u to x of at most k + 3. If, however, the level of u, v, w, and x does
include some cousin edges, then one of (u, v) and (v, w) is present in S. If (u, v) is in

S, then this reduces to the case of the straight layout of sc (from v to x). If (v, w) is

in S, then let w be the vertex other than v that is a cousin of both u and w. Due to
our construction, (u, w) must also be in S, and this reduces to the case of the bent
layout of sc (from w to x).

If the horizontal section of the path consists of the bent form of csc from u to x,
then there is also a path with the horizontal section from u to x of form ccs and the
previous analysis applies.

Finally, we consider the form ccsc. Let (u, v), (v, w), and (y, x) be cousin edges
and (w, y) be a sibling edge. We can choose one of the two single bend shortest paths
from u to x so that w and x have a common grandparent z.

Consider the case when cousin edges are not included in the level immediately
above u and v. As before, we can find a cycle in S of length no more than 2k + 8 that
includes u and w. This cycle will include z, and therefore there is a path of length at
nost k + 4 between u and z. Furthermore, at most one of the vertical edges in the
path from z to x is not included in S, giving a path of length at most 3 from z to x.

The resulting path from u to x is of length at most k + 7, giving a delay of at most

k+3.
Consider the case when cousin edges are included in the level immediately above

u and v. Let u and v be the parents of u and ’v, respectively. Let w be the parent
of w and y. Note that (v w) must be a colsin edge and that (u, v’) may be either
a cousin edge or a sibling edge. Also note that if either of these edges is a cousin

and is not present in S, then the length 3 path between its endpoints through their
parents is included in S. Consider the case that (u, v) is a cousin edge. If (u, v)
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and (vt, wt) are both in S, then there is a path from u to x consisting of a vertical
path from u to u’, the edges (u’, v’) and (v’, w’), a vertical path from w’ to z, and
a (two-level) vertical path from z to x. As each level of a vertical path may take at
most two edges, the total length of this path is at most 10, giving a delay of 6. If
(u’, v) is in S and (v, w) is not in S, then there is a path from u to x consisting of a
vertical path from u to u, the edge (u, v), the edge from v to its parent, the sibling
edge from the parent of v to z, and a (two-level) vertical path from z to x. This path
consists of 3 edges plus 3 levels of vertical paths or at most 9 edges, giving a delay of
5. If (u, v’) is not in S and (v, w) is in S, then let z be the vertex other than v
that is a common cousin of u’ and w’. The edge (u’, z’) is in S and (z’, w’) is not in
S. There is a path from u to x consisting of a vertical path from u to ut, the edge
(u, z), the edge from z to its parent, the sibling edge from the parent of z to z, and
a (two-level) vertical path from z to x. This path consists of 3 edges plus 3 levels of
vertical paths or at most 9 edges, giving a delay of 5.

Now, consider the case that (u, vt) is a sibling edge. Let z be the sibling of w
that is also a cousin of u. If (u, z) is in S, then there is a path from u to x consisting
of a vertical path from u to u, the edge (ut, z), a vertical path from z to z, and a

(two-level) vertical path from z to x. This path consists of 1 edge plus 4 levels of
vertical paths or at most 9 edges, giving a delay of 5. If (u, z) is not in S, then there
is a path from u to x consisting of a vertical path from u to ut, the edge from u to
its parent, the sibling edge from the parent of u to z, and a (two-level) vertical path
from z to x. This path consists of 2 edges plus 3 levels of vertical paths or at most 8
edges, giving a delay of 4.

Thus, the layout ccsc gives a delay of at most 6 or k + 4, since k _> 2.
In the cases above, the horizontal paths of length 1, 2, 3, and 4 gave maximum

delays of at most k+ 2, k+ 3, k +4, and k+4, respectively. As the total delay along the
x-h-4path in S corresponding to P is at most[ +4+dh, these give - +4+ k+ 2,

x-6 x--7--J+ + + [--J+4+k+4, respectively. Each of[-%-j +4+k+3 4 k 4, and

these quantities is at most + so f(x) <_ x + k + 8
To bound the average degree, we note that most of the vertices that are not at

the bottom level of the spanner are of degree 5. Similar to our analysis of the X-tree
shrub spanner, relatively few vertices that are not at the bottom level of the pyramid
spanner have degree < 5. We can, therefore, obtain a good upper bound on the
average degree by assuming that all vertices not at the bottom level of the pyramid
have degree 5.

Consider now the vertices at the bottom of the pyramid. By our construction,
at most one vertexin each line in the Xl dimension in each hedge (or partial hedge)
is of degree 4. The other vertices at this level are of degree 3. Each line in the x2

dimension at this level contains vertices that all have the same degree (except for its

endpoints, which have lower degree). Thus, the proportion of degree 3 vertices to

degree 4 vertices on this level is the same as the proportion along any line in the
dimension at this level (except for the two lines along the boundary of the pyramid).
Each of these lines in the x dimension encounters at most 2h- vertices of degree 4.

Thus, the proportion of degree < 4 to degree 4 vertices is at least 1"1.

As there are 4h vertices at the bottom level and 4h-----! vertices not on the bottom
level, the average degree is at most

.4h .4h 4h-3. +4. +5. 3
__9 .4h +6.4h 5.4h_ 5
2

4h+1--1 4h+l 1



DEGREE-CONSTRAINED NETWORK SPANNERS 321

3__1 4h 5 _3. 4h+1 31 9 31 7_2 8 S< =3 [:]
4h+1_1 4h+1_1 - "

4. Summary. We showed how to construct two different types of (2.5V/(3x + 6)/4
+6+x)-spanner with maximum degree 3 for two-dimensionM grids. The constructions
yield different average degrees. Further, we established a lower bound that shows that
the delay of these spanners is within a constant factor of optimal. We showed how
to construct a (-x + k + 8 + x)-spanner of the X-tree with maximum degree 3,
and we established a lower bound that shows that the delay of this spanner is within
a constant factor of optimal. We showed how to construct a (2 + x)-spanner of the
pyramid with maximum degree 6 and a (-x + k + 8 + x)-spanner of the pyramid
with maximum degree 5. We also established a lower bound that shows that the delay
of the latter spanner is within a constant factor of optimal.
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ANALYSIS OF A RECURRENCE ARISING FROM A
CONSTRUCTION FOR NONBLOCKING NETWORKS*

NICHOLAS PIPPENGER

Abstract. Define f on the integers n > 1 by the recurrence f(n) mAn{n, minm[ 2f(m) +
3f(n/m)}. The function f has f(n) n as its upper envelope, attained for all prime n. The goal of
this paper is to determine the corresponding lower envelope. It is shown that this has the form f(n)
C(logn)1+1/ for certain constants - and C, in the sense that for any > 0, the inequality f(n) <_
(C+)(logn) 1+1/’ holds for infinitely many n, while f(n)

_
(C-)(logn)1+1/ holds for only finitely

many. In fact, -y 0.7878... is the unique real solution of the equation 2- + 3- 1, and C
1.5595... is given by the expression C ((2- log2 + 3- log3)1/)/(( + 1)(15- log+1 5

log+l kl 1/)3-- Eh<k<7 lOg/-t-1 - + ES<k<15 --) This paper also considers the function f0
defined by replacing the integers n > 1 with the reals x > 1 in the above recurrence: fo(x)
min{x, infl<y<x 2f0(y) + 3fo(x/y)}. The author shows that fo(x) Co(logx) 1+1/, where Co
1.5586... is given by Co 6e (2- log2- + 3-’ log 3-)1/ (-/(--t- 1)) 1+1/ and is smaller than
C by a factor of 0.9994

Key words, asymptotic analysis, recurrence relation

AMS subject classification. 26A12

1. Introduction. Our goal in this paper is an analysis of the recurrence

(1.1) f(n) min {n, min2f(m) 3f(n/m) l
for the function f N N, where N denotes the set of integers exceeding 1. The
value of f(n) depends strongly on the factorization of n. Thus for example we have
f(n) n whenever n is prime, since then the inner minimization is over an empty
set of factorizations. This example characterizes the "upper envelope" of f, since the
outer minimization ensures that f(n) <_ n always holds.

In the motivation for the study of this recurrence, which will be presented in 2,
f(n) is interpreted as a "cost" and n as a "benefit." We are thus led to seek the
corresponding "lower envelope" of the function f, where the relationship between cost
and benefit is most favorable. Our main result, Theorem 6.1, shows that this lower
envelope takes the form

f(n) C(log n)1+1/

(for certain constants and C), in the sense that for any > 0 the inequality

(1.3) f(n)

_
(C -- )(log n)l+l/7

is satisfied for infinitely many values of n, while

(1.4) f(n)

_
(C e)(logn)l+l/7
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is satisfied for only finitely many.
solution of the equation

The constant -y 0.78788... is the unique real

(1.5) 2-n + 3-n- 1,

while the constant C- 1.5595... is given by
(.)
C "Y (2- log 2 + 3- log 3)1/n

1/-y"
(’y + 1) (15- log+1 + 3- 5<k<71ogn+l k+l

__
E8<k<15 log7+1 --)kk+-I

It may seem surprising that a recurrence as simple as (1.1) can give rise to an expression
as complicated as (1.6); nevertheless, we shall find a simple interpretation for each of
the twelve terms that are summed in the denominator.

In preparation for the derivation of our main result, it will be convenient to
analyze some related recurrences that provide upper and lower bounds for f, while
being much easier to analyze. First, for any integer d > 1, we may consider the
function fd that is defined by the same recurrence as f but with the domain being
restricted from the set N of all integers exceeding 1 to the set Nd of all integral powers
of d exceeding 1:

(1.7) fd(n) min {n, min2fd(m) + 3fd(n/m)}
The multiplicative semigroup formed by the integral powers of d constitutes a sub-
semigroup of the multiplicative semigroup of integers. Thus we have fd(n) > f(n)
wherever the left-hand side is defined, since any factorization that participates in the
minimization on the left-hand side also participates on the right-hand side. On the
other hand, the factorizations that participate on the left-hand side are sufficiently
uniform as to eliminate the discrepancy between the upper and lower envelopes, so we
shall obtain a simple asymptotic expression for fd.

We shall show in Theorem 4.1 that for d > 5 we have

(1.8)

where

(1.9) Cd

fd(n) Cd(log n)+:,

4d7 (2- log 2 + 3-n log 3)+ 1 log+1 d

The expression (1.9) assumes its minimum for d- 10, with C0 1.6296
For 2 _< d _< 4 the situation is more complicated, since in these cases the first

member of the outer minimization in (1.7) can minorize the second when n is a power
of d, whereas this occurs only for n d when d > 5. Nevertheless, we shall show in
Theorem 4.2 that (1.8) continues to hold, with C2 1.5909... given by

(1.1.0) C2
/+ 1 (4- + 12-n)log+l 2

C3 C9 1.6311..., and C4- 1.6867... given by

(1.1.1) C4 7 (2- log2 + 3-n log3)7 + 1 (28- + 36-) log +14
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Thus the minimum of Cd over all d occurs for d 2.
Finally, we may consider the function f0 that is defined by the same recurrence

as f but with the domain being extended from the set N of all integers exceeding 1
to the set No of all reals exceeding 1:

(1.12) fo(x) min (x, inf
lyx

2fo(y) + 3fo(x/y)}.
(The infimum in (1.12) is in fact achieved as a minimum, as will become clear from
the analysis, but we shall not need this fact.) Here we have a supersemigroup of the
multiplicative semigroup of integers, so we have fo(n)

_
f(n) for all integers n > 1.

Again the discrepancy between upper and lower envelopes disappears, and we obtain
a simple asymptotic formula for f0.

We shall show in Theorem 5.1 that

(1.13) fo(X) Co(log X) 1+1/’)’,

where Co 1.5586... is given by

(1.14) Co 6e (2- log 2" + 3-’)’ log 3’)1/7 , -Ji-- i

in which e 2.7182... is the base of natural logarithms.

2. Nonblocking networks. The analysis of the recurrence (1.1) may be fol-
lowed without reference to or knowledge of nonblocking networks. For the sake of
motivation, however, we shall derive the recurrence against its historical background.

A "network" is an interconnection of "nodes" by means of "switches." In a
network there are some distinguished nodes called "inputs," some other distinguished
nodes called "outputs," and some distinguished sets of switches called "routes," each
of which forms a path from an input to an output. A network is "nonblocking" if,
given any disjoint set of routes (no two of which have a node or switch in common)
and given any free input and free output (neither of which are involved in any of the
given routes), there is a free route (disjoint from the given routes) from the given input
to the given output. (The knowledgeable reader will recognize here the definition of a
"strictly" nonblocking network. As this is the only type with which we shall have to
deal in this paper, we shall omit the qualification "strictly.")

One of the basic questions concerning nonblocking networks is: given integers
n > 1 and rn > 1, what is the smallest possible number G(n, rn) of switches in a
non-blocking network with n inputs and rn outputs? Since inputs and outputs appear
symmetrically in the definitions, we have

by taking "mirror images."
A nonblocking network can be constructed by letting the inputs and outputs be

the only nodes and by installing a separate switch between each input and each output.
Such a network, which is called a "crossbar," shows that

(2.2) G(n, m) < nm.
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FIG. 1.

In 1953, Clos [C1] introduced what has become the most widely known method for
the construction of nonblocking networks. His idea is to construct a large nonblocking
network by interconnecting smaller subnetworks. In his construction the subnetworks
are arranged in three "stages," as shown in Fig. 1. The first stage, shown at the
left, contains a subnetworks, each with b inputs and 2b outputs. The second stage
contains 2b subnetworks, each having a inputs and a outputs. The inputs of the
first-stage subnetworks are the inputs of the overall network; the outputs of the first-
stage subnetworks are identified with (that is, connected by "wires" to) the inputs of
the second-stage subnetworks, in such a way that each first-stage and each second-
stage subnetwork have exactly one node in common. The third stage, shown on the
right, contains a subnetworks, each having 2b inputs and b outputs. The outputs of
the third-stage subnetworks are the outputs of the overall network; the outputs of the
second-stage subnetworks are identified with the inputs of the third-stage subnetworks,
in such a way that each second-stage and each third-stage subnetwork have exactly
one node in common. Each route in the overall network consists of a route through
a first-stage subnetwork, its extension through a second-stage subnetwork, and finally
its extension through a third-stage subnetwork.

A simple argument based on the pigeon-hole principle shows that the overall
network is nonblocking if each of the subnetworks is nonblocking. This construction
thus shows that

(2.3) G(ab, ab) < aG(b, 2b) + 2bG(a, a) + aG(2b, b)
< 2aG(b, 2b) + 2bG(a, a).

(The attentive reader may have noticed that the argument remains valid even if 2b is

replaced by 2b- 1. We shall ignore this sharpening of the inequality, however, as it
leads off the path we wish to follow.)

If crossbars are used in each of the three stages and if the parameters a and b are
each chosen to be about nl/2, the resulting construction shows that G(n, n) 0(n3/2).
It is clear that further progress can be made by using the method recursively, but Clos
did not succeed in finding the best way of doing this. In 1971, Cantor [Ca] presented
the two principles that underlie the best recursive use of Clos’s method. Firstly,
since the subnetworks in the outer stages have inputs and outputs in the proportion
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FIG. 2.

1 2 (or 2 1, which is equivalent by taking mirror images), the recursion should
be based entirely on such networks. This can be accomplished by giving the inner
subnetworks inputs and outputs in the proportion 1 2, whence the overall network
will have inputs and outputs in the same proportion. When this has been done, the
second-stage subnetworks have a inputs and 2a outputs and there are 2a third-stage
subnetworks. The resulting construction, shown in Fig. 2, shows that

(2.4) G(ab, 2ab) <_ aG(b, 2b) + 2bG(a, 2a) + 2aG(2b, b)
<_ 3aG(b, 2b) + 2bG(a, 2a).

If the parameters a and b were given equal values, the outer subnetworks would
be more numerous than the inner ones in the proportion 3 2 and any diseconomy
of scale would manifest itself more acutely in the outer stages. It follows that the
sizes of the outer subnetworks should be reduced and those of the inner subnetworks
increased. To discover the optimal choices of a and b, let F denote the the largest
function defined on the integers exceeding 1 and satisfying the inequalities

(2.5) F(n) <_ 2n2

and

(2.6) F(ab) <_ 3aF(b) + 2bF(a).

Comparing (2.2) and (2.4) with (2.5) and (2.6), we see that F(n) is the smallest pos-
sible number of switches in a nonblocking network built according to the construction
of Clos and Cantor. Furthermore, if we set f(n) F(n)/2n, we see that f satisfies
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the recurrence (1.1). Thus the minimizations occurring in (1.1) correspond to the
optimizations available in the construction of Clos and Cantor.

Cantor [Ca, 3] showed that for any > 0,

(2.7) f(n) O((logn)l+l/7+e))

for an infinite sequence of n, and Pippenger; [P1, 6] showed that

(2.8) f(n) O((log n)l+/7))
for an infinite sequence. Our Theorems 4.1, 4.2, and 6.1 can all be viewed as refine-
ments of and complements to (2.7) and (2.8) for various sequences.

The construction for nonblocking networks that we study is not the best asymp-
totically. Indeed, Cantor ([Ca], 4) gave a construction using O(n(logn)2) switches,
and Bassalygo and Pinsker [BP] gave a probabilistic argument showing the existence
of nonblocking networks with O(n log n) switches. By an old result of Shannon IS],
the rate of growth of this last result is the best possible. The result of Bassalygo and
Pinkser has since been obtained through an explicit construction; see Pippenger [P1]
for a presentation of all these results.

It is interesting to note that the results of 4 for fixed d > 1 correspond to the
assumption that all crossbars in a nonblocking network have certain fixed sizes, d or
a power of d; and it is curious that the choices d 10 and d 2 should have certain
optimality properties, since precisely these values have been favored historically in
the construction of telephone switching networks (following the widespread use of the
decimal and binary number representations by humans and computers, respectively).
The results of 5 similarly correspond to the assumption (contrary to fact) that cross-
bars could have any real (not necessarily integral) numbers of inputs and outputs; and
it is curious how little could be gained in this way: C and Co differ by less than one
part in one thousand!

3. Derivations. In this section we shall reinterpret our problem in terms of
trees, which will become the main objects of our attention in later sections. To see
the relevance of trees, consider the task of proving that

(3.1) f(n) < p

for some particular n and p. If n _< p, then (3.1) follows by the first member of the
outer minimization of (1.1). Otherwise, we must have f(n) 2f(rn)+ 3f(n/rn) for
some rnln. In this case we can reduce the task of proving (3.1) to that of proving

(3.2) f(m) <_ q

and

(3.3) f(1) <_ r

for some m and such that ml n and some q and r such that p 2q + 3r. In
either case, we may represent the proof of (3.1) in the form of a tree: in the first
case the tree reduces to a single vertex, its root; in the second case, the root has two
children, which are the roots of subtrees representing the proofs of (3.2) and (3.3). In
the remainder of this section we present the combinatorial machinery that formalizes
this representation.
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For the purposes of this paper, the "infinite tree" is the set V {2, 3}* of finite
words over the alphabet E {2, 3}. The words of V are called "vertices." The empty
word A is called the "root." If v is a word, the word v2 is called its "left child" and
v3 is called its "right child," v is called the "parent" of v2 and v3, and v2 and v3 are
called "siblings" of each other.

A "finite tree" (or simply a "tree") is a nonempty finite subset T c_ V that is
closed under taking parents and siblings. Every tree contains the root A. If vertex v
has a child in a tree T, then both its children are in T and v is called an "internal
vertex" of T. If v belongs to T but has no children in T, then v is called a "leaf" of
T. The number of internal vertices in a tree is one less than the number of leaves.

The "weight" W(v) of a vertex v is the product of the letters appearing in v, with
each letter appearing as a factor with the same multiplicity that it has in v. (This
definition accounts for our rather unorthodox use of 2 and 3 as the letters of a binary
alphabet.)

A "derivation" D (T, l) is a tree T To together with an assignment 1D
of integers exceeding 1 to the leaves of T. If D is a derivation, the integer assigned
to a leaf v will be called the "load" of v and will be denoted 1D(V). The "capacity"
L(D) of a derivation D is the product of the loads of its leaves. The "cost" C(D) of
a derivation D is the sum, over all leaves, of the product of the weight of the leaf and
the load of the leaf.

The main result of this paper is based on the following observation: the solution
f(n) of the recurrence (1.1) is equal to the minimum cost of a derivation with capacity
n. This is easily proved by the inductive argument sketched in the opening paragraph
of this section.

Furthermore, we can extend this reinterpretation to the recurrences (1.7) and
(1.12) simply by restricting or extending the set of allowable loads. Specifically, if
we define a "d-derivation" for d > 1 to be a derivation in which all the loads are
integral powers of d, then fd(n) is the minimum possible cost of a d-derivation with
capacity n. Similarly, if we define a "0-derivation" to be like a derivation, except that
the loads may be any reals exceeding 1, then fo(x) is the minimum possible cost of a
0-derivation with capacity x.

4. Integral powers of d. In this section we shall analyze the recurrence (1.7),
starting with the case d >_ 5; later we shall also consider 2 _< d _< 4. The case d >_ 5
could actually be solved by reduction to a recurrence dealt with by Fredman and
Knuth [FK], but we shall use a slightly different analysis in order to prepare for other
cases treated later.

THEOREM 4.1. For d >_ 5, the solution fd to the recurrence (1.7) satisfies

(4.1) c ( og

where

(4.2) Cd
4d/ (2- log 2 + 3- log3 )+ 1 log+1 d

As observed in 3, fd(n) is the minimum possible cost of a d-derivation of capacity
n. When d _> 5, our problem is simplified by the following observation: for every
n dk, there exists a minimum-cost d-derivation of capacity n in which the load of
every leaf is d. To see this suppose that every minimal-cost d-derivation with capacity
n has a leaf with load at least d, where _> 2. Let D be a d-derivation with capacity
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n and the minimum possible number of loads equal to d, and let v be a leaf in

TD with load equal to 1D(V) d. Consider the derivation D obtained from D by
making v an internal vertex with leaves as children. If we let 1D,(V2) dl-1 and
1D,(V3) d, the capacity of D’ is the same as that of D. Furthermore, the cost of D
is no greater than that of D, since the contribution dtW(v) to D has been replaced
by the contribution (2d-1 + 3d)W(v) to D’, and 2d-1 + 3d _< d when d _> 5. This
contradicts the assumption that D has the minimum possible number of loads equal
to d and completes the proof of the observation.

We shall refer to the number of leaves in a tree as the "scale" of the tree and the
sum of the weights of its leaves as its "total weight." When the load of every leaf is
d, the capacity of a d-derivation is just dk, where k is the scale of its tree, and the
cost of a d-derivation is just d times the total weight of its tree. Thus a minimum-
cost d-derivation is one based on a tree that, among those with a given scale, has the
smallest possible total weight. This yields

(4.3) fd(dk) d(k),

where (k) denotes the minimum possible total weight of leaves in a tree with k leaves.
If T is a tree, we shall call its set of internal vertices its "kernel" and denote it

by K(T). The kernel of a tree is closed under taking prefixes. Conversely, any set K
closed under taking prefixes is the kernel of a tree T(K), obtained from K by adjoining
as leaves those vertices that are children of vertices in K but do not themselves appear
in K. Thus there is a one-to-one correspondence between trees and their kernels.

For any tree T, the set T \ K(T) is the set of leaves of T. It will be called the
"frontier" of T and be denoted by F(T).

If v is any vertex, we have W(v2)+ W(v3) 5W(v). Summing this identity over
all v E K(T), we obtain

E W(u)-l+4 E W(u),
ueF(T) ueK(T)

since a leaf u F(T) appears once as v2 or v3, the root appears once as v, and
each other internal vertex u K(T) appears once as v2 or v3 and once as v. Thus,
among trees of a given scale, those with the minimum total weight of their leaves are
also those with the minimum total weight of their internal vertices. This yields

(4.4) (k)- 1 + 4(I)(k- 1),

where (k- 1) denotes the minimum possible total weight of internal vertices in a
tree with k- 1 internal vertices.

We shall say that a tree is a "threshold tree" if the weight of every internal vertex
is less than or equal to the weight of every leaf. If from the set of vertices we choose
k- 1 with the smallest weights, the resulting set of vertices is closed under taking
prefixes, since the parent of a vertex v has a strictly smaller weight than v. Such a
set thus constitutes the set of internal vertices of a threshold tree with k leaves. Thus
there exist threshold trees of every scale. Furthermore, among trees of a given scale,
threshold trees have minimum total weight of their internal vertices (since this is how
their internal vertices were chosen) and, thus, have minimum total weight of their
leaves. This yields

(4.5) fa(d) d(1 + 40(k 1)),
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where (I)(k- 1) can now be interpreted as the sum of the weights of the k- 1 smallest-
weight vertices in the infinite tree. Our problem is now to determine the asymptotic
behavior of (I).

Let h(x) denote the number of vertices of the infinite tree having weight at most
x. This function satisfies the asymptotic formula

X’
(4.6) h(x)

where

H 2- log 2 + 3- log 3.

(Information theorists will recognize H as the entropy per independent flip of a biased
coin that falls heads with probability 2- and tails with probability 3-.) Formula
(4.6) was proved by Fredman and Knuth [FK], who used an analytic argument; an
elementary proof (in the technical sense) can be found in Pippenger IF2]. (This formula
is the only point at which the present paper is not self-contained.)

Let Wj denote the weight of the jth vertex of the infinite tree (when the vertices
are arranged in nondecreasing order by weight). Inverting (4.6) by raising each side
to the power 1if/, we see that

(4.8) Wj H1//jl/.

Summing over j we obtain

(4.9)

Combining (4.9) with (4.5) and using k- logd n yields Theorem 4.1.
For 2 < d <_ 4, the analysis given above breaks down: there may be no minimum-

cost d-derivations in which all loads equal d. This is best illustrated by the case d 2,
which we treat now.

THEOREM 4.2. We have

(4.10) f2() C2(log n) 1+1/’,

where

(4.11) C2 7 (2- log 2 + 3- log 3) 1/

7 + 1 (4- + 12-)log+12

We begin with a simple observation that we shall call the "ordering principle."
Suppose that we fix a tree T and a suite (that is, multiset) S of loads and ask which
loads should be assigned to which leaves in order to minimize the resulting cost. If
A <_ <_ Ak are the weights in nondecreasing order and B >_ >_ Bk are the
loads in non-increasing order, then the minimum possible cost is -,<j<k AyBj (this
is simply Chebyshev’s inequality). In particular, the smallest load should be assigned
to the leaf with the largest weight, and vice versa.
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Our next task is to determine what loads can appear on leaves of a minimum-cost
2-derivation; we claim that, excluding the trivial case n 2, these are 4, 8, and 16.

Suppose there is an optimal 2-derivation D in which some leaf has load 2. By
the ordering principle, we may assume this leaf has the largest weight of any leaf in
the tree; thus it is of the form v3 for some word v (this is the point at which we must
exclude the case n 2), and v2 is also a leaf (for if it were the root of a subtree, all
the leaves of this subtree would have weight larger than that of v3). Let 2 be the
load of the leaf v2 in D. Let D be the 2-derivation obtained from D by making v
a leaf with load 2t+l. Then D has the same capacity as D. Furthermore, D has
smaller cost than D, since the contribution 2t+lW(v) of v to C(D’) is less than the
contribution (2.2 + 3.2)W(v) of v2 and v3 to D. This contradicts the assumption
that an optimal 2-derivation can contain a leaf with load 2.

Now suppose that there is an optimal 2-derivation D in which some leaf v has
load 2t, where >_ 5. Let D be the 2-derivation obtained from D by making v an
internal vertex, with leaves as children. If we let lD,(V2) 2t-2 and 1D,(V3) 4, then
the capacity of D is the same as that of D. Furthermore, the cost of D is less than
that of D, since the contribution (2.2t-2 + 3.4)W(v) of v2 and v3 in D’ is less than
the contribution 2tW(v) of v to D. This contradicts the assumption that an optimal
2-derivation can contain a leaf with load 2t, where _> 5, and completes the proof of
the claim that optimal 2-derivations contain only 4, 8, and 16 as loads.

Next we claim that in an optimal 2-derivation, no leaf of the form v2 (that is,
no "left leaf") can have load 4. Suppose that D is an optimal 2-derivation in which
lD(v2) 4. If the subtree rooted at v3 has capacity greater than 4, then we may obtain
a 2-derivation with the same capacity as, but lower cost than, D by exchanging the
subtrees rooted at v2 and v3. On the other hand, if v3 is a leaf with load 4, we may
obtain a 2-derivation with the same capacity as, but lower cost than, D by making v
a leaf with load 16. In either case we obtain a contradiction, proving that no left leaf
can have load 4.

In what follows we shall confine our attention to 2-derivations in which all loads
are 4, 8, and 16 and in which no left leaf has load 4; we shall call these "admissi-
ble" 2-derivations. Define Do to be the admissible 2-derivation in which the root A is
the only leaf, with load 8. Now consider three operations, which we shall call "pro-
motions," that transform admissible 2-derivations into other admissible 2-derivations.
The promotion (v, 4) will be applicable to any admissible 2-derivation D in which v is
a leaf with lD(V) 4; the result of applying (v, 4) to D is the admissible 2-derivation
obtained from D by increasing the load of v to 8. The promotion (v, 8) will be appli-
cable to any admissible 2-derivation D in which v is a leaf with lD(v) 8; the result
of applying (v, 8) to D is the admissible 2-derivation obtained from D by increasing
the load of v to 16. The promotion (v, 16) will be applicable to any admissible 2-
derivation D in which v is a leaf with 1D(V) 16; the result of applying (v, 16) to D
is the admissible 2-derivation obtained from D by making v an internal vertex with
leaves as children, assigning 8 as the load of v2 and 4 as the load of v3.

Any admissible 2-derivation D with capacity at least 8 can be obtained by starting
with Do and applying a sequence of promotions; this is easily proved by induction on
the capacity of D. [The basis is capacity 8. The inductive step breaks into three cases:
if D has a leaf v with load 16, then D can be obtained by applying promotion (v, 8)
to an admissible 2-derivation with one-half the capacity (which can by the inductive
hypothesis be obtained from Do by promotions); if D has a right leaf v with load 8,
then D can be obtained by applying promotion (v, 4) to an admissible 2-derivation
with one-half the capacity; and otherwise D, if it is not the basis, must contain an
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internal vertex v with leaves as children, with 8 as load of v2 and 4 as load of v3, so
that D can be obtained by applying promotion (v, 16) to an admissible 2-derivation
with one-half the capacity.]

Any promotion doubles the capacity of the admissible 2-derivation to which it is
applied. We shall assign a "cost" C(P) to each promotion P as follows: the cost of
the promotion (v, 4) is 4W(v), the cost of (v, 8) is 8W(v), and the cost of (v, 16) is

12W(v). Then if application of promotion P to admissible 2-derivation D yields D,
we have C(D’) C(D) + C(P).

Among promotions, some are prerequisite to others: the promotion (v, 8) is pre-
requisite to (v, 16), the promotion (v, 16) is prerequisite to both (v2, 8) and (v3, 4),
and the promotion (v3, 4) is prerequisite to (v3, 8). In every case, however, if P is pre-
requisite to Q, then the cost of P is at most the cost of Q. In particular, we can order
all possible promotions in a sequence P1, P2,..., Pj,... in such a way that: (1) the
costs are nondecreasing, and (2) each promotion is preceded by all of its prerequisites.
It follows that the result of applying P1,..., Pk-3 in order to Do is a minimum-cost
2-derivation with capacity 2k. This yields

(4.12) f2(2k) 8+ E C(Pj).

Our problem is now to determine the asymptotic behavior of C(Pj).
Let g(x) denote the number of promotions with cost at most x. We can write

(4.13) g(x) g4(x) -- gS(X) -[- g16(X),

where g4(x), gs(x), and gl6(X) denote the numbers of promotions of the form (v, 4),
(v, 8), and (v, 16), respectively, with cost at most x. Since the cost of (v, 16) is 12W(v),
we have

(4.14) g16(x) h(x/12).

Since the cost of (v, 8) is 8W(v), we have

(4.15) gs(x) h(x/8).

There is a promotion (v, 4) if and only if v is of the form u3; since the cost of (v, 4) is

4W(v)- 12W(u), we have

(4.16) ga(x) h(x/12).

This yields

(4.17) g(x) 2h(x/12) + h(x/8)
x

(2.12- + 8-)-
x

(12- + 4-)-,
where we have used the identity (1.5) to obtain the last line from its predecessor.

Inverting (4.17) by raising each side to the power 1/-, we see that

+
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Substituting this formula in (4.12) and summing yields (4.10) and (4.11), completing
the proof of Theorem 4.2.

It is worth observing that the promotion (v, 16) that creates a load of 4 has
the same cost as the promotion (v3, 4) that destroys the load of 4. It follows that
the sequence of optimal promotions can be arranged so that the resulting optimal 2-
derivations each have at most one leaf with load 4. Thus we can arrange that "almost
all" the loads in an optimal 2-derivation are either 8 or 16.

The cases d- 3 and d- 4 are similar to d 2, and we shall only describe the
key points in the analyses. For d 3, we easily show that no optimal 3-derivation can
have a load as large as 81 and need not have any load as large as 27 (since this can be
replaced without increasing the cost by children with loads 9 and 3). Futhermore, no
left leaf can have a load of 3. Thus we need only consider "admissible" 3-derivations
in which all loads are either 3 or 9, and no left leaf has a load of 3. We can analyze
these by introducing promotions as before. We then observe that the promotion that
creates a load of 3 has the same cost as the promotion that destroys the load of 3.
Thus we can arrange that optimal 3-derivations have at most one leaf with load 3.
Since almost all the loads are then 9, we obtain the same asymptotic result as in the
case d 9:C3 Ca.

For d 4, a similar analysis shows that all loads in an optimal 4-derivation must
be either 4 or 16. Furthermore, no left leaf can have a load of 4. We can then continue
the analysis using promotions, and the result is

")’ ( _2-’ 1__g__22 +____3.--2 log_3 ) /’
"), + 1 \ (28-’ + 36-’) log"+ 4J

It is worthwhile observing that for 2 _< d < 4 the trees underlying optimal d-
derivations re threshold trees, just as they were for d _> 5; this is easily seen by
considering the promotions that increase the number of leaves in the tree.

5. Reals. In this section we shall nMyze the recurrence (1.12) obtained by
eliminating the integrMity constraint from (1.1).

THEOREM 5.1. We have

(5.1) fo(x) C0(log

where Co 1.5586... is given by

C 6e 2-’ lg 2" + 3-’ lg 3" /’ ( "), +17 )
1+1/’)’

As indicated in 3, our quest is for optimal 0-derivations. To determine these, let
us fix a tree T and ask how the loads of its leaves should be assigned so as to minimize
the cost, while achieving a prescribed capacity. (Later we shall determine how the
tree T should be chosen.)

We first claim that, among 0-derivations based on a prescribed tree T and having
a prescribed capacity x, a 0-derivation D with minimum cost must be such that there
exists a constant c such that for all leaves v E F(TD),

(5.3)

Thus the loads must vary as the reciprocal of the weights of their leaves. To see
this, suppose to the contrary that 1D(u)W(u) > 1D(v)W(v) for some leaves u and v.
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Set c’- V/1D(U)W(U)ID(v)W(v), and let D’ be the 0-derivation obtained from D by
changing the loads of u and v to lD,(U) c’/W(u) and 1D,(V) c’/W(v). Then D’
has the same capacity as D, but lower cost (as follows from the inequality between
geometric and arithmetic means). This contradiction proves the claim.

Next we shall ask which tree T, among those with k leaves, should be used to
construct an optimal 0-derivation. (Later we shall determine how k should be chosen.)

If the capacity of D is to be x, we must have

II x.

vEF(TD)

Multiplying (5.3) over all v E F(TD) yields

H
veF(TD)

=x II w(vl,
vF(TD)

and thus

vF(TD)

1/k

Since each leaf contributes c to the cost of D, we have

C(D) kxl/k (\,ElI(TD W(v))
1/k

Thus the optimal tree T is one that minimizes the geometric mean of the weights of the
leaves and, therefore, given that the number of leaves is fixed, minimizes the product
of the weights. And since the logarithm is an increasing function, it is equivalent to
minimize the sum of the logarithms of the weights of the leaves.

If v is any vertex, we have log W(v2) + log W(v3) log 6 + 2 log W(v). Summing
this identity over all v E K(T), we obtain

(5.7) E logW(u)-logl+(k-1)log6+ E logW(u),
uF(T) uEK(T)

since each leaf u F(T) appears once as v2 or v3, the root appears once as v, and
each other internal vertex u K(T) appears once as v2 or v3 and once as v. When k
is fixed, the right-hand side of (5.7) is minimized by choosing the k- 1 vertices v with
the smallest W(v) to be the internal vertices in K(T). Thus threshold trees, which
emerged as optimal for d-derivations (d > 1), are also optimal for 0-derivations.

It remains to determine the optimal value of k as a function of the capacity x.
To do this we shall determine the asymptotic behavior of the geometric mean U(k) of
the weights of the leaves in a threshold tree with k leaves. We shall show that

U(k) 6e-1/’H1/’k1/’.
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Using (5.7) we have

1
U(k)=exp E logW(v)

vEF(T)

1(=exp (k-1)log6+

1(=exp (k-1)log6+

log W(v))vEK(T)

l_j_k-1

From (4.8) we obtain

1
(5.10) log Wj 2 log j + log H + o(1).

Substituting (5.10) into (5.9) and estimating the sum by an integral yields (5.8).
From (5.8) we can complete the proof of Theorem 5.1 as follows. From (5.6) we

have

(5.11) C(D) kxl/kU(,)
6e-/’H/’k+l/xl/k"

Choosing k to minimize lgl+l/’xl/k yields

(5.12) k +___1 log x

and

e’ )l+l/"y(5.13) k’l+l//xl/k
/+ i (log x)l+l/")’.

Substituting (5.13)into (5.11) yields

(5.14) C(D) 6ell1"
/ (log x) I+I/y

-y+l

which completes the proof of Theorem 5.1.

6. Integers. We arrive in this section at our main result, the solution of the
recurrence (1.1).

THEOREM 6.1. For every e > O, we have

(6.1) f(n) <_ (C + e)(log n)1+1/

for infinitely many values of n but

(6.2) f(n) <_ (C e)(logn)l+l/
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for only finitely many, where
(6.3)

"7 (2-’ log 2’ + 3-’ log 3)a/,

(’)’ + 1)(15-’ log’+l + 3-’ 5<k<7 log’+l---a+l + -S<a<15 log"+1 k._.__l)1/’y"
Because f(n) is large when n is prime, we must focus attention on the lower

envelope. We do this by defining

(6.4) C’ liminf f(n)/(log)l+l/"y

so that our task is to prove that C C.
Let us say that an integer n is "good" if there is no larger integer m > n such

that f(m) <_ f(n). If n is not good, then for some larger m we have

f(m)/(log m)+x/7 < f(n)/(log n)+/".

Thus the limes inferior in (6.4) remains unchanged if we confine attention to good n.
We begin as in 4 with an analysis of the possible load values; we shall not obtain

the sharpest bounds here but merely aim to reduce the range that must be considered
later. Let us consider a minimum-cost derivation D for a good integer n; and let
us further suppose that, among derivations of this minimum cost, D has the largest
possible number of leaves.

First, we claim that D can have no load as small as 2. For if any leaf had load
2, this would certainly have to be the case for the leaf v3 of largest weight (by the
ordering principle), and the sibling of v3 is another leaf v2 (else it would subtend a leaf
of greater weight than v3). Suppose the load of v2 is l. Then the derivation obtained
from D by making v a leaf with load 21 would have the same capacity as, but lower
cost than, D.

Second, D cannot have a leaf v with load of 24: replacing v by leaves v2 with
load 6 and v3 with load 4 would leave the capacity and cost unchanged but increase
the number of leaves.

Third, D cannot have a leaf v with load of 25: replacing v by leaves v2 with load
5 and v3 with load 5 would leave the capacity and cost unchanged but increase the
number of leaves.

Finally, D cannot have a leaf v with load as large as 26. To see this, it will
suffice to show that we can find integers i and j such that ij > and 2i + 3j l, for
then we could replace v by leaves v2 with load and v3 with load j and increase the
capacity while leaving the cost unchanged; this contradicts the assumption that the
capacity of D is good.

If we plot the line 2i + 3j and the hyperbola ij in the real (i, j) plane,
they intersect at two points with/-coordinates

(6.5)
+/- v/l2 24/

The difference between these/-coordinates is

(6.6) Ai----
v/12 24/

2
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We will have Ai > 3 if 12 24/> 36; this in turn holds when > 12 + 2x/ and, thus,
certainly when >_ 12 + 2x/ 26.

The line 2i + 3j contains infinitely many lattice points (points with integral
coordinates); the/-coordinates of successive such lattice points differ by 3, since adding
3 to i and subtracting 2 from j leaves the sum 2i + 3j unchanged. Thus there must
be a lattice point whose/-coordinate lies in the interval whose endpoints are given by
(6.5). For this point (i, j) we have 2i + 3j and ij > l, as desired.

Thus every load on an optimal derivation with a good capacity and a maximal
number of leaves is at least 3 and at most 23. We also claim that, in such a derivation
D, if v has leaves v2 with load i and v3 with load j for children, then 2i + 3j _> 24. For
the maximum of ij subject to the constraint 2i + 3j is/2/24. Thus if 2i + 3j < 24,
the derivation obtained from D by making v a leaf wih load ij will have the same
capacity as, but smaller cost than, D.

We next claim that the tree T underlying the derivation D is a threshold tree.
Suppose to the contrary that T contains an internal vertex u and a leaf v with W(u) >
W(v). We may assume that u has leaves u2 and u3 as children (since if not we may
transfer attention from u to one of its children). Let h, i, and j be the loads of the
leaves v, u2, and u3, respectively. As we have seen above, we must have h _< 23 and
2i + 3j _> 24. Thus we obtain

(6.7) -h + 2i + 3j > 0.

Consider now the tree T obtained from T by making u a leaf and making v an
internal vertex with children v2 and v3 as leaves. Now let us create a derivation D
from the tree T’ by assigning the loads h, i, and j in some order to the leaves u, v2,
and v3 and letting the loads of all other leaves be the same as in D. Then D has the
same capacity as D. We shall show that there is some order of assignment that results
in D having a smaller cost than D. The analysis breaks into three cases, depending
on how W(u) ranks among 2W(v) < 3W(v).

First, suppose that 3W(v) < W(u). Then by the ordering principle we should
assign h, i, and j to v2, v3, and u, respectively. These three loads contribute hW(v)/
i2W(u) + j3W(u) to C(D) and h2W(v) + i3W(v) +jW(u) to C(D’). If this does not
decrease the cost, that is, if C(D’) C(D) >_ 0, then

(6.8.) hW(v) + i(3W(v) 2W(u)) j2W(u) >_ O.

Multiplying (6.7) by W(v) and adding the result to (6.8) yields

(6.9) i(hW(v) 2W(u)) + j(3W(v) 2W(u)) > 0.

This is a contradiction, since 3W(v) < W(u) implies that the coefficients of i and j
are each strictly negative.

Secondly, suppose that 2W(v) < W(u) <_ 3W(v). Then we assign h, i, and j to
v2, u, and v3, respectively. These three loads contribute hW(v)+ i2W(u)+ j3W(u)
to C(D) and h2W(v) + iT(u) + j3W(v) to C(D’). If this does not decrease the cost,
then

(6.10) hW(v) iT(u) + j (3W(v) 3W(u)) >_ 0.

Multiplying (6.7) by W(v) and adding the result to (6.10) yields

(6.11) i(2W(v) W(u)) + j(6W(v) 3W(u)) > 0.



338 NICHOLAS PIPPENGER

This is a contradiction, since 2W(v) < W(u) implies that the coefficients of and j
are each strictly negative.

Finally, suppose that W(v) < W(u) <_ 2W(v). Then we assign h, i, and j to u,
v2, and v3, respectively. These three loads contribute hW(v) + i2W(u) + j3W(u) to
C(D) and hW(u) + i2W(v) + j3W(v) to C(D). If this does not decrease the cost,
then

(6.12) W(u)) + + aj(W(v) >_ o.

But this contradicts (6.7), since W(v) < W(u). Thus the assumption that an internal
vertex v has greater weight than a leaf u leads to a contradiction, completing the proof
that threshold trees are optimal.

Now that we know that optimal derivations are based on threshold trees and that
their loads are at least 3 and at most 23, it remains to determine the number of leaves
that should be assigned each of these loads (since, then, the ordering principle will
tell us which loads to assign to which leaves). Let T be a threshold tree, and let y
denote the largest weight of an internal vertex. We shall renormalize the weights of
the leaves by setting r/v W(v)/y for each leaf v E F(T). Then we have r/v _> 1,
since T is a threshold tree. Furthermore, we have r/v _< 3, since the weight of a leaf is
at most thrice the weight of its parent, which is an internal vertex. Finally, we have
r/v _< 2 unless v is a "right" leaf (that is, a leaf of the form u3), since the weight of a
left leaf is at most twice the weight of its parent, which is an internal vertex.

We shall show that, if we choose a leaf v at random from a threshold tree with
k leaves, with all k leaves being equally likely, the value of r/. has a distribution that
tends as k --+ c to a particular density function on the interval 1 _< r/_< 3, which is
continuous except for a single jump at r/- 2.

First, let us fix r/and e such that 2 < r/ < r/+ e < 3 and consider the number
E(y, r/,) of leaves v such that r/ < r/ <_ r/+ . Such leaves are right leaves (since
r/ > 2) and are in one-to-one correspondence with internal vertices u such that r/y/3 <
W(u) <_ (r/ + e)y/3. Using (4.6), we obtain

(6.13)

Again using (4.6), we have k y’v/H. Thus the distribution of leaves in the interval
2 < r/< 3 aymptotically follows the density function

(6.14) (r/) 3-’’yr/’-.
We have normalized so that

(6.15) f dr/- 1 (2/3)’;

the reason for this will become clear shortly.
Next, let us fix r/and e such that 1 < r/< r/+ e < 2 and consider the number

E(y, r/,e) of leaves v such that r/ < r/. _< r/+ e. Such leaves may be either right
leaves or left leaves. The right leaves are in one-to-one correspondence with internal
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vertices u such that r/y/3 < W(u) < (r/+ )y/3, and the left leaves are in one-to-one
correspondence with internal vertices u such that r/y/2 < W(u) <_ (r/+ )y/2. Using
(4.6) and (1.5), we obtain

(6.16) E(, , ) (( + )/) (/)
+ (( + )/) (/)

(( + )/a) (/a)
H H
(( + //) (v/)+ H H

(v- + o(/).

Thus the distribution of leaves in the interval 1 < r/ < 2 aymptotically follows the
density function

(6.17) (r/) ;r/;-1.

We have normalized so that

2

(6.18) (r/) dr/- 2 1;

from (6.15), (6.18), and (1.5) we have f3 (r/)dr/= 1, so can be viewed as a proba-
bility density function on the interval 1 < r/< 3.

For each good integer n, let D(n) denote an optimal derivation with capacity n.
Let k(n) denote the number of leaves in TD(n). For 3 _< m _< 23, let kin(n) denote
the number of leaves v of TD(n) such that lD(n)(V) --m and let #m(n)- km(n)/k(n)
denote the fraction of such leaves. From the sequence of good integers, let us extract
an infinite subsequence of "special" integers such that, as n runs through the special
integers" (1) f(n)/(logn)l+l/"/tends to C’ (as defined in (6.4)), and (2) for each m in
the range 3 _< m _< 23, #re(n) tends to a limit #m. Condition (1) can be fulfilled by
the definition of C, and condition (2) because for each of the finitely many values of
m, #m(n) varies in the compact interval 0 _< #m(n) _< 1. Henceforth we confine our
attention to these special n. Of course, we have

(6.19) E #m- 1.
3<m<23

For each m, define Cm and m such that

Om

(6.20) (r/) dr/-- E TM
m<l

and

3

(6.21)

Let M denote the set of m such that #m > 0. Then we have 1 < Ctm

_
/m

_
3, and

Cm < , if and only if m E M. The half-open intervals (a,, m] for m E M form
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a partition of the interval (1, 3]. Thus for 1 < r/<_ 3 we may define a non-increasing
left-continuous step function on the interval (1, 3] by letting (r/) be the unique
value of m such that Cm < r/<_ m.

For special n we have

(6.22) log n log lD(n)(v)
vEF(TD(n))

and

/(n) ZO(n)(V)W(v).
vEF(TD(n))

The limiting distribution of the weights of leaves in threshold trees, the ordering
principle, and the definition of allow us to express the asymptotic behavior of the
sums in (6.22) and (6.23)using integrals as

and

3

log n k (r/) log (r/) dr/

3

f(n) ky (r/)r/(r/) dr/.

Since k--, yT/H and f(n)/(logn)l+l/")’ C’, we conclude that

H/’p
(6.6) C’

Q:+:/’

where

(6.27)

and

3

P (r/)r/(r/) dr/

,13Q (r/) log (r/) dr/.

Now if we let be any nonincreasing left-continuous step function defined on

(1, 3] and taking values in {3,..., 23}, then for each m in the range M of there (r/)
takes on the value m for r/in an interval of the form (a,, 3m]. From any threshold
tree Tk with k leaves and threshold y, we can obtain a derivation Dk by assigning to
each leaf v e F(Tk) the load (W(v)/y). Letting k (and with it y) tend to infinity,
we obtain a sequence of derivations with capacities

(6.29)

and costs

(6.30)

3

log nk k (r/) log (r/) dr/

3

C(D) ky (r/)r/(r/) dr/.
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Since we must have f(nk) <_ C(Dk), we conclude that

(6.31) C’- minF(),

where

(6.31’) F() Hx/’P()
Q())1+1/,

(6.32)

and

(6.33)
3

Q() (r/) log (r/) dr/

and the minimum is taken over all nonincreasing left-continuous step functions
defined on (1, 3] and taking values in {3,..., 23}. Thus we have reduced the determi-
nation of C to the solution of the variational problem (6.31).

First, we claim that the range M of the function minimizing (6.31) must be an
interval of consecutive integers. Suppose to the contrary that for some h > > j we
have 1 </h oi -/i oj < 3. Let us denote this common value by 5, and suppose
for now that 6 2. Let us define a new function / by choosing e > 0, changing

’-5-e(i-j) and/3 cj-hto/3- -6+e(h-i) The/ 5 to/, %
effect of this change on P is

(6.34) P(’)- P() (i- h) (r/)r/dr/+ (i- j)_5+e(h-i)f
-(-j)

(i h)(e(i j)(5)5 + O(e2))
+ (i j)(e(h i)(5)5 + O(e2))

o(:)

for e > 0 sufficiently small. The effect on Q is

(r/) dr/+ log(6.35)Q(’) Q() log
-(i-J)

(i) (e(i- j)(5)+ O(2))log

+ o ((h le(e + o()

[(h- log- (- )ogh (h-)o](+ o(.

for sufficiently small e > 0. The quantity in square brackets in (6.35) is strictly
positive, by the concavity of the logarithm. Thus the change from to i increases Q
to first-order in e but increases P only to second-order in e. It follows that by choosing
e > 0 sufficiently small, we obtain a contradiction to the assumption that minimizes

(6.31). In the exceptional case that 5 2, the same argument works if we introduce a
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factor of 3 to compensate for the discontinuity of : if we set/’h Oi’ 6 (i j)
5 + (h- i)3, we again obtain cancellation toas before, but now set /

first-order in P but not in Q. Thus we conclude that M is an interval of consecutive
integers.

Next we claim that if rn + 1 and rn both belong to M and if minimizes

(and therefore also log F()), then we must have

(6.36) /3m+ Cm 0 log
m+l
m

where

(6.37) o 7 + 1

7

Suppose that m+l O/m, and denote this common value by 5. Suppose for now that
5 2. Let us define a new function ’ by choosing a small number (of either sign)
and setting/+1’ am 5 + v. The effect of this change on P is

(6.38) P(’) P() ()r] dr]

+

and the effect on Q is

(6.39) Q(’) Q()(ogm+l)f+ (r]) dr]
m a5

The effect on log F is

0(5)5 7 + 1 0 (log (5)
(6.40) logr(’) logr()

p() 7 Q() + 0(02)"

Thus if (6.36) did not hold, we could choose a small value of (with appropriate
sign) and make the right-hand side of (6.40) strictly negative. This contradicts the
assumption that minimizes F() and proves (6.36). In the exceptional case that
6 2, the same argument works if we interpret () (2) (which has not yet been
defined) correctly. Specifically, if we wish to choose > 0, we should set (2)
3-2-1 (to make right-continuous at 2); and if we wish to choose < 0, we
should set (2) 2- (to make left-continuous at 2).

Finally, we claim that if 0log ((m + 1)/m)falls in the open interval (1,3), then
m + 1 and m-both belong to M. Suppose to the contrary that the largest element of
M is q <_ m. Let us define a new function ’ by choosing e > 0, changing aq 1
to aq 1 +, and setting a,+’ 1 and /m+x l+e. The change to P is

(m + 1 q)e(1) + O(e2), the change to Q is (log ((m + 1)/q))(1) + 0(2), and the
change to log F is

(6.40’) logr(,) logr() e() 7 + 1 e log -C- (1)
P() 7 Q() + O(2)’
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which is strictly negative for > 0 sufficiently small because 01og((m + 1)/q) >_
0log ((m + 1)/m) > 1. This contradiction shows that rn + 1 belongs to M when
plog ((m + 1)/m) > 1; a similar argument (setting am 3- and/ 3) shows
that rn belongs to M when 0log ((m + 1)/m) < 3.

At this point we have reduced the determination of the minimizing function
to the determination of the single parameter . Although 0 is defined by (6.37), we
do not yet know the values of P() and Q(), and thus we seek a more explicit
characterization of 0.

Assume for now that the set of values {01og((m + 1)/m)" 3 <_ re, m+ 1 <_ 23} is
disjoint from the set {1, 2, 3}. Then from (6.36) we can write

(6.41) [ 11(r])--
exp-i

Thus if we define r (1), s (2), and t (3), we have

[1](6.42) r=
-1exp

(6.43) s= 2_1exp

t
exp 1

Now we can evaluate the integrals in (6.32) and (6.33) by breaking the range of
integration into intervals, over each of which is constant; the results are

log (r/(r--1)) f0 log (q/(q+l))

(6.45) P() r
r>q>s dolog((q+l)/q)

2 olog(s/(s--i))+ s d + s 3-d
log((sWl)/s)

q d -d+
s>q>t olog((q+l)/q) log((t+l)/t)

Po + O+P+.,

where

(6.46) P0 7+____ (3t-+ 2s r)

and

(6.47) P,+. E lg’+l q+ 1

r>qs q
V ]07+1 q + 1

+ 3-’
q

s>q>_t
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and

(6.48) Q() (logr) fjl
eg(r/(r-1))

2 201og (s/(s--1))
+ (log s) T]7-1 dr/+ (log s)

log((s+l)/s)

+ (o q) a-v-
s>q>t olog((q+l)/q)

+ (log t) a-7- d
log((t+l)/t)

o +

r>q>s (q+l)/q)
T]7-- dl

where

st
(6.49) Q0 -log-

and

(6.50) Q7 E log7+1 q + 1 V ]orT+l q + 1
+ 3-7

q qr>q>_s s>q>_t

Note that P7+1 ((-- 1)/7)Q7. Combining (6.37) with (6.45)-(6.50), we conclude
that

(6.51) 8
3t + 2s-r

stlog 7-

We now observe that (6.42)-(6.44) and (6.51) have a unique solution, namely,

(6.52) r- 16, s- 8, t- 5,

and

(6.53) 8
15

5log

To verify this, it is convenient to define 8p,q p/log ((q + 1)/q), which is the value
of 8 for which b makes the step from q + 1 to q at p. Since r < 23, we must have
8 < 81,23 23.4964... and if 8 81,23, then (6.43) and (6.44) yield s 12 and
t 8. Since t > 3, we must have 8 > 83,2 7.3989... and if 8- 83,2, then (6.42)
and (6.43) yield r 7 and s 4. Thus we have r E {7,..., 23}, s E {4,..., 12}, and
t {3,..., 8}. The transitions among these possibilities occur when 8 takes on one
of the values 81,7,..., 81,22, 82,4,. 82,11, 83,3,..., 83,7. These 29 points, when sorted
into increasing order, divide the interval [83,2, 81,23] into 30 subintervals, and the values
of r, s, and t given by (6.42)-(6.44) are constant throughout each of these subintervals.
Thus there is a unique value of 8 given by (6.51) for each of these subintervals. In only
one case does this value of 8 fall into the subinterval: throughout the subinterval from
81,15 15.4949... to 83,5 16.4544..., (6.42)-(6.44) give r 16, s 8, and t 5,
whence (6.51) gives 8- 15/log 16.3703 (There are 30 cases to be considered
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here; the calculations could be done by hand with patience but were in fact done by
computer.) Thus we have established (6.52) and (6.53), on the assumption that the set
of values {log ((m + 1)/m) 3 _< m,m + 1 _< 23} is disjoint from the set {1,2,3} or
equivalently that 0 is not one of the values 01,7, a01,23, a02,4, 02,11, 03,2,..., 3,7.
To lift this assumption, we need only verify that (6.37) does not hold if takes on one
of these values. (There are 31 cases to be considered here, and again the calculations
were done by a computer.) Substituting (6.52) and (6.53)into (6.45)-(6.50) and (6.26)
and simplifying yields C’ C for C given by (6.3).

The outcome of the final search for r, s, t, and may seem fortuitous or obscure,
but it has a simple explanation. The complications of this section are due to the fact
that loads, and thus the function , can take on only integral values. If we drop this
constraint, recovering the problem of 5, we may describe the solution by saying that
(7) 6e/ is then the minimizing choice of . This corresponds to dropping the
ceiling brackets, replacing exp(/0) by the first two terms 1 + (?/0) of its power series
expansion and taking 6e 16.3096... in (6.41); and the values of r, s, and t
corresponding to this value of 0 according to (6.42)-(6.44) are r 16, s 8, and

We can also interpret the individual terms in the denominator of (1.6) in terms of
"promotions." Specifically, we can associate the term log+1 ((q + 1)/q) (for 8
15) or 3- log+1 ((q + 1)/q) (for 5 <_ q <_ 7) with the promotion of a load from q to
q + 1; and we can associate the term 15- log with the promotion of leaf with load
16 to a parent of leaves with loads 8 and 5. The expression for C is thus analogous to
those for C2 and Ca, though the justification is much more elaborate.

Finally, we observe that for any fixed > 0, (1.3) is fulfilled for infinitely many n
in a geometric progression. To see this, observe that we may replace the optimal values
of #m for 5 <_ m <_ 16 by rational numbers pm/q without increasing the value of
to more than C + . Then if we consider a sequence Ti of trees having qi leaves and
form from these a sequence D of derivations in which there are pmi leaves with load
m, the resulting derivations will have capacity (IIh_<m_<16 mP’) and cost satisfying
(1.3). It should be noted that this observation does not contradict the results of 4,
which dealt with the behavior of (1.1) restricted to geometric progressions: in the
observation the capacity n is confined to a geometric progression, but the divisor m
of n in (1.1) ranges over all proper divisors; in 4, both n and m were confined to the
geometric progression.
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Abstract. We give an inequality relating the range of a discrete probability distribution
to certain determinants formed from moments of the distribution. We show applications of this
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1. Introduction. Let X < X2 < < Xn be n distinct numbers and let
Pl,.. -,Pn be n positive numbers satisfying j=ln PJ 1. Define

n

(1.1) #r - r
psxj r 0, 1,

j--1

Following the convention in probability theory, we refer to # as the rth moment of the
numbers xl,..., xn with respect to the probabilities pl,..., Pn. In our applications, the
x’s and p’s are unknown, but we know a few of the #’s. Our problem is to determine
something about the x’s from our knowledge of the #’s. In particular, we would like
to obtain bounds on Xl and Xn, as well as the spread Xn xl, in terms of the #’s.
Perhaps the best-known result along these lines is Chebychev’s inequality. Let X be
a random variable that takes on the values x1,..., Xn with probabilities pl,..-,pn,

respectively. Chebychev’s inequality states that for t > 1,

1
prob{#l ta _< X _< Pl -[- ta} >_ 1 t

where a V/#:- #. By letting t approach 1 we conclude that at least one of the
points x1,..., xn lies in the interval 1 --r

_
Z

_
]/,1 -[-ft.

As a sort of complement to this result, several authors, in particular Wolkowicz
and Styan [14] and Brauer and Mewborn [4], have shown that not all of the x’s can
satisfy the condition 1 r < Z < tl -[- (7. In fact, they have shown that

(1.2) Xn Xl

_
2a.

See also [1], [2], [5], and [9].
It turns out that sharper bounds on the spread Xn -Xl can be obtained when

higher moments of the x’s are available. The purpose of this paper is to explain how
this can be done. We will also obtain bounds for the extreme values X and xn.

2. Bounds. In [2] we derived the inequality

(2.1) (Xn 1)(1 Xl)

_
if2,
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School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Geor-
gia 30332-0205.
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which is a stronger statement than (1.2); for by the inequality between the geometric
and arithmetic means of positive numbers, we have, from (2.1),

< Xl <_ (Xn m) + (m
2

Xn Xl

Thus (2.1) implies (1.2). The main contribution of this paper is a strengthening of
inequality (2.1) when higher moments of the x’s are available. This modification of
(2.1) is stated in the following theorem.

THEOREM 2.1. For k >_ 2, let #0,..., 2k be moments of the numbers Xl < X2 <
< Xn with respect to certain probabilities Pl,...,Pn. Let M, Mo, and M1 denote the

matrices

0 1 Pk 0 #k-1
1 2 k+l 1 #k

Mo

#k #k+l #2k #k-1 #2k-2

#1 Pk
#2 #k+l

]1//1

k #2k-1

and assume that Mo is nonsingular. Define moments so,..., 82k-2 by

1 Tr(MflM1)J8j - j 0,...,2k- 2.

Let N and No denote the moment matrices

80 81 8k-1
81 82 8k

8k-1 8k 82k-2

80 81 8k-2

81 82 8k-3

8k-2 8k-1 82k-4

Then N is nonsingular, and

(2.2)
1 det M

(Xn #l)(ttl Xl) _> a2 + det M0
det No
det N

Before we prove this theorem, we review some known results about moment ma-
trices. These results are given in Chapters 2 and 4 of [8]. We summarize them here
to make our paper self-contained.
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Our assumption that M0 is nonsingular implies that k _< n. To see this, observe
that for k > n, say k n + 1, we can write M0 as the product of singular matrices as
follows.

#0 #k-1
#1

//0

k-1 P2k-2

Pl plX plX
-1

1 1 1 0
Xl X2 Xn 0 P2 p2X2 p2X’-1

xkl"-1 xk2 -1 xkn-1 0 Pn pnXn pnxkn-1
0 0 0

Thus if M0 is to be nonsingular, we must have.,k _< n. In general, we assume that k is
much smaller than n. The numerical example given in 5 is typical of what we have
in mind..

Let t denote the set of measures a defined on Ixl, Xn] and satisfying

t da(t) #, r 0,...,2k- 1.

Ft is not empty, since Ejn=lpjxj #r,r 0,... ,2k. For a fixed a E Ft, let ft2k
fx t2kda(t). Let v(t) denote the (k + 1)-dimensional vector with components 1,
t,..., tk and # denote the column vector with components Pk,.--,2k-1. We then
have

( )Mo pv(t)v(t)Tda(t) ,T 2k
Clearly this matrix is positive semidefinite since v(t)v(t)T >_ 0 for each t [Xl,Xn].
This means that

M0det T
# ) (ft2k #TMI#) det M0 > 0.

ft2k ]

By assumption det M0 > 0 so ftsk- #TM-I#
_

O. This proves that

t2k da(t) > #TM

for any a gt. In fact, it can be shown that the problem

x

(2.3) mjn t2k da(t)
x

subject to t da(t) #, r 0,...,2k- 1

has minimum value #k TMI# Moreover, the measure that realizes this mini-
mum concentrates mass at precisely k points 1 < < k in [Xl,Xn]. This means
that there are positive numbers al,..., ak satisfying

(2.4) (71[ + a2 +... + kk # r 0, 1,..., 2k 1.
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This is the main result we need for the proof of Theorem 2.1.

Proof of Theorem 2.1. Let vj and Ej denote the arrays

and define
I-t2 k+l
I-t3

M2

tk+l t2k

We then have, by definition,

n n n

(2.5) M0= pjEj, Ma= pjxjEj, M2= pjxjEj.
j=l j=l j=l

Clearly each Ej is positive semidefinite, and since x <_ xj <_ Xn, for each j, the
nmatrix Yj=I pj(Xn Xj)(Xj x)Ej is positive semidefinite. We write this as

(2.6)
n

2 )M1 XlXnMo M2 >_ O.Epj{(Xl + Xn)Xj XlXn xj}Ej (Xl -- Xnj--1

The matrices M0 and M involve only the moments #0,... ,2k-1, for which
representation (2.4) is valid. We can therefore write

1 1 1 0"1 0"11 0"11k-1

1 2 k iT2 (T22 (T22k-IMo VSVT,

O’k k2 O’k-1

where S- diag(al,..., ak) and V is the Vandermonde matrix

V is nonsingular, since the ’s are distinct.
We can also write M0 (VS1/2)(VS1/2)T and Mi VS."fi.VT, where

diag(,... ,k). If we multiply inequality (2.6) on the left by (V1/2)-1 and on the
right by (VS1/2) -T, we obtain

(2.7) (Xl A- Xn) XlXnI S-1/2V-1M2V-TS-1/2 > O.

If we now observe that

22 (S-1/2V-1MIV-TS-1/2)2 S-1/2V-1M1M-IMIV-TS-1/2,
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we deduce from (2.7) that

(2.8) $1/2((Xl + x,) XlXnI- .=.2}$1/2 >_ V-I(M2 M1M-IM1)V-T.

Let uj denote the jth column of M1 and ej denote the jth unit coordinate vector
in Rk. Since uj is the (j + 1)st column in M0, we have M-luj ej+l, j 1,..., k- 1.
It follows that uTMluj #i+j for 2 _< + j < 2k. This implies that

M2 M1M- M1 0)
T (det M)/(det M0). If we substitute this into (2.8) andwhere X #2k- Uk Mo Uk

take the trace on each side of this inequality, we obtain

k

T(VVT)-IE aj{(Xl -- Xn)j XlXn }
_

ek
j=l

By using representation (2.4), we can write this inequality as

(2.9) (xl + Xn)#i XlXn #2 > #2 # + (e(VVT)-iek)
det M
det M0"

To complete the derivation of (2.2), we must find an expression for the matrix VVT
in terms of M0 and

In Chapter 4 of [8], it is shown that the numbers 1,..., k in representation (2.4)
are the roots of the polynomial equation

0 1 #k-1 1
t#1 #2 #k

(2.10) det O.

#k #k+l 2k-1 t

There seems to be no simple proof of (2.4). However, given that (2.4) is true, it is
easy to see that the y’s are the roots of equation (2.10). This follows from the matrix
factorization

0"I 0"II 0"IIk-I 0
#0 #1 #k-1 1 1 1 1

#1 #2 #k t 1 2 t (72 (T22 (T22k-1 0

(T
k-1

#k k-t-1 #2k-I tk k k2 tk ak akk ’k 0
0 0 0 1

Since the numbers 41,..., (Tk are positive and the j’s are distinct, (2.10) holds if and
only if t is one of the j’s.

If we multiply each row in determinant (2.10) by t and subtract it from the next
row, we obtain the result

#0 #1 #k-1
1 #2 #k

det

#k #k+l #2k-1

1

det(M1 tMo).

tk
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It follows that the numbers 1,..-, k are the eigenvalues of the matrix M-I/2M1M1/2

We therefore have

1 "- + k Tr(MI/2MIM1/2) Tr(M-IM1)

and, in general,

+... + ; Tr(MI/2MIM/2)r Tr(MIM)r, r =0,1,

This shows that VVT kN, and if we substitute this into (2.9), we obtain

(2.11) T -1l(%N ek)
detM

(Xn #1)(1 Xl)

_
62 -k

det M0

By Cramer’s rule, we have
det NoTg-lekek det N

Thus (2.11) agrees with (2.2) and the proof is complete.
Note that it is not necessary to compute the inverse M- in order to determine

the moments so, s, This follows from the observation that

0 0
1 0
0 1

M-1M1-- 0 0 M-luk

0 0

The column Mluk can be computed by solving the equation Mov uk for v

Mluk. The following obvious consequence of Theorem 2.1 sharpens inequality (1.2).
COROLLARY. The numbers x and Xn in Theorem 2.1 satisfy

(2.12) xn Xl )__ 2 {O"2 -- 1 det M det No ] 1/2

k det M0 det N

We close this section with some results on bounds for X and Xn. It is well known
that the numbers and k in (2.4) satisfy

(2.13) Xl

__
{1 and Xn )_ {k.

This result is an immediate consequence of (2.5); if is a solution of the equation
det(M1 tMo) 0, there is a nonzero vector y E Rk such that yTMy/yTMoy.
It follows from (2.5) that

. ’nEi=I Vi(v’Tz Y) 2 Ei--1Pij=l

This clearly shows that x <_ { < xn, and thus (2.13) holds.
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)2

1.)

(a)

FIG. 1.

3. The minimum covering ellipsoid for a polytope. Let P be a polytope
in Rn and E denote the ellipsoid of least volume containing P. Let denote the center
of E. Then there exists a positive definite matrix Q such that

(3.1) E {xl(x- c)TQ(x- c)<_ 1}.

The volume of E is proportional to det Q-l Thus, if Vl,..., VN are the vertices of
P, then Q and c solve the minimization problem

(3.2) minimize det M-l2 subject to (vj /)TM(vj /) <_ 1, j-- 1,...,N,

where the minimization is taken over all positive definite matrices M E Rnxn and
over all vectors E Rn.

In [7], John gives a characterization of the solution of (3.3). He shows that there
exist nonnegative numbers pl, PN satisfying -Nj=l pj 1 such that

N N
1
Q_ p(vy c)(vy c)T(3.3) c- Epjvy, -j=l j=l

and
py{(vj c)TQ(vj c) 1} 0, j= 1,...,N.

John uses this characterization to prove the following theorem.
THEOREM 3.1. Let the ellipsoid (2.1) be the ellipsoid of least volume containing

a polytope P C Rn. Then the ellipsoid

(3.4) E* xl(x c)TQ(x c) <_

obtained by shrinking E by a factor n about its center, is contained in P.
Proof. Let v,..., VN denote the vertices of P. Some of these vertices lie on the

boundary of E; see Fig. l(a). For simplicity, assume these vertices are v,..., vk. Since
pj 0 if (vj )TQ(vj c) < 1, in (3.3) we have that pj 0 for j k + 1,..., N.

The linear transformation y Q/2(x- c) maps E to the unit ball in Rn. Let
yj Q1/2(vj -c),j 1,..., k. To complete the proof of the theorem, it suffices to
show that the convex hull of the points {yl,..., Yk} contains a ball of radius 1In
centered at 0. Under the map x Q-y+ c, this ball goes into the ellipsoid (3.4), and
this ellipsoid is contained in the convex hull of the points vl,..., vk and hence in P.

Let u be a unit outward normal to a facet of the convex hull conv{yl,..., Yk};
see Fig. l(b). We show that the distance from 0 to this facet is at least 1In. This in
turn shows that we can construct a ball of radius l/n, centered at the origin, inside
conv{yl,..., yk}. The projection of yj on the direction u is given by uTyj. We must
show that maxj uTyj

_
1In.
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If we multiply the first equation in (3.3) by Q1/2, we obtain

k

ypy =0.
j=l

If we multiply the second equation on the right and left by Q1/2, we obtain

where I denotes the n n identity matrix. These last two equations imply that

and

k

=0
j=l

k k
1

j=l j=l
n

Here we are able to compute the first two moments of the numbers uTyl,..., uTyk
with respect to an unknown probability distribution. This is precisely the type of
situation that Theorem 2.1 deals with.

Let xk maxuTyj and Xl minuTyj,j 1,... ,k. By inequality (2.1), we have

1
Xk(--Xl)

_
--,
n

and since luTyjl <_ Ilullllyjll 1,j 1,...,k, we have -xl Ixll <_ 1. Thus x >_ l/n,
and thus our proof is complete.

4. Linear regression theory. In a linear regression problem, an output vari-
able is related to several input variables 1,... ,n by an equation of the form
=/0 + 11 +’--+ nn, where the/’s are not known precisely. Estimates of the

/’s are obtained by measuring several values yl,..., Ym, m > n, of the output variable
corresponding to values xy (Xly,... ,Xnj),j 1,... ,m, of the input variables. We
assume that the measurements are given by

n

yj O nt- E ixij -- j, j= 1, m,
i=1

where the ej’s are independent and identically distributed random variables with
means 0 and variances r2.

Let X denote the m (n + 1) matrix whose jth row is (1, Xlj,X2j,... ,x,j),j
1,..., m. The least squares estimate of/ (0,..., n)T is given by- (XTX)-IXTy,

where y (yl,..., ym)T is the vector of measurements. Since y is a random vector,
is a random vector. A new set of experiments yields a new estimate/. The covariance
matrix of/ is given by
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In particular, the variance of a component/j of/ is given by a2Cjj, where Cjj is the
(j + 1)th diagonal term of (XTX)-I,j 0, 1,..., n. The first inequality in (1.2) shows
that the range of values for/j is at least 2a,j 0, 1,..., n. One would prefer
these ranges to be small. In fact, in some studies on the design of experiments, one
tries to select the measurements xj to

n+l

minimize Trace(XTX)-1 Cjj.
j:l

See, for example, [6].
Remark. Theorem 2.1 was stated for discrete probability distributions. The

present application is to a distribution that is possibly continuous. It is easy to show
that the theorem remains valid when the moments #r are taken from a continuous
distribution.

5. The spread of eigenvalues. Let ,1

_
2

_
,n denote the eigenvalues

of a real symmetric matrix A (aij). Several authors [2]-[4], [10]-[14] have been
interested in estimating the spread An 1 of these eigenvalues. Theorem 2.1 can be
used to obtain lower bounds on this spread as follows.

Let u1,..., Un denote a set of orthonormal eigenvectors of A corresponding to the
eigenvalues 1,..., An. Then

nUnUn, r 0, 1,(5.1) A uluT1 -- u2uT2 Jr-

__
T

Let -() denote the ijth element of A and uiy denote the ith element of u jtij
1,..., n. From (5.1), we see that

Since the vectors uj are orthonormal, we have n 2j= uij 1, i 1,..., n. The diagonal
terms of A are thus moments of the eigenvalues of A.

For each diagonal position (i, i), we can compute the moment matrices

1 aii a7’ 1 (k-l)
aii

aii a
M0-

^(k) (kT1) ..(2k) (k-l) ..(2k-2)
tii aii tii aii (ii

_(k)
aii tii
2 _.(k+l)

aii aii
M1

a/k) _(2k-1)

and apply (2.12) to obtain a lower bound on the spread ,n /1 of the eigenvalues of
A. We can also use (2.13) to obtain bounds on ) and An.
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Example. Consider the n n(n >_ 4) circulant matrix

2 1 0 0 1
1 2 1 0

0 1 2 ".

1 0 1 2

It is easy to show that Ar is a circulant matrix with diagonal entries (2r), r 1, 2, 3, 4.
We therefore have moments

ttr- r-1 2 3,4
r

for the eigenvalues of A. For the purpose of demonstrating (2.12), we set k 2. We
then have

1 2, 2 6, 3 20, P4 70,

SO

2 6 20 Mo 2 6 M1 6
6 20 70

M_IMI: (0-2) and (M0-1M1)2: ( -2 -8)1 4 4 14

It follows that sl 2, s2 6, and

(1 2)N=
26 N0=l.

Therefore
1 detM detN0 1 4 1

a2
2detM0 detN =2+’’=2"5"

It follows from (2.12) that

(5.2) n /1

_
2--.5-- 3.1622

for any n.
Since A is a circulant matrix, we know that its eigenvalues are given by

Aj 2 +wj +w j 1,...,n,

where wl,..., COn are the nth roots of unity That is, (COy)n 1, j 1,..., n. When n
is even, we have the eigenvalues A 0 and An 4, corresponding to wj -1 and
+1, respectively. Thus An AI 4 for n even. When n is odd, we have An 4 and
A > 0. (5.2) thus gives a better estimate of the spread for n odd. For example, for
n 5, we have A1 2 + 2 cos Ag .3819 and An A 3.618.

(2.12) tells us something about the spread of the eigenvalues of A but gives no
information about the precise locations of A and An. For this information, we invoke

(2.13). The eigenvalues of the matrix

M-IM1- ( 01 -2)4
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satisfy 2 4 + 2 0. We therefore have

1-2-x/ and 2-2+x/.

Thus, by (2.13), we have 1

_
2- and An _> 2 + /.

It can be shown that the inequalities (2.13) become sharper as k increases. In
fact, our discussion of the polynomials (2.10) shows that for k n, the moments
#0, #1,..., #2k-1 determine the numbers x,..., Xn exactly. Thus, in the present
example, when k n we have j Aj, j 1,..., n. On the other hand, the right-
hand side of (2.12) may not increase as k increases. This means that, in some cases,
the difference k may give a better estimate of the spread than (2.12).

6. Combinatorial optimization problems. Consider a traveling salesman
problem on n cities. For simplicity, we denote the cities by 1, 2,..., n. Let aij de-
note the distance between cities i and j if i j and set aii 0, i 1,..., n. The
traveling salesman problem requires that we find a permutation il, i2,..., in of the
numbers 1, 2,..., n such that the sum

all ,i2 -- ai2 ,i3 -- -- ain_ ,in -- ain #1

is as small as possible. This problem is among the most difficult in integer program-
ming. However, certain aspects of it are surprisingly easy. For example, it is easy
to show that the average of the terms in (6.1) over all permutations i, i2,...,in is
simply

n

tl n-1

and that the average of the squares of the terms in (6.1) is

Here Mij denotes the number in position ij of the matrix M.
It is possible to compute higher moments of the tour lengths (6.1), and based on

preliminary results, it appears that these can be used to obtain good lower bounds
on the difference between the longest and shortest tour lengths in (6.1). (2.13) can
be used to obtain upper bounds in this length of the shortest tour, which may prove
useful in branch and bound codes.
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TREE SPANNERS *

LEIZHEN CAI AND DEREK G. CORNEIL$

Abstract. A tree t-spanner T of a graph G is a spanning tree in which the distance between
every pair of vertices is at most times their distance in G. This notion is motivated by applications
in communication networks, distributed systems, and network design.

This paper studies graph-theoretic, algorithmic, and complexity issues about tree spanners. It is

shown that a tree 1-spanner, if it exists, in a weighted graph with m edges and n vertices is a minimum
spanning tree and can be found in O(mlog(m,n)) time, where (m,n) min{il log(i) n <_ m/n}.
On the other hand, for any fixed 1, the problem of determining the existence of a tree t-spanner in
a weighted graph is proven to be NP-complete. For unweighted graphs, it is shown that constructing
a tree 2-spanner takes linear time, whereas determining the existence of a tree t-spanner is NP-
complete for any fixed >_ 4. A theorem that captures the structure of tree 2-spanners is presented
for unweighted graphs. For digraphs, an O((m 4- n)c(m, n)) algorithm is provided for finding a tree
t=spanner with as small as possible, where c(m, n) is a functional inverse of Ackerman’s function.
The results for tree spanners on undirected graphs are extended to "quasi-tree spanners" on digraphs.
Furthermore, linear-time algorithms are derived for verifying tree spanners and quasi-tree spanners.

Key words, graph algorithm, NP-complete, tree spanner, spanning tree, distance

AMS subject classifications. 05C05, 05C12, 05C85, 68Q25, 68R10

1. Introduction.

1.1. Motivation. A t-spanner of a graph G is a spanning subgraph H in which
the distance between every pair of vertices is at most t times their distance in G. This
notion was introduced in 1987 by Peleg and Ullman [27], who showed that spanners
can be used to construct synchronizers for transforming synchronous algorithms into
asynchronous algorithms. A similar notion appeared in 1986 when Chew [16] studied
approximations of complete Euclidean graphs by their planar subgraphs.

The key idea behind the notion of spanners is the approximation of pairwise
vertex-to-vertex distances in the original graph by spanning subgraphs. The quality of
the distance approximation by a t-spanner is measured by the parameter t _> 1, which is
referred to as the stretch factor of the t-spanner. This distance approximation property
makes spanners quite useful in areas such as communication networks, distributed
systems, motion planning, network design, and parallel machine architectures [5], [a],
[6], [16], [27]-[29], [25]. For example, a sparse spanner (a spanner with few edges) of
small stretch factor can be used to plan efficient routing schemes in a communication
network while maintaining succinct routing tables [28]. Such a spanner can also be
used as a substitute for its original network to reduce the construction cost of the
network while keeping similar communication costs [29], [23]-[25]. In motion planning,
when the input of a simple polygon is inaccurate, a special spanner of the visibility
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graph of the input polygon, called the visibility skeleton, can be used to plan collision-
free paths inside the real polygon [14].

In most applications, the sparseness of a spanner is the main concern; the sparsest
t-spanner in a connected graph is a tree t-spanner, that is, a t-spanner that is a tree.
Therefore, as far as sparseness is concerned, tree t-spanners are the best possible t-
spanners. Furthermore, tree spanners have other interesting applications besides those
mentioned for general graph spanners. Tree spanners of small stretch factors can be
used to perform multisource broadcasts in a network [5], which can greatly simplify the
message routing at the cost of only small delays in message delivery. The existence of a
tree 2-spanner in a 2-connected network guarantees that the communication between
operative sites will not be affected by any isolated failure of communication sites and
lines [10]. There are also some surprising connections between tree 2-spanners and
cycles in graphs. Certain cycle-extremal weighted graphs can be represented as a

weighted union of tree 2-spanners ([8], where they were called tritrees), and graphs
that contain tree 2-spanners ([7], where they were called trigraphs) appear to be the
only graphs that require a large number of cycles to cover the edges of the graph
exactly twice.

In this paper we consider graph-theoretic, algorithmic, and complexity issues
about tree spanners. We study tree spanners in weighted, unweighted, and directed
graphs, as well as "quasi-tree" spanners in directed graphs. By exploring graph-
theoretic characterizations, we obtain several efficient algorithms for finding tree and
quasi-tree t-spanners for some values of t. On the other hand, we show the intractability
of determining the existence of tree and quasi-tree t-spanners for almost all other values
of t. Furthermore, we present linear-time algorithms for verifying tree and quasi-tree
t-spanners for all values of t.

1.2. Notation and definitions. We use the terminology of Bondy and Murty
[9]. Graphs in this paper can be either weighted or unweighted, directed or undirected;
they are connected graphs without loops, multiedges, and multiarcs. For any graph
G, V(G) denotes the vertex set of G; if G is undirected then E(G) denotes the edge
set of G, and if G is directed then A(G) denotes the arc set of G. For a subset V of
vertices of G, G[V] denotes the induced subgraph of G on V; for a subset E of edges
of G, G[E] denotes the edge-induced subgraph of G on E. The induced subgraph
G[V(G) \ Y’] is denoted by G- Y’, and the edge-induced subgraph G[E(G) \ E’] is

denoted by G- E. For any subgraph H of G, G- H denotes the subgraph obtained
from G by deleting edges (or arcs) of H from G. Throughout this paper, unless specified
otherwise, m denotes the number of edges (or arcs) of G and n denotes the number
of vertices of G. For any real number x, [xJ denotes the largest integer _< x and [x
denotes the least integer >_ x.

We shall nssume that the weight w(e) of an edge (or rc) e is a positive real
number and regard an unweighted graph as a weighted graph where each edge (or
arc) has unit weight. Given a subgraph H of G, w(H) denotes the weight of H, i.e.,
the sum of the weights of all edges in H; when H is a (directed) path, w(H) is the
length of H. For any two vertices x and y of G, a path from x to y is an (x, y)-path and
an (x, y)-path of minimum length is a shortest (x, y)-path. We use d(x, y) to denote
the weighted distance in G from x to y, i.e., the length of shortest (x, y)-path in G.
Note that d(x, y) if there is no (x, y)-path in G and d(x, y) d(y, x) if G is
undirected.

For any real number t _> 1, a spanning subgraph H of G is a t-spannerif dH(x, y) <_
t. d(x, y) for every pair of vertices x and y of G. The parameter t is called the stretch
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factor of H. The stretch index of a spanner H is the minimum number t for which H is
a t-spanner. A t-spanner H is a minimal t-spanner if no subgraph of H is a t-spanner
of G, a minimum t-spanner if it has the least number of edges among all t-spanners
of G, and an optimal t-spanner if H has the least weight among all t-spanners of G.

For an undirected graph G, a spanning subgraph T of G is a tree t-spanner if T
is both a t-spanner and a tree; in this case G is tree t-spanner admissible. A spanning
subgraph T of G is a tree spanner if it is a tree t-spanner for some t >_ 1 and a minimum
tree spanner if it has the smallest stretch factor among all tree spanners of G. Thus a

spanning tree of G is always a tree spanner.
For a directed graph (digraph) G- (V, A; w), we use ( (V, E; ) to denote its

underlying undirected graph, i.e., xy E E iff either (x, y) e A or (y, x) A or both,
and

w((x,y)) if (x,y) e A, (y,x) A,
(x, y)- w((y, x)) if (y, x) e A, (x, y) A,

min{w((x,y)),w((y,x))} if (x,y), (y,x) e A.

A vertex x reaches vertex y(y is reachable from x) in G if there is a directed (x, y)-path
in G. It follows that dG(x, y) c if y is not reachable from x in G.) A spanning tree
of G is a spanning subgraph T that contains no directed cycle and such that T is a

tree. Then, as with undirected graphs, a tree t-spanner of a digraph is a spanning
tree that is a t-spanner. A quasi tree of G is a spanning subgraph T such that T is a

tree; T is a quasi-tree t-spanner if it is a t-spanner of G. Note that a quasi tree may
contain a cycle consisting of two arcs (x, y) and (y, x). Other terms on tree spanners
of undirected graphs are naturally extended to tree spanners and quasi-tree spanners
of digraphs. However, a spanning tree (quasi tree) of a digraph is not necessarily a
tree (quasi tree) spanner.

A few more definitions are in order for undirected graphs. (For simplicity, we
will use these definitions for digraphs as well; it is understood that whenever we do
so, we either refer to the underlying graphs or mean that the underlying graphs have
the property.) For a connected graph, a k-cut is a set of k vertices whose deletion
disconnects the graph. A graph G is nonseparable if it has no 1-cut and triconnected if
it has no k-cut for k _< 2. A block of a graph is a maximal nonseparable subgraph, and
a triconnected component of a graph is a maximal triconnected subgraph. A vertex is
universal if it is adjacent to all other vertices of the graph. An edge e is a binding edge
if its two ends form a minimal cut set. Two disjoint subgraphs S and S’ of G are fully
joined if every vertex in S is adjacent to every vertex in S’. A star is any complete
bipartite graph KI,n with n >_ 1.

Finally, by the tree t-spanner problem, we usually mean the problem of finding
a tree t-spanner in a graph, but it may refer to the problem of determining whether
a graph contains a tree t-spanner when we talk about NP-completeness. Its mean-

ing should be clear from the context. The meanings of other spanner problems are
similarly defined.

1.3. Observations. We gather here some fundamental results on spanners in
a graph. For simplicity, we will state our results only in terms of undirected graphs.
These results also hold for digraphs and will be used in our discussions throughout
the paper.

First, because edge weights are assumed to be positive, each of the following
statements gives an equivalent definition of a t-spanner in a weighted graph.

THEOREM 1.1. Let H be a spanning subgraph of a weighted graph G (V, E; w).
The following statements are then equivalent:
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(1) H is a t-spanner of G (i.e., dH(x, y)

_
t dG(x, y) for every pair x, y e V).

(2) xu E, d.(x, <_ t da( ,
(3) For every edge xy E E \ E(U), dH(x, y) <_ t da(x, y).
(4) For every edge xy E, dH(x, y) <_ t. w(xy).
(5) For every edge xy e E \ E(H), dH(x, y) <_ t w(xy).
Proof. The implications (1) =: (2), (2) = (3), and (4) = (5) are trivial. To see

that (3) =v (4), we need only note that, for any edge xy e E, we have dG(x, y) <_ w(xy)
and that dH(x, y) <_ w(xy) <_ t w(xy) if xy E(H), since t >_ 1 and w(xy) > O.

We now show that (5) = (1). It suffices to show that dg(x, y) <_ t. dv(x, y) for
two arbitrary vertices x, y of G. Let P be a shortest (x, y)-path in G. Then for each
edge uv on P, if uv E(H), then dH(u, v) <_ w(uv) <_ t. w(uv), since t _> 1 and
w(uv) > 0; otherwise, dH(u, v) <_ t. w(uv) by statement (5). Therefore,

<_ <_
uvEP eEP

Since dG(x, y) EeeP w(e) by the choice of P, we obtain

dH(x, y) <_ t dG(x, y)

This completes the proof. [:]

Quite often we will use statement (5) in the above theorem as the definition of a
t-spanner, since it is easy to handle in most cases. Based on the above theorem, we
can easily observe the following facts.

Observation 1.2. Let F be a t-spanner of G and H be a k-spanner of F. Then H
is a kt-spanner of G.

Observation 1.3. For any k > 1, H (V, E’; w) is a t-spanner of G (V, E; w)
iff H’= (V, E’; w’) is a t-spanner of G’= (V, E; w’), where w’(e) k. w(e) for every
eEE.

It is easy to see that we can consider each block separately in dealing with most
spanners, such as minimal, minimum, and optimal t-spanners. In particular, we can
restrict our attention to nonseparable graphs when we deal with tree spanners.

Observation 1.4. Let T be a spanning tree of a graph G. Then T is a tree t-spanner
of G iff for every block H of G, T N H is a tree t-spanner of H.

Finally, for an. unweighted graph G, the distance between any two vertices in G is

always an integer. Therefore, in light of statement (4) of Theorem 1.1, we need only
consider t-spanners for integral t.

Observation 1.5. Let H be a spanning subgraph of an unweighted graph G. Then
H is a t-spanner iff H is a [tJ-spanner.

1.4. Outline of the paper. We begin by discussing the verification of tree
spanners and quasi-tree spanners in 2. We present O(m) time algorithms for verifying
tree t-spanners in graphs and in digraphs as well as quasi-tree t-spanners in digraphs.

In 3, we consider tree spanners in weighted graphs. We show that a tree 1-
spanner, if it exists, is a minimum spanning tree and can be found in O(m log/(m, n))
time, where /(m, n) min{i log(i) n _< m/n}. On the other hand, we prove that,
for any fixed t > 1, the problem of finding a tree t-spanner in a weighted graph is
intractable.

In 4, we investigate tree spanners in unweighted graphs. We show that a tree
2-spanner can be constructed in linear time and that the tree t-spanner problem is



TREE SPANNERS 363

NP-complete for any fixed integer t >_ 4. We also present a skeleton tree theorem,
which captures the structure of tree 2-spanners.

We deal with tree spanners of digraphs in 5. We present an O((m + n)a(m +
n, n)) algorithm for finding a minimum tree spanner in a digraph, where c(m, n) is a
functional inverse of Ackerman’s function. For general digraphs, we extend the results
of 3 and 4 to quasi-tree spanners.

We conclude the paper with a short summary and some open problems in 6.

2. Verifying a tree t-spanner. Given a graph G, a spanning tree T, and a
positive number t, we wish to verify whether T is a tree t-spanner of G. We may
also wish to know if T is a tree spanner and, if it is, determine its stretch index, i.e.,
the smallest t for which T is a-t-spanner. Similar problems can also be explored for
quasi-tree spanners. These problems will come forth naturally in later sections, and,
for convenience, we will refer to these problems as tree spanner verification problems.

In this section, we will provide linear-time algorithms for the above verification
problems. The main results of this section are summarized in the following theorem,
which will be used in later sections.

THEOREM 2.1. Let D and G be directed and undirected weighted graphs, respec-
tively. Let S and T be spanning trees of D and G, respectively. Let Q be a quasi tree
of D. Then the following problems can be solved in O(m) time:

(a) Determine the stretch index of T.

(b) Is S a tree spanner? If it is, determine its stretch index.

(c) Is Q a quasi-tree spanner? If it is, determine its stretch index.

2.1. A verification algorithm paradigm. We first describe an algorithm
paradigm for tree spanner verification problems. Clearly, statement (5) of Theorem
1.1 provides us with a simple method for solving these problems. By taking this ap-
proach, we need to compute the distances in T of all rn- n + 1 vertex pairs defined
by nontree edges. Thus the cost of distance computation dominates the running time
of verification algorithms based on this approach. If we compute the distance of each
vertex pair directly and independently, it may take O(mn) time to compute these
distances, since each distance may take O(n) time to compute. We can reduce the
cost to O(n2) by computing all pairwise distances in T together. Unfortunately, this
is not satisfactory for sparse graphs. To speed up the verification, we need a better
way to compute the distances of these m- n + 1 vertex pairs.

For simplicity, we will describe an algorithm for verifying a tree t-spanner in an
undirected graph. The algorithm is easily extended to other verification problems.
Several definitions are in order. A rooted tree T is a tree with a distinguished vertex r,
called the root. For any two vertices x and y in T, if x is on the path from r to y, then
x is an ancestor of y. The least common ancestor of x and y, denoted by LCA(x, y),
is the common ancestor z of x and y such that for any common ancestor z of x and
y, z is an ancestor of z. We will take advantage, of the structure of a tree to compute
distances more efficiently. To achieve this, we arbitrarily choose a vertex r to be the
root of T and then label vertices of T in such a way that distance dT(x, y) of any
vertex pair (x,y) can be quickly computed from the labels of x,y, and LCA(x,y).
Notice that dT(x, y) dT(x, LCA(x, y)) + dT(LCA(x, y), y).
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ALGORITHM VERIFICATION(G, T, t){Verify if T is a tree t-spanner of G.}
Input: A graph G, a spanning tree T and a positive number t;
Output: "Yes" if T is a tree t-spanner; "No" otherwise.

begin

1. Arbitrarily choose a vertex r as the root of T;
2. Compute a label label(x) for each vertex x of T;
3. Compute LCA(x, y) for every nontree edge xy of G;
4. for each nontree edge xy do

begin
4.1. Compute tiT(X, y) by using the labels of x, y and LCA(x, y);
4.2. if dT(x, y) > t. w(xy) then output "No" EXIT;

end;
5. output "Yes";
end.

By statement (5) of Theorem 1.1, we note that the stretch index of T equals

max(1, dT(x,y)/w(xy)lxy e E(G) \ E(T)).

The above algorithm can thus be modified (line (4.2)) to compute the stretch index of
T as well. To apply this algorithm to a digraph D, we take the underlying tree of
D’s spanning tree (quasi tree) T to define a rooted tree and carry out the computation
of the algorithm with respect to this rooted tree. In this case, when we notice that x
reaches y in T iff dT(x, y) is finite, we can use the algorithm to check the teachability
from x to y in T as well.

Regarding the complexity of the algorithm, we see that line (1) is trivial. To
carry out the computation of line (3), we use a linear-time least common ancestor
algorithm of Sarel and Tarjan [21]. Clearly, line (4.2) takes O(1) time. In the next
two subsections, we will discuss efficient implementations of line (2) and line (4.1) for
undirected graphs and digraphs so as to obtain the results in Theorem 2.1.

2.2. Undirected case. Let G be an undirected weighted graph and T be a
spanning tree of G. Arbitrarily choose a vertex r in T as the root of T. For each vertex
x in T, label x by the root-to-vertex distance of x, i.e., label(x) tiT(r, x). See Fig. 1
for an exampIe.

We show that for any two vertices x and y, their distance dT(x, y) in T can be
computed in constant time from label(x), label(y), and label(LCA(x, y)). Notice that

label(x) dT(r, x) dT(r, LCA(x, y)) + dT(LCA(x, y), x)

and
label(y) dT(r, y) dT(r, LCA(x, y)) -t- dT(LCA(x, y), y).

We obtain
dT(x, y) label(x) + label(y) 2. label(LCA(x, y)).

Therefore dT(x, y) can be determined in O(1) time.
It is easy to see that by either a depth-first or a breadth-first search from the

root r, we can obtain the labels for all vertices of T. Thus line (2) of algorithm
VERIFICATION can be carried out in O(n) time. Furthermore, line (4.1) can be
done in O(1) time; thus step (4) takes O(m- n) time. Therefore, the overall time



TREE SPANNERS 365

FIG. 1. Labeling the vertices of T by their root-to-vertex distances.

of the algorithm is linear. Thus verifying a tree t-spanner takes linear time. Once
dT(x, y) is obtained for every nontree edge xy, we can easily determine the stretch
index of T in linear time, thereby establishing Theorem 2.1(a).

2.3. Directed case. Let D be a weighted digraph and S be a spanning tree of
D. Then by statement (5) of Theorem 1.1, it is easy to see that S is a tree spanner
of D iff x reaches y in S for any nontree arc (x, y) of D. Therefore, in order to verify
that S is a tree spanner of D, we need to verify that S preserves reachability for each
nontree arc of D. We apply VERIFICATION to D and S together with the underlying
tree S of S.

Arbitrarily choose a vertex r in as the root of . An edge xy of , where x is
an ancestor of y, is a forward edge if (x, y) is an arc of S and a backward edge if (y, x)
is an arc of S. For an arbitrary vertex x in , let P(x) be the unique (r, x)-path in S.
Label x by a triple (b(x), f(x), /(x)), where

b(x) is the number of backward edges on P(x),
f(x) is the number of forward edges on P(x), and
l(x) is the total weight of forward edges on P(x) minus the total weight of back-

ward edges on P(x).
The first two components in the triple are used for verifying reachability; the third one
is used for computing distances. It is easy to see that all vertex labels can be computed
in O(n) time by either a depth-first or breadth-first search of from the root r. See
Fig. 2 for an example. Backward and forward edges are indicated by upward and
downward arrows, respectively.

For any two vertices x and y of S, it is easy to see that x reaches y in S iff

f(x) f(LCA(x, y)) and b(y) b(LCA(x, y)).
Since these two conditions can be easily checked in O(1) time, the overall cost of
verifying a tree spanner is linear. Furthermore, it is not difficult to see that if x
reaches y in S, then

ds(x, y) l(y) -l(x).
Thus ds(x, y) can be computed in O(1) time. Therefore, it takes linear time to

compute the stretch index of a tree spanner of D. This also implies that verifying a
tree t-spanner of D takes linear time. Hence, we have Theorem 2.1(b).

We now turn our attention to quasi-tree spanners. Let Q be a quasi tree of D.
Like the situation for tree spanners in digraphs, in order to verify that Q is a quasi-tree
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y (0,3,6)

(1,1,-1)

FIG. 2. Labeling the vertices of by triples.

(2,1,1,4,1)

FIG. 3. Labeling the vertices of ( by quintuples.

spanner of D, we need to verify that Q preserves reachability for each arc of D that is
not in Q. We apply VERIFICATION to D and Q together with the underlying tree
QofQ.

Arbitrarily choose a vertex r in ( as the root of (. An edge xy of ( is a double
edge if both (x, y) and (y, x) are arcs in Q. Note that a double edge is also a forward
edge and a backward edge. For an arbitrary vertex x in (, let P(x) be the unique
(r, x)-path in Q. Label x by a quintuple (b(x),f(x),d(x),tb(x),tf(x)), where

b(x) is the number of backward edges on P(x),
f(x) is the number of forward edges on P(x),
d(x) is the number of double edges on P(x),
lb(x) is the total weight of arcs of Q corresponding to backward edges on P(x),

and
lf(x) is the total weight of arcs of Q corresponding to forward edges on P(x).

The first three components in the quintuple are used for verifying reachability; the
last two are used for computing distances. Again all vertex labels can be computed
in O(n) time by either a depth-first or breadth-first search of ( from the root r. See
Fig. 3 for an example. Each double edge is .shown with both an upward and downward
arrow; the numbers beside the arrows indicate the weights of the corresponding arcs
of Q.

For any two vertices x and y, it is easy to see that x reaches y iff

f(x) f(LCA(x, y)) d(x) d(LCA(x, y))
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and
b(y) b(LCA(x, y)) d(y) d(LCA(x, y)).

We can check these two conditions in O(1) time and thus verify a quasi-tree spanner
in linear time. Furthermore, if x reaches y, then we have

dQ(x, y) lb(x) -lb(LCA(x, y)) + f(y) -If(LCA(x, y)).

Thus dQ(x,y) can be computed in O(1) time. Therefore, it takes linear time to
compute the stretch index of a quasi-tree spanner of D, which implies that verifying
a quasi-tree t-spanner takes linear time. This establishes Theorem 2.1(c), and thus
completes the proof of Theorem 2.1.

3. Tree spanners in weighted graphs. In this section, we consider the com-
plexity of tree spanner problems on weighted graphs. By statement (5) of Theorem
1.1, a spanning subgraph H of a weighted graph G (V, E; w) is a t-spanner iff for ev-
ery edge xy e E\ E(H), we have dH(x,y) <_ t.w(xy). We present an O(mlog(m,n))
algorithm for finding a tree 1-spanner in a weighted graph; on the other hand, we
show that for any fixed t > 1, the tree t-spanner problem is NP-complete on weighted
graphs. This completely settles the issue of complexity of tree spanner problems for
weighted graphs. Henceforth in this section, by a graph we mean a weighted graph.

3.1. Finding a tree 1-spanner. Let G (V, E; w) be a weighted graph, and let
H be a 1-spanner of G. Since H is a subgraph of G, it is clear that du(x, y)

_
dG(x, y)

for any two vertices x, y E V. Therefore, dH(x, y) riG(X, y) for any x, y E V, i.e., H
preserves pairwise distances in G.

The distance-preserving property of a 1-spanner is useful in many applications.
For example, a 1-spanner of a communication network can be used as a substitute
for the original network without introducing any extra delay in communication. It
is also closely related to the metric realization problem [2], [31], [20] (to construct a
graph with a minimum total weight that realizes an n-by-n symmetric distance matrix
U (mi,j)). To see this, we construct a complete graph G(M) on n vertices such that
w(ij) mi,j for each edge ij of G(M); then the optimal 1-spanner of G(M) gives an
optimal realization of G if we allow only n vertices. Regarding tree 1-spanners, we see
that a tree 1-spanner is a distance-preserving spanning tree. Therefore, using a tree
1-spanner of a network to perform broadcast in the network guarantees the minimum
delay. Furthermore, a tree 1-spanner can also be used as a compact encoding of the
distance information of G.

Remark. Because of the connection between 1-spanners and metric realizations,
some results in this subsection regarding minimal 1-spanners have appeared in the
literature on metric realizations. In particular, Corollary 3.3 has been previously
obtained by Hakimi and Yau [20].

We shall first explore the properties of 1-spanners of G. These properties lead us
to polynomial algorithms for constructing a minimum or an optimal 1-spanner in G,
and these algorithms can be used to find a tree 1-spanner in G. We then establish
a relationship between a tree 1-spanner and a minimum spanning tree and use this
relationship to derive a more efficient algorithm for finding a tree 1-spanner.

LEMMA 3.1. Let H be a 1-spanner of a weighted graph G. Then H is minimal
dH-xu(x, y) > w(xy) for every edge xy of U.

Proof. If there is an edge xy of H such that dH_xu(x, y)

_
w(xy), then H- xy

is a 1-spanner of H by statement (5) of Theorem 1.1, and thus H- xy is a 1-spanner
of G by Observation 1.2. Hence, H is not minimal. Conversely, if H is not minimal,
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then there is an edge uv of H such that H- uv is a 1-spanner of G. This implies that
v) <_ D

We are now ready to present necessary and sufficient conditions for an edge of G
to be in a minimal 1-spanner. Bear in mind that edge weights of G are positive.

THEOREM 3.2. Let H be a minimal 1-spanner of a weighted graph G, and let xy
be an edge of G. Then the following statements are equivalent:

(1) Edge xy belongs to H.
(2) For every vertex z e V \ (x, y}, dG(x, z)+ dG(z, y) > w(xy).
(3) Distance dG-xy(x, y) > w(xy).
Proof. (1) = (2). Let z be an arbitrary vertex in V \ (x, y}. If dH(x, z) + dH(z,

y) <_ w(xy), then dH(x,z) < w(xy), since edge weights are positive, and thus any
shortest (x, z)-path P in H avoids edge xy. Let H’ H- xy. Then dH,(X,Z)
dH(x, z), since P is in H’. Similarly, dH,(Z, y)--dH(z, y).

By the definition of distance, we have

dH,(X, y) <_ dH,(X, z) + dH,(Z, y).

Therefore,
dH,(X, y) <_ dH(x, z) + dH(z, y) <_ w(xy).

Then by Lemma 3.1, H is not a minimal 1-spanner, which is a contradiction. Hence,

dH(x, z) + dH(z, y) > w(xy).

Since H is a 1-spanner of G, we now have dH(x, z) da(x, z) and dH(z, y) dG(z, y).
Therefore, dG(x, z) + dG(z, y) > w(xy).

(2) (3). Let G’ G- xy. By the definition of distance, we have

dG,(x,y) min {dG,(x,z) + dG,(z,y)}

It follows from statement (2) that dG,(x, y) > w(xy).
(3) = (1). Because edge weights are positive, statement (3) implies that xy is

the only (x, y)-path in G with length _< w(xy). Since H is a l-spanner of G, we have
dH(x, y) <_ w(xy). Therefore, xy must appear in H. [:1

COROLLARY 3.3 (Hakimi and Yau [20]). Every weighted graph G has a unique
minimal l-spanner.

Proof. By Theorem 3.2, each edge of a minimal l-spanner of G is uniquely deter-
mined.

Since both a minimum and an optimal 1-spanner of G are minimal 1-spanners,
Corollary 3.3 implies the following result.

COROLLARY 3.4. For any weighted graph G, the following statements are equiv-
alent:

(1) H is a minimal 1-spanner of G.
(2) H is a minimum 1-spanner of G.
(3) H is an optimal 1-spanner of G.
If G contains a tree 1-spanner T, then T is also a minimal 1-spanner. Thus

Corollary 3.3 also implies the uniqueness of a tree 1-spanner.
COROLLARY 3.5. A weighted graph can contain at most one tree 1-spanner.
In light of Theorem 3.2 and Corollary 3.4, we see that the minimum (or optimal)

1-spanner of a weighted graph can be constructed in polynomial time, since for each
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edge of G, we can use either statement (2) or statement (3) of Theorem 3.2 to decide if
the edge belongs to the minimal 1-spanner H of G. For a single edge, it is more efficient
to use statement (3) to determine whether the edge is in H if pairwise distances are
not given. However, it seems that the algorithm using statement (2) is more efficient
for constructing H, especially when pairwise distances are given; using the fastest
known algorithm to compute pairwise distances [17], we can implement the algorithm
in O(mn + n2 log n) time.

THEOREM 3.6. The minimum (or optimal) 1-spanner of a weighted graph can be
found in O(mn + n2 log n) time.

Clearly, we can find the tree 1-spanner (if it exists) of G in O(mn + n2 log n)
time by first computing the minimal 1-spanner of G and then checking if it is a
tree. However, this approach is not efficient. To obtain a more efficient algorithm
for computing the tree 1-spanner, we will establish a relationship between the tree
1-spanner of G and a minimum spanning tree of G.

THEOREM 3.7. The tree 1-spanner of a weighted graph G is a minimum spanning
tree. Moreover, every tree 1-spanner admissible weighted graph contains a unique
minimum spanning tree.

Proof. Let T be a minimum spanning tree of G. We first claim that T is contained
in any 1-spanner H of G. To see this, let xy be an arbitrary edge of T and P be a
shortest (x, y)-path in G- xy. Then there is an edge e on P that is not in T. If
w(P) <_ w(xy), then w(e) < w(xy), since edge weights are positive and P contains at
least two edges. This implies that T + e xy is a spanning tree whose weight is less
than w(T), contrary to T being a minimum spanning tree. Therefore, dG_y(X, y)
w(P) > w(xy), and, by Theorem 3.2, xy is an edge of H.

Now let T be the tree 1-spanner of G. By the above claim, T is a subgraph of T.
Since both T and T are spanning trees of G, we have T T. The theorem follows
immediately. [:]

In light of the above theorem, we have the following algorithm for constructing
the tree 1-spanner of G: we first find a minimum spanning tree T of G and then
verify whether T is a 1-spanner of G. A minimum spanning tree can be found in
O(mlog(m,n)) time [18], where (m,n) min{illog(i)n <_ m/n} and log()n is

defined by log() n n, log(i) n log log(i-1) n for i _> 1. Since verification takes linear
time by Theorem 2.1(a), we have the following result.

THEOREM 3.8. The tree 1-spanner of a weighted graph can be found in

O(m log (m, n) time.
Remark. The above algorithm can be applied to find tree l-spanners in a weighted

graph G where zero weight is allowed. Let Go be the subgraph of G induced by zero-
weighted edges of G and Z1,..., Zk be the connected components of Go. We construct
a new weighted graph G as follows: contract such Zi to a single vertex zi, remove all
loops, and, for all parallel edges (formed from the contraction) between two vertices,
delete all but one with the lightest weight. Then G is a weighted graph with no
zero weight on edges, and its tree l-spanner can be found by the algorithm in this
subsection. It is not hard to see that G admits a tree l-spanner iff G admits one.
Actually, a tree l-spanner of G can be obtained from the tree l-spanner of G by
"replacing" each z with a spanning tree of Z. However, G may contain many tree
l-spanners when it has zero-weighted edges. In fact, the number of tree l-spanners
in G equals the product of the number of spanning trees of Zi, 1 _< _< k. Figure 4
illustrates the above construction.
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G’

FIG. 4. Graphs G, G’ and their tree 1-spanners (solid edges).

TABLE 1
Bridge length (number of edges) and edge weights of G (note 1 + e).

Edge weights w(e)

Bridge length Bridge edge Literal edge Clause edge

1 < < 2 1 1 tl/el F(1 + 2pl/e])/el
2 _< < 4 2LeJ 1 2 r(4 + 2LeJ)/e]

3.2. NP-completeness for t > 1. We now consider the complexity of finding
tree t-spanners (t > 1) in a weighted graph. It turns out that the tree t-spanner
problem on weighted graphs is intractable for any fixed rational number t > 1. As a
consequence, the minimum t-spanner problem on weighted graphs is intractable for
any fixed rational number t > 1. Furthermore, we deduce that the optimal t-spanner
problem on weighted graphs is also intractable for any fixed rational number t > 1.
In this subsection, we assume that all edge weights are positive rational numbers and
that t > 1 is a fixed rational number.

Recall that an instance (U, C) of 3SAT (cf. [LO2] in [19]) consists of a set U of n
distinct Boolean variables and a collection C of rn 3-element clauses over U. For any
variable u E U, both u and fi are literals; for a truth assignment , a literal is true if
(1) 1 and false otherwise.

THEOREM 3.9. For any fixed rational number t > 1, it is NP-complete to deter-
mine whether a weighted graph contains a tree t-spanner, even if all edge weights are
positive integers.

Proof. It is clear that the problem is in NP. To establish the NP-completeness of
the problem, we present a polynomial transformation from 3SAT. Here we will only
consider the case 1 < t < 4; the proof for t _> 4 is the same as that for unweighted
graphs (see Theorem 4.10 of 4.3), where a more complicated construction is employed.

Let t E (1, 4) be a fixed rational number, and, for convenience, let e t- 1; then
0 < e < 3. For an arbitrary instance (U, C) of 3SAT, we construct a weighted graph
G such that C is satisfiable iff G admits a tree t-spanner. Graph G is constructed as
follows:

1. Take a vertex x and vertices U’ {ul, 1,..., un,n}, where n Ui, and
construct a star H centered at x by joining x to each vertex in U’. Each vertex in U’
is a literal vertex and each edge in H is a literal edge.
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FIG. 5. The graph g for 2.5 and C {(ul, u2, fi3 }, {u2, u3, u4 }}.

2. Create a new vertex c for each clause in C and add an edge between c and
each of its three distinct literal vertices in H. These new vertices and edges are called
clause vertices and clause edges, respectively.

3. Connect each pair ui, fii of literal vertices by a distinct path (whose length is

specified in Table 1), called a bridge, to complete the construction of G. Each edge on
the bridge is called a bridge edge.

4. For each edge e of G, assign it weight w(} according to Table 1.

Figure 5 shows an example of G. It is easy to see that G can be constructed in

polynomial time.

Now, for any tree t-spanner T of G (Remember that 1 < t < 4 and t- 1), we
note the following two important properties:

P1. Every bridge is contained in T.
P2. For every pair xui, xzi of literal edges, exactly one of them belongs to T.
To see property P1, let ab be an arbitrary bridge edge and Pab be an (a, b)-path in

T. Suppose that ab is not in T. If 0 < < 1, then Pab contains either two literal edges
or at least two clause edges; otherwise 1 < e < 3 and Pab contains all other 2L 1
bridge edges on the bridge containing ab and either two literal edges or at least two
clause edges. It is readily checked that we would then have dT(a, b) > t. w(ab) in both
cases, which contradicts T being a t-spanner. Hence ab belongs to T.

To see property P2, without loss of generality, we consider edge xui. If the (x, ui)-
path in T contains neither edge xui nor xfii, then it must contain a literal edge and
at least two clause edges. It is easy to see that dT(X, u) > t. w(xu) if 0 < e < 1;
otherwise 1 < e < 3 and

It can be shown that

[4+2[eJ 1 >s for 1_<<3

(consider e [1, 2) and [2, 3) separately). Thus it follows that dT(x, ui) > t. w(xui)
for 1 < t < 4, which contradicts T being a tree t-spanner. So at least one of xui, xfti
is in T. Since T is a tree, it can be deduced from property P1 that exactly one of them
is in T.



372 LEIZHEN CAI AND DEREK G. CORNEIL

We now prove that C is satisfiable iff G contains a tree t-spanner. Suppose that
C is satisfiable and let be a satisfying truth assignment for C. Call a literal vertex
of G a true vertex if its corresponding literal is a true literal under . Construct a
spanning tree T of G by taking all bridge edges, all literal edges incident with true
vertices, and, for each clause, an arbitrary clause edge that is incident with a true
vertex. Since C is satisfied by , it is clear that T is a spanning tree and each clause
vertex is a leaf.

To see that T is a t-spanner, we note that, for any literal edge xl not in T, the
(x,/)-path in T consists of a literal edge and a bridge and that, for any clause edge
cl not in T, the (c,/)-path in T consists of a clause edge, two literal edges, and
at most one bridge. It is a routine matter to check that dT(x, 1) <_ t. w(xl) and
dT(c, l’) <_ t. w(cl’). Therefore, it follows from statement (5) of Theorem 1.1 that T
is a tree t-spanner of G.

Conversely, suppose that T is a tree t-spanner of G. Then by property P2, exactly
one of the two literal edges xui, xi is contained in T. Therefore we can define a truth
assignment T be setting T(Ui) 1 if xui E E(T) and T(Ui) 0 if xi E(T). It
remains to be shown that T satisfies C.

It is easy to see by property P1 that any two literal vertices are connected by a
path in T that avoids clause vertices. Thus each clause vertex is a leaf of T. Suppose
that there is a clause vertex c which contains only false literals under T. Then for
a clause edge cl not in T, the (c,/)-path in T consists of a clause edge, two literal
edges, and two bridges. If 0 < < 1, then it is easy to check that dT(c, l)

_
t. w(cl)

(notice 1/ > 1). Otherwise 1 _< < 3, and again it is a routine matter to check that
dT(c, l)

_
t. w(cl) (notice 2J > ); this contradicts T being a t-spanner. Therefore,

each clause in C contains at least one true literal under T, and thus C is satisfiable.
The proof is complete. [:]

Since a tree t-spanner has the least number of edges among all t-spanners, Theo-
rem 3.9 implies that finding a minimum t-spanner in a weighted graph is intractable
for any fixed rational number t > 1.

COROLLARY 3.10. For any fixed rational number t > 1, it is NP-complete to
determine, given a weighted graph G and a positive integer K, whether G contains a

t-spanner with at most K edges, even if all edge weights are positive integers.
Furthermore, the tree t-spanner T in the proof of Theorem 3.9 also achieves the

minimum total weight (sum of weights of all edges in the spanning subgraph) over all
t-spanners of G. Therefore, Theorem 3.9 also implies the following result.

COROLLARY 3.11. For any fixed rational number t > 1, it is NP-complete to
determine, given a weighted graph G and a positive rational number W, whether G
contains a t-spanner Of total weight at most W, even if all edge weights are positive
integers.

4. Tree spanners in unweighted graphs. We now consider tree spanners
in unweighted graphs, which can be considered as a special case of tree spanners in
weighted graphs, i.e., tree spanners in unit-weighted graphs. Henceforth in this section,
by a graph we always mean an unweighted graph. By statement (5) of Theorem
1.1, a spanning subgraph H is a t-spanner of a graph G (V, E) iff for every edge
xy e E \ E(H) we have dH(x, y) <_ t.

In light of Observation 1.5, we need to consider only tree t-spanners for integral
t. Clearly, a graph contains a tree 1-spanner iff it itself is a tree. We show that a
tree 2-spanner in a graph can be found in linear time. We also study the structure
of tree 2-spanners and give a characterization of tree 2-spanner-admissible graphs.
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In particular, we present a structural theorem for tree 2-spanners in terms of the
"skeleton tree" of a graph. This structural theorem is useful in dealing with various
tree 2-spanner problems. On the other hand, we show that the tree t-spanner problem
is NP-complete for any fixed t _> 4. The complexity of the tree 3-spanner problem
remains an open issue.

4.1. Finding a tree 2-spanner. Our main concern is to find a tree 2-spanner
in a graph. In order to design an efficient tree 2-spanner-finding algorithm, we first
investigate the structUre of tree 2-spanners in a graph. We then describe a linear-
time algorithm. Furthermore, we give a characterization of tree 2-spanner-admissible
graphs in terms of decomposition. Because of Observation 1.4, we can restrict our
attention to nonseparable graphs.

Remark. It is interesting to note that tree 2-spanner-admissible graphs coincide
with trigraphs introduced by Bondy [7] in his work on cycle double covers; our char-
acterization results are quite similar to his. In particular, our decomposition theorem
(Theorem 4.4) for tree 2-spanner-admissible graphs and Lemma 4.1 have been previ-
ously obtained by Bondy. They are reformulated here in our terminology for the sake
of completeness.

LEMMA 4.1 (Bondy [7]). Let G be a nonseparable graph and T be an arbitrary
tree 2-spanner of G. Then for every 2-cut {u, v} of G, uv e E(T).

Proof. Let {u, v} be a 2-cut of G. Let H1 be a connected component of G-{u, v}.
Let G1 G[V(HI) U {u, v}] and G2 G- V(H1). Then each Gi, 1, 2, contains a

(u, v)-path Pi of length at least two. If uv E(T), then for each edge in E(P) \ E(T),
there is a path of length two in T N Gi between its two ends. Thus there is a (u, v)-
path Qi in T t Gi. Q and Q2 would then be a cycle in T, which is a contradiction.
Hence uv E E(T). D

THEOREM 4.2. Let G be a nonseparable graph. Then a spanning tree T of G is
a tree 2-spanner iff for each triconnected component H of G, T H is a spanning star

of H.
Proof. If T H is a spanning star of H for each triconnected component H of G,

then T H is a tree 2-spanner of H. Since each edge of G belongs to some triconnected
component, it follows that T is a 2-spanner of G.

Conversely, suppose that T is a tree 2-spanner of G. We first show that for each
triconnected component H of G, T’ T H is a tree 2-spanner of H. It is trivial if
H consists of a single edge. Thus we may sume that IV(H)I

_
3. Then H contains

at let one edge v E(T), since H contains a cycle. Because T is a tree 2-spanner,
there exists a vertex z0 such that zo, vw E E(T). If w is not in H, then and v
are the only vertices in H adjacent to zo, since H is a triconnected component and
IY( )l >_ a. This implies that (, v) is a 2-cut. By Lemma 4.1, v would be an edge
in T, which is a contradiction. Therefore, w is in H and thus w, vw are in T’. This
implies that T is a tree 2-spanner of H.

It remains to be shown that T is a star. Suppose that T is not a star; then
there is an edge y E(T’) that is not incident to any leaf. Let T and T be the two
connected components of T xy containing vertices and y, respectively. Note that
both T and T contain at least two vertices. For two arbitrary vertices V(T)\(x)
and v V(T[) \ y}, it is easy to see that dT,(U, v)

_
3. This implies uv E(H).

Then (x, y} would be a 2-cut of H, contrary to H being a triconnected component.
Therefore, T is a spanning star of H. D

COROLLARY 4.3. A triconnected graph G admits a tree 2-spanner iff it contains
a universal vertex.
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Lemma 4.1 and Theorem 4.2 can be used to obtain a characterization of tree
2-spanner-admissible graphs in terms of decomposition. A graph G is an edge bonding
of two graphs G1 and G2 if G G1 (2 G2 and G1 N G2 is an edge.

THEOREM 4.4 (Bondy [7]). A graph G is tree 2-spanner admissible iff each block
H of G is either

(1) a triconnected graph with a universal vertex or

(2) an edge bonding (on edge e) of two tree 2-spanner-admissible graphs where e
is a tree edge in both graphs.

Proof. Because of Observation 1.4, we only need to consider a block H of G. If
H contains a universal vertex u, then the set of edges incident with u induces a tree
2-spanner of H. If H is an edge bonding of two tree 2-spanner-admissible graphs H1
and H2 on a tree edge e, then the edge bonding of a tree 2-spanner T1 of H1 and a
tree 2-spanner T2 of H2 on edge e yields a tree 2-spanner of H.

Conversely, suppose that H is tree 2-spanner admissible. If H has no 2-cut, then
it is triconnected and by Corollary 4.3 contains a universal vertex. Otherwise, H has
a 2-cut {x, y}; by Lemma 4.1, then, xy is an edge of H and belongs to every tree
2-spanner of H. Let H be a connected component of H- {x, y},Hi H[V(H’)
{x,y}], and H2 H- V(H). It can then be deduced from Theorem 4.2 that T N
H1 and T H2 are tree 2-spanners of HI and H2, respectively. Hence, H is an
edge bonding of two tree 2-spanner-admissible graphs H1 and H2 on edge xy. This
completes the proof. [:]

We now use the above results to derive an algorithm for finding a tree 2-spanner
T (if it exists) in a graph G. The algorithm can be outlined as follows (details are
left to the reader). First, find all blocks of G. Then, for each block, find all 2-cuts
(if there is a 2-cut that does not induce a binding edge, then G contains no tree 2-
spanner, by Lemma 4.1) and triconnected components. Put all binding edges in T.
Now, for each triconnected component H, find a spanning star containing all edges of
H that have been put into T so far and put it in T (if such a spanning star does not
exist, then G contains no tree 2-spanner by Lemma 4.1 and Theorem 4.2). Finally,
if T is a spanning tree, then it is a tree 2-spanner; otherwise, G contains no tree 2-
spanner. This algorithm can be implemented in linear time by using the triconnected
component-finding algorithm of Hopcroft and Tarjan [22] and standard techniques.

THEOREM 4.5. A tree 2-spanner (if it exists) of a graph can be found in O(m +
n) time.

4.2. The skeleton tree. A tree spanner may be required to have some addi-
tional properties, such as a degree constraint, a bound on the diameter, or a limit on
the number of leaves. Here we conduct a further investigation of the structure of tree
2-spanners to provide a useful tool in dealing with the construction of tree 2-spanners
with additional properties. Henceforth, we assume that all graphs in this subsection
are tree 2-spanner-admissible.

By Theorem 4.2, every tree 2-spanner of a triconnected graph is a spanning star.
Thus there is nothing more to be said about the structure of tree 2-spanners in a
triconnected graph. In light of Lemma 4.1, we can restrict our attention to non-
separable graphs with binding edges. We show that any tree 2-spanner of such a
graph can be obtained from a "skeleton tree" of the graph by properly adding "com-
pound leaves" to the skeleton tree. This result also gives another clear picture of
the structure of tree 2-spanner-admissible graphs. In the rest of this subsection, we
assume that G is a tree 2-spanner-admissible graph that is nonseparable and contains
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at least one binding edge. We start with the subgraph of G induced by the set of its
binding edges.

LEMMA 4.6. The set of binding edges of G induces a tree.
Proof. Let B be the set of binding edges and TB G[B]. Clearly, TB is a forest,

since G admits a tree 2-spanner T and every edge in B belongs to T by Lemma 4.1.
We need to show only that Tt is connected.

Let T/be the set of triconnected components of G. Construct a bipartite graph
F with vertex set B t2 7-/in which e E B and H E 7-/are adjacent iff edge e is in the
triconnected component H. Since G is connected, it is clear that F is connected.

Let v and v be two arbitrary vertices of TB and e and e be two binding edges inci-
dent with v and v, respectively. Consider the bipartite graph F. Since F is connected,
there is an (e,e’)-path P elHle2...Hk-lek in F, where e B, Hi -,el e,
and ek e. Thus for any two elements ei, ei+l B, Hi is a triconnected component
of G that contains edges ei and ei+. By Theorem 4.2, ei and ei+l share a vertex. It
is now easy to deduce that there is a (v, v)-path in TB, since each ei is an edge in T.
Therefore, TB is connected and the proof is complete.

Let T(G) denote the set of tree 2-spanners of G and $(G) denote the set of edges
of G contained in every tree 2-spanner of G, i.e., E(G) TeqZ(G)E(T). Note that a
nontrivial tree is a tree with at least one edge.

LEMMA 4.7. G[$(G)] is a nontrivial tree.
Proof. Obviously, G[$(G)] is a forest. Since G is tree 2-spanner admissible, by

Lemma 4.1, every binding edge of G is contained in G[$(G)]. Furthermore, for any
edge e 6 E(G), if e is not a binding edge of G, then it belongs to a unique triconnected
component H of G. Since H contains at least one binding edge of G, it follows from
Theorem 4.2 that edge e shares a vertex with at least one bindingedge of G. By
Lemma 4.6 and the assumption that G contains a binding edge, we see that G[$(G)]
is connected and hence a nontrivial tree. [:]

Because G[(G)] induces a nontrivial tree that belongs to every tree 2-spanner of
G, we call it the skeleton tree of G and denote it by S(G). Let us now examine the
structure of G- V(S(G)). Recall that two disjoint subgraphs are fully joined iff every
vertex in one subgraph is adjacent to every vertex in the other.

LEMMA 4.8. Each connected component C of G-V(S(G)) is fully joined with a
unique edge of S(G). Moreover, for any tree 2-spanner T of G, each vertex in C is a

teaI oI T.
Proof. By Lemma 4.1, the skeleton tree S(G) contains the subgraph S induced by

the set of binding edges of G. Therefore, each connected component C of G- V(S(G))
is a subgraph of a connected component C of G- V(S). Since C belongs to a unique
triconnected component H of G, so does C. If H contains more than one edge of S(G),
say e and e2, then it follows from Theorem 4.2 that e and e2 must share a vertex
u and all the edges between u and C belong to T. This implies that every vertex of
C is in S(G), which contradicts the choice of C. Therefore, H contains a unique edge
e of ,(G). If one end of e is not a universal vertex of H, then by Theorem 4.2, all
the edges between the other end of e and C belong to T. Again, this contradicts the
choice of C. Therefore, C is fully joined with a unique edge e of ,(G). By Theorem
4.2, each vertex of C is a leaf of T.

Because of the above lemma, we call each connected component of G-V(,(G)) a
compound leaf. Then every edge e of the skeleton tree S(G) has a set (possibly empty)
of compound leaves fully joined with it. Let the two ends of e be x and y. Then for any
compound leaf C fully joined with e, V(C) U {x, y} induces a triconnected component
H of G. Note that both x and y are adjacent to every vertex in C. The set of edges
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C
compound leaf

skeleton tree

FIG. 6. The skeleton tree, compound leaves, and leafstalks.

between x and C(y and C) forms a star Lb(LYc) and will be referred to as a leafstalk of
C. These concepts are illustrated in Fig. 6, where thick lines depict the skeleton tree,
each box contains a compound leaf, and each shaded triangle indicates a nontrivial
leafstalk (a leafstalk with more than one edge).

THEOREM 4.9 (skeleton tree theorem). Let G be a tree 2-spanner-admissible,
nonseparable graph that contains binding edges. A spanning tree T is a tree 2-spanner
of G iff it is obtained from the skeleton tree S(G) of G by adding to S(G) exactly one

leafstalk for each compound leaf of G.
Proof. This follows from Theorem 4.2, Lemma 4.7, and Lemma 4.8. [:]

We now turn to the construction of the skeleton tree S(G) of G. First, we find
all binding edges and triconnected components of G, As discussed in Lemma 4.6 and
the proof of Lemma 4.7, these binding edges form a tree S that is a subtree of S(G).
Then we extend S to S(G) by considering triconnected components one by one. For
each triconnected component H, if H contains two distinct edges el and e2 of S, then
el and e2 share a vertex u and we put into S(G) all the edges of H that are incident
with u (by Theorem 4.2); if H contains only one edge e uv of S and one end of e,
say u, is not a universal vertex of H, then we put into S(G) all the edges of H that
are incident with v (by Theorem 4.2). The correctness of the above algorithm follows
from our previous discussions.

By using the linear-time, triconnected component-finding algorithm of Hopcroft
and Tarjan [22] and standard techniques, we can construct the skeleton tree and find
all compound leaves in linear time. Therefore, the skeleton tree provides a handy
and useful tool in constructing tree 2-spanners with certain properties. For instance,
with the aid of the skeleton tree, the problem of finding a tree 2-spanner of bounded
degree is easily solved in linear time. It is interesting to note that the corresponding
degree-bounded spanning tree problem is NP-complete ([ND1] in [19]). Skeleton trees
have also been used in the design of a polynomial-time algorithm for determining
whether a 2-connected graph contains a tree 2-spanner isomorphic to a given tree
[11], [13]. We note again that the corresponding isomorphic spanning tree problem
is NP-complete ([ND8] in [19]). Further applications of skeleton trees can be found
in the construction of quasi-tree 2-spanners (5.2), as well as in the construction of
nearly distance-preserving spanning trees [11].

4.3. NP-completeness for t

_
4. Although a tree 2-spanner in a graph can

be constructed in linear time, the problem of finding a tree t-spanner seems to be
very hard for t _> 3; in fact, as we show here, the problem is intractable for any fixed
t _> 4. As a consequence, the minimum t-spanner problem on unweighted graphs is
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NP-complete for any fixed t _> 4. The complexity of finding a tree 3-spanner in a graph
is still unknown.

Remark. Stronger NP-completeness results hold for the minimum t-spanner prob-
lem on unweighted graphs. In fact, the problem is NP-complete for any fixed t >_ 2
[12], [26], even when restricted to graphs of bounded degree [15].

THEOREM 4.10. For any fixed t >_ 4, the tree t-spanner problem is NP-complete.
Proof. It is clear that the problem is in NP. To establish the NP-completeness,

we present a polynomial transformation from 3SAT. By Observation 1.5, we need
to consider only integral values of t. Let t _> 4 be a fixed integer and (U, C) be an
arbitrary instance of 3SAT. We construct a graph G such that C is satisfiable iff G
has a tree t-spanner. Call a path with t edges a t-path. The following result is useful
in our construction.

LEMMA 4.11. Let G be a graph and e an edge of G. Let G’ be a graph formed
from G by adding two distinct t-paths P1, P2 (all internal vertices of P1 and P2 are new
vertices) between the two ends of e and T be a tree t-spanner of G’. Then e E(T).

Proof. We first notice that for any edge e’ of either P or P2, there is only one
path in G’ e’ of length _< t between the two ends of e’. Furthermore, this unique
path contains edge e. It follows that if e is not in T, then all edges of P1 and P2
would have to be in T. However, P1 and P2 form a cycle, which contradicts T being a
tree.

From now on, by forcing an edge, we mean adding two distinct t-paths between
the two ends of the edge. Such an edge will be called a forced edge, and the two
t-paths will be called forcing paths. Denote IUI by n and ICI by m. The graph G is
constructed as follows.

For each variable ui E U, 1 <_ <_ n, construct a graph Hi by
1. taking five vertices xi, ui, ti, yi and
2. adding edges xiyi xiui xiti ziui and
3. joining yi with zi by a (t- 2)-path (all internal vertices on the path are new

vertices) and forcing every edge on the path, and
4. joining ui with fii by a (t- 3)-path (all internal vertices on the path are also

new vertices) and forcing every edge on the path as well.
Figure 7 shows the graph Hi for t 4. Next, put H1,..., Hn together by identifying
vertices x1,..., Xn into a single vertex x to form the variable setting component H.
Vertices ui and fii of Hi will be used to represent the literals ui and fii, respectively,
and they are called literal vertices.

For each clause cj E C, 1

_
j _< m, create a new vertex cj, called a clause vertex,

and add an edge between cj and each of its three distinct literal vertices in H. Note
that each literal vertex is either a vertex ui or a vertex

It is easy to see that G can be constructed in polynomial time. It remains to be
shown that C is satisfiable iff G has a tree t-spanner. Before describing the proof, we
note the following important property of the graph G, which enables us to define a
proper truth assignment for C in terms of a tree t-spanner of G.

LEMMA 4.12. Any tree t-spanner T of G contains exactly one of the two edges
xui and xti for each 1 <_ <_ n.

Proof. Clearly, because T contains the forced path between ui and fii, at most
one of xui and xti can be in T (otherwise we would have a cycle in T). We need to
show that T contains at least one of xui and xti. Suppose that neither xui nor
is in T. Then the shortest path in F G- E(Hi) between x and ui consists of at
least three edges (edge xl for some literal and edges lc and cui for some clause c that
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FIG. 7. Component Hi for 4.

contains both and ui). Thus dR(x, ui) >_ 3, and, similarly, dR(x, fii) _> 3. Consider
two cases that depend on whether xyi is in T.

Case 1. xyi E E(T). If neither ziui nor zifii is in T, then no tree (x, ui)-path is
present inside Hi and thus

dT(x, ui) >_ dR(x, ui) >_ 3.

But then

dT(zi, ui) dT(zi, x) + dT(x, ui) >_ (t 1) + dR(x, ui) >_ t + 2,

contrary to T being a t-spanner. Therefore, at least one of ziui and zii is in T.
Without loss of generality, we may assume that ziui E(T). Note that zii E(T),
as there is a forced (ui, fii)-path in T. Since a tree path is unique between any two
vertices, we have

dT(xi, i) dT(xi, zi) + dT(zi, ui) + dT(ui, i) 2t 3 > t

for t >_ 4, again a contradiction to T being a t-spanner.
Case 2. xyi E(T). Then no tree path is present inside Hi between x and ui or

x and fii, and thus
dT(x, ui) >_ dR(x, ui) >_ 3

and

Then

dT(x, i) >_ dR(x, i) >_ 3.

dT x zi min(dT x ui -t- dT ui zi dT x i / dT i zi } >_ 4.

It follows that
dT(x, Yi) dT (x, zi) + dT (zi, Yi) >_ t + 2,

contrary to T being a t-spanner.
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Since both cases lead to contradictions, we conclude that T contains exactly one
of two edges xui and xi for each 1 _< _< n.

We now prove that C is satisfiable iff G has a tree t-spanner. Suppose that C is
satisfiable and let be a satisfying truth assignment for C. We construct a spanning
tree T of G as follows:

1. for each forced edge e, put edge e in T;
2. for each forcing path, arbitrarily delete one edge and then put the remaining

edges in T;
3. for each variable u, 1 _< _< n, if (u) 1, then put edges xu and zui in T;

otherwise ((u) 0), put edges x and z in T;
4. for each clause cj, 1 <_ j <_ m, arbitrarily pick a true literal lj in cj and put

edge cjlj in T.
Note that each clause vertex is a leaf in T. It is a routine matter to verify that T is a
tree t-spanner.

Conversely, suppose that T is a tree t-spanner of G. We need to present a truth
assignment T that satisfies C. By Lemma 4.12, T contains exactly one of two edges
xui and xfii for each 1 _< _< n. Therefore, we can define a truth assignment T by
setting, for 1 <_ <_ n, T(Ui) 1 whenever xui E E(T) and T(Ui) 0 otherwise, it
remains to be shown that T satisfies C.

Suppose that some clause cj only contains false literals under T. Notice that any
two literals are joined by a path in T that avoids clause vertices. Therefore, cy is a
leaf in T. Then for a clause edge cjlj not in T, dT(cj,lj) 2t- 3 _> t + 1 for t >_ 4,
since the distance between any two false literals in T is 2t 4, contrary to T being a
t-spanner. Therefore, each clause in C contains at least one true literal under T and
thus C is satisfiable. This completes the proof.

5. Tree spanners in digraphs. In this section, we consider tree spanners and
quasi-tree spanners in digraphs. At first glance, it seems that tree spanner problems
on digraphs are at least as hard as tree spanner problems on undirected graphs. Sur-
prisingly, a tree t-spanner of a digraph can be found in almost-linear time. In fact,
even a minimum tree spanner (i.e., a tree t-spanner with t as small as possible) of
a digraph can be found in almost-linear time. On the other hand, the situation for
quasi-tree spanners in digraphs is closer to that for tree spanners in undirected graphs.
We will use the results developed in 3 and 4 for undirected graphs to obtain similar
results for quasi-tree spanners.

Throughout this section, G- (V, A; w) is a weighted digraph and G- (V, E; )
denotes the underlying undirected graph of G. Recall that for an arc (x, y) A, (xy)

w((x,y))if (y,x) A and (v(xy) min{w((x,y)),w((y,x))} if (y,x) e A. Also,
recall that an in-neighbor of a vertex x in G is a vertex y such that (y, x) G A and an
out-neighbor of x is a vertex z such that (x, z) G A. A vertex v is a source if it has no in-
neighbors and an intermediate vertex if it has both in- and out-neighbors. A spanning
subgraph T of G is a spanning tree if T contains no directed cycle and T is a tree. For
convenience, we say that G is connected (triconnected) whenever its underlying graph

is connected (triconnected). The meanings of blocks and connected components of
G should be understood in the same manner.

5.1. Finding a minimum tree spanner. Recall that in a digraph G, a vertex
x reaches vertex y (i.e., y is reachable from x) if there is a directed (x, y)-path in G.
By the definition of a tree spanner, it is easy to see that a spanning tree T of G is
a tree spanner iff it preserves reachability of G, i.e., x reaches y in G iff x reaches y
in T. Unlike an undirected graph, then, a spanning tree of G is not necessarily a tree
spanner. In fact, we have the following result:
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LEMMA 5.1. A digraph G contains at most one tree spanner.
Proof. Let S and T be two arbitrary tree spanners of G. If S T, then there is

an arc (x, y) in S that is not in T. Thus there is a directed (x, y)-path P in T, since T
is a tree spanner. Let z be an internal vertex of P. Then there is a directed (x, z)-path
Q and a directed (z, y)-path Q in S, since S is a tree spanner. This implies that there
are two distinct, directed (x, y)-paths QQ and xy in S, which contradicts S being a
tree. Therefore, S T and G contains at most one tree spanner. [:]

Because of the above lemma, we need to consider only the problem of finding
the tree spanner T in a digraph G, since T is automatically a minimum tree spanner
and we can use it to solve the tree t-spanner problem by comparing t with the stretch
index of T. Recall that an acyclic digraph is a digraph that contains no directed cycle.

LEMMA 5.2. If a digraph G admits a tree spanner, then G is acyclic.
Proof. Let T be a tree spanner of G. Suppose that G contains a directed cycle

C. Any two vertices of C are then mutually reachable in T since T is a spanner of G,
which contradicts T being a tree. Hence G is acyclic. [:]

In light of the above lemma, we will hereafter assume that G is acyclic. G then
contains a source s. We now present a necessary and sufficient condition for G to admit
a tree spanner in terms of G- s. Note that NG+ (s) is the set of out-neighbors of s in
G and that a trivial digraph (a digraph with a single vertex) is itself a tree spanner.

THEOREM 5.3. Let G be an acyclic digraph and s be a source of G. G then admits
a tree spanner iff each connected component Hi of G s contains a tree spanner
such that there is a vertex vi e Y(Hi)gN(s) that reaches every vertex of Y(Hi)g
N(s) through arcs of Ti.

Proof. If the condition of the theorem is satisfied, then it is readily checked that
T1 U... Tk + {svl,..., svk}, where k is the number of connected components of
G- s, is the tree spanner of G, since for j there are no arcs between Hi and Hi.

Conversely, suppose that G contains a tree spanner T. Then s is a source in T.
We first show that each connected component Hi contains a unique vertex vi adjacent
to s in T. Since G is connected, Hi by definition contains at least one such vertex.
Suppose that Hi contains two such vertices u and u. Then there is a (u, u)-path P
in Hi. Each edge in P corresponds to a unique arc in Hi, as G is acyclic; for each
such arc (x, y), there is a directed (x, y)-path Pxy in T, since T is a tree spanner. Let
Ti T N Hi. It is ey to see that Pxy lies entirely in Ti. It follows that there is
a (u, u)-path P in Ti. However, P together with su and su forms a cycle in , a
contradiction. Therefore, s is adjacent to a unique vertex vi of Hi in tree T. Clearly,
vi e v(gi) Ag(s).

Now, by the definition of Hi, we easily see that Ti is connected; Ti is thus a tree
spanner of Hi. Furthermore, for each out-neighbor v of s in Hi, there is a directed
(s, v)-path Q in T, since T is a tree spanner. Then the (vi, v)-section of Q is a directed
(vi, v)-path in Ti, and hence v is reachable from vi in Ti.

It is trivial to transform the above theorem into a recursive procedure for finding
the tree spanner of G. In order to implement the procedure efficiently, we present an
iterative version. Let (1,..., n} be the vertex set of G. Since G is acyclic, we can
assume that the vertices of G have been topologically ordered, i.e., if (i, j) is an arc of
G, then i < j. Let Gi denote the subgraph of G induced by vertices (i,..., n). Vertex

is then a source of Gi by the definition of the topological ordering of G. Therefore,
vertex vi in Theorem 5.3 is the vertex with smallest number in V(Hi) AN(s). Note
that the out-neighbors of vertex in Gi are the same as those of i in G and hence
will be denoted by N+(i). Figure 8 depicts an acyclic digraph, its tree spanner, and a
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FIG. 8. An acyclic digraph G, its tree spanner, and a topological ordering of V.

topological ordering of its vertices. The following procedure finds the tree spanner of
G when it contains one.

PROCEDURE TREESPANNER(G, T); {Find the tree spanner T of an acyclic digraph
G.}
begin
1. T - the trivial tree consisting of vertex n;
2. for -- n- 1 downto 1 do
3. ?-/i - {HI(H is a connected component of Gi+l) A (V(H)
4. for each H :Hi do
5. Vi,H -- min{jlj e v(H) N N+ (i)};
6. if Vi,H reaches every vertex in V(H) N+(i) through arcs of T

then T - T + (i, Vi,H) else output "No" EXIT;
end for;

end for;
7. return T;
end TREESPANNER.

Notice that T is a forest during the computation of the above procedure. Let
Ti denote the forest T after the normal completion of the (n- i)th iteration of the
"for" loop at line (2). By Theorem 5.3, it is clear that Ti consists of tree spanners
of the connected components of Gi; thus T1 is the tree spanner of G. However, a
straightforward implementation of the procedure may take O(mn) time.

We now refine the procedure to obtain a more efficient algorithm. We notice the
following: first, the check at line (6) can be postponed after the completion of the
"for" loop at line (2), since Vi,H reaches all vertices in V(H) N+(i) through arcs of
Ti iff it reaches these vertices through arcs of T1; second, the computation at lines (3)
and (5) requires only the vertex sets of connected components of Gi+l; and third, the
connected components of Gi can be obtained from those of Gi+l by merging vertex
and all connected components in T/i into a single component.

Based on the above observations, we use sets to maintain the connected compo-
nents of Gi. Initially, we have n sets consisting of n single vertices. These sets will be
merged to represent the connected components of Gi during the process. Thus line
(3) can be carried out by finding all sets containing the out-neighbors of vertex i. We
are now ready to present an algorithm that finds the tree spanner of G. The algorithm
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first decides if G is acyclic, then finds a spanning tree T of G, and finally verifies if T
is the tree spanner of G. It also computes the stretch index t of T when T is a tree
spanner.

ALGORITHM TREE-SPANNER(G, T, t){Find the tree spanner T of G.}
Input: A weighted digraph G (V, A; w);
Output: The tree spanner T and its stretch index t if G admits a tree spanner;

otherwise output "No".

begin
1. if G is not acyclic then output "No" EXIT

else compute a topological ordering of G;
(Vertices 1,..., n is a topological ordering of G.}

2. T - the trivial tree consisting of vertex n;
3. Create set (i) for each vertex of G;
4. for --n-1 downto 1 do
5. -6. for each out-neighbor k of i do

(Compute (HI(H is a connected component of Gi+I)A(V(H)AN+(i)
7. Find the set Hk containing vertex k;
8. ?-li -- [9 (Hk }

end for;
9. for each set H E ?-/i do
10. Vi,H -- min(jlj is an out:neighbor of in H};
11. T *- T + (i, Vi,H);

end for;
12. Merge (i} and all H E 7-/i into a single set;

end for;
13. if T is a tree spanner

then compute the stretch index t of T
else output "No";

end TREE-SPANNER.

We now consider the complexity of the above algorithm. Line (1) takes O(m / n)
(cf. [1], [30]). Vertex Vi,H at line (10) can be found in O(IN+(i)l time by keeping
track of the set Hk for each out-neighbor k of at line (7). By Theorem 2.1(b),
line (13) can be carried out in linear time. The merge operation at line (12) and
the find operation at line (7) constitute a sequence of union-and-find operations on
disjoint sets; there are at most m + n operations in total. By using the well-known
"path compression on balanced trees" technique for disjoint set manipulation, these _<
m + n union-and-find operations can be implemented in O((m + n)o(m + n, n)) time

(cf. [1], [30]), where a is a functional inverse of Ackermann’s function and, for all
feasible large m and n, a(m, n) <_ 4 [30].

The remaining computation takes linear time. The overall running time of the
algorithm is thus O((m + n)a(m + n,n)). Therefore, we can state the following
theorem.

THEOREM 5.4. The minimum tree spanner of a weighted digraph and its stretch
index can be computed in O((m + n)a(m + n, n)) time.
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FIG. 9. A quasi-tree 1.5-spanner.

5.2. Quasi-tree spanners in digraphs. Recall that a quasi-tree of G is a
spanning subgraph T such that T is a tree; recall also that T is a quasi-tree t-spanner
if it is a t-spanner of G. See Fig. 9 for an example of a quasi-tree spanner. The
notion of quasi-tree spanners is intended to capture the underlying tree structure of
the spanner. As we will see, results on quasi-tree spanners in digraphs are quite similar
to those of tree spanners in undirected graphs. We begin by considering relationships
between quasi-tree spanners in G and tree spanners in G.

LEMMA 5.5. Let T be a quasi-tree t-spanner of G. If both arcs (x, y) and (y, x)
belong to G, then (x, y) e A(T) iff (y, x) e A(T).

Proof. It suffices to show that (x, y) e A(T) implies (y,x) e A(T). Suppose
(y, x) A(T). Then there is a directed (y, x)-path P in T. It follows that the corre-
sponding edges of P in T together with edge xy form a cycle in T, which contradicts
T being a tree. [3

LEMMA 5.6. If T is a quasi-tree t-spanner of G, then is a tree t-spanner of .
Proof. Let xy be an arbitrary edge in (-. We need to show d(x, y) < t.(v(xy).

By the definition of T, it is easy to see that d(u, v) < dT(u, v) for any two vertices
u, v e V. If exactly one of arcs (x, y) and (y,x), say (x, y), is in G, then (x, y) is in
G- T, and thus

d(x, y) < dT(x, y) < t w((x, y)) t @(xy),

since (v(xy) w((x, y)). Otherwise, both (x, y) and (y, x) are arcs in G and thus are
in G- T by Lemma 5.5. Then dT(x, y) < t. w((x, y)) and dT(y,x) < t. w((y,x)).
Therefore,

d(x,y) < min{dT(x,y),dT(y,x)} < t min{w((x,y)), w((y,x))} t (v(xy).

This proves the lemma.
In light of the above two results, we can use the results on tree spanners in 3

and 4 to obtain similar results for quasi-tree spanners. Given a weighted undirected
graph F, we construct a weighted digraph D by replacing each edge xy of F with two
arcs (x, y) and (y, x) and setting w’((x, y)) w’((y, x)) w(xy), where w and w’ are
the weighting functions of F and D, respectively. The following two NP-completeness
results can be readily obtained from Theorem 3.9 in 3.2 and Theorem 4.10 in 4.3,
respectively, by using Lemmas 5.5 and 5.6.

THEOREM 5.7. For any fixed t > 1, it is NP-complete to determine whether a

weighted digraph contains a quasi-tree t-spanner, even if all arcs have integral weights.
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THEOREM 5.8. For" any fixed t >_ 4, it is NP-complete to determine whether an
unweighted digraph contains a quasi-tree t-spanner.

On the other hand, the results in 3.1 and 4.1 can be extended to quasi-tree
1-spanners in weighted digraphs and quasi-tree 2-spanners in unnweighted digraphs,
respectively.

We first discuss the weighted case. Suppose that G admits a quasi-tree 1-spanner
T. Then by Lemma 5.6, is a tree 1-spanner of (. Therefore, is the unique minimum
spanning tree of G by Theorem 3.7 of 3.1. By Lemma 5.5, T is uniquely determined by
T. Therefore, it is easy to see that the following algorithm finds a quasi-tree 1-spanner
in a weighted digraph. First find a minimum spanning tree T of G; then construct
the maximum quasi-tree T corresponding to T by putting into T, for every edge xy
of , all arcs between vertices x and y in G; and finally verify if T is a 1-spanner.
Since G can be obtained from G in linear time, T can be found in O(m log/(m, n))
time, T can be constructed from in linear time, and verification takes linear time
by Theorem 2.1(c), we have the following result.

THEOREM 5.9. The quasi-tree 1-spanner of a weighted digraph can be found in

O(m log (m, n) time.
We now turn our attention to finding a quasi-tree 2-spanner in an unweighted

digraph G. We first consider triconnected digraphs. Remember that by a triconnected
digraph G, we mean that ( is triconnected. Also, bear in mind that a vertex u will be
referred to as a universal vertex of G whenever it is a universal vertex of G. Finally,
recall that an intermediate vertex is any vertex with both in- and out-neighbors.

THEOREM 5.10. A triconnected digraph G admits a quasi-tree 2-spanner iff it
contains a universal vertex u such that, for any intermediate vertex v of G- u, both
(u, v) and (v, u) are arcs of G.

Proof. If G contains such a universal vertex u, then it is readily checked that the
set of arcs between u and the remaining vertices of G induces a quasi-tree 2-spanner
of G. Conversely, suppose that G admits a quasi-tree 2-spanner T. It follows from
Lemma 5.6 and Theorem 4.2 that T is a spanning star of G centred at a vertex,
say u. Therefore, u is a universal vertex of G and hence of G. Let v be an arbitrary
intermediate vertex of G. If (u, v) is an arc of G, then there must be a vertex x such
that (v, x) is an arc of G, since v is an intermediate vertex. If x u, then (v, x) is
an arc of G T. Then there is a directed (v, x)-path P of length 2 in T, since T is a
quasi-tree 2-spanner of G. Notice that 7 is a spanning star. Thus P passes through
vertex u, which implies that (v, u) is an arc of G. By a similar argument, we can
deduce that (u, v) is an arc of G if (v, u) is an arc of G.

To illustrate the above theorem, a triconnected digraph and its quasi-tree 2-
spanner are depicted in Fig. 10. It is clear that we can use the above theorem to find
a quasi-tree 2-spanner in a triconnected digraph. We need only to find all intermediate
vertices I and all universal vertices U of G and then check if there is a vertex u E U
such that all possible arcs between u and I appear in G. If such a vertex u exists,
then the set of arcs between u and the remaining vertices of G forms a quasi-tree 2-
spanner; otherwise, G has no quasi-tree 2-spanner. It is easy to see that this method
takes linear time.

It is possible to extend the structural results in 4.1 to quasi-tree 2-spanners and
then obtain an algorithm for constructing quasi-tree 2-spanners. However, an easy way
to construct a quasi-tree 2-spanner is to use the skeleton tree. Because of Theorem
5.10, we need to consider only a nonseparable digraph G that is not triconnected. As
we have mentioned, if G contains a quasi-tree, then G is tree 2-spanner admissible.
Then contains a skeleton tree S(), which corresponds to a subgraph S of G.
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FIG. 10. A quasi-tree 2-spanner in a triconnected digraph.

TABLE 2
The complexity status of tree spanner problems.

Weighted graphs Unweighted graphs Directed graphs

1 O(mlog3(m,n)) O(m+n) O((m+n)o(m+n,n))

(1, 3) NPc O(m + n) O((m + n)oz(m + n, n))

[3, 4) NPc ? O((m + n)((m + n, n))

[4, x)) iec Nec O((m + n)((m + n, n))
(:x) O(mlog(m,n)) O(m -t- n) O((m 4- n)a(m --t- n,n))

Since belongs to every tree 2-spanner of (, by Lemma 5.6, any quasi-tree 2-spanner
of G must contain S. Therefore, S must be a 2-spanner of the subgraph of G induced
by vertices in S. For a compound leaf C of (, let ec be the unique edge in with
which C is fully joined and Hc be the triconnected component of G containing C. Let

and denote the two leafstalks in/c with the addition of edge ec. Denote the
subgraphs in G corresponding to/c,, and by Hc, L, and L, respectively.
in light of the skeleton tree theorem (Theorem 4.9 in 4.2), for each compound leaf C
we need to check only if either L or L is a 2-spanner of Hc.

To summarize, we outline the quasi-tree 2-spanner algorithm as follows. First,
decide if G is tree 2-spanner admissible. If it is, then find all blocks of G. For each block
B of G, if it is triconnected, then use Theorem 5.10 to find its quasi-tree 2-spanner;
otherwise, construct the skeleton tree SB of B and the corresponding subgraph SB in
B. Check if SB is a 2-spanner of B[V(SB)]. Finally, for each compound leaf C of B,
check if either L or L is a 2-spanner of Hc. If G passes all of the above checks,
then it contains a quasi-tree 2-spanner; otherwise, it does not. The actual quasi-tree
2-spanner of G can be obtained by keeping track of SB, LIc, and L.

The correctness of this algorithm follows from our discussions. We now estimate
the complexity of the algorithm. It has been shown in 4.1 and 4.2 that whether
( is tree 2-spanner admissible can be decided in linear time and that the skeleton
tree of/ can be found in linear time. We also mentioned that it takes linear time to
find a quasi-tree 2-spanner in B if B is triconnected. Furthermore, checking if SB is a
2-spanner of B[V(SB)] takes linear time by Theorem 2.1(c). Since all of the remaining
operations can be carried out in linear time as well, the algorithm takes linear time.

THEOREM 5.11. A quasi-tree 2-spanner in an unweighted digraph can be found
in linear time.
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6. Concluding remarks. In this paper, we introduced the notion of tree span-
ners and studied the theoretical and algorithmic aspects of the subject. In particular,
we considered the complexity of tree spanner problems for weighted, unweighted, and
directed graphs. The current complexity status of tree spanner problems is summa-
rized in Table 2, where row "cx)" indicates the complexity of finding a tree spanner
(with minimum weight if G is weighted). The complexity of quasi-tree spanner prob-
lems on weighted and unweighted digraphs is the same as that of tree spanner problems
on weighted and unweighted graphs, respectively.

Note that the tree 3-spanner problem on unweighted graphs and the quasi-tree
3-spanner problem on unweighted digraphs remain open. We conjecture that the tree
3-spanner problem on unweighted digraphs is NP-complete; if true this would imply
the NP-completeness of the quasi-tree 3-spanner problem on unweighted digraphs.

One can also consider the tree t-spanner problem for restricted families of graphs.
For partial k-trees, it is easily deduced from the results of Arnborg et al. [4] that the
problem is polynomial-time solvable for any fixed t, since it is a monadic second-order
problem. However, the problem is open for planar graphs, bounded degree graphs,
and many other interesting families of graphs.

In terms of applications, it is desirable to construct tree spanners with small
stretch factors. Is there a polynomial-time algorithm for finding a tree t-spanner such
that t is close to the stretch factor of the minimum tree spanner? The notion of tree
spanners can also be extended to other families of graphs. In general, given a family- of graphs, one can ask whether a graph G contains a spanner H E ’. The problem
is particularly interesting for families of graphs that underlie communication network
structures or parallel machine architectures, since graphs that contain these graphs as
spanners capture some important properties of jobs that can be carried out on these
networks or machines. However, we expect that the problem is hard for most families
of graphs.
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COMBINATORIAL ALGORITHM FOR A LOWER BOUND
ON FRAME RIGIDITY *

D. S. FRANZBLAU

Abstract. A classic problem is that of computing the rigidity of a network of rigid bars
or, more formally, computing the degrees of freedom of a frame, a graph with a generic straight-
line embedding in Euclidean space. More recently, in trying to explain the effect of the internal
structure of glassy materials on their rigidity, researchers have investigated the relationship between
the structure of network models and the number of degrees of freedom. It would thus be valuable to
have an efficient, purely combinatorial algorithm to compute the degrees of freedom of an arbitrary
frame. For frames in two dimensions, there are several such algorithms, all based on a theorem of
Laman. However, despite considerable effort, no one has yet found such an algorithm for frames
in three or more dimensions. Here, a new combinatorial approach, similar to ear decomposition, is
introduced and shown to give a practical algorithm for computing a nontrivial lower bound on the
number of degrees of freedom in three dimensions. Results of computational studies on an important
class of network models of glasses are given, suggesting that the resulting bound is close to the exact
answer in the cases of interest. The algorithm has been implemented in O(n) space and O(n2) time
for bounded-degree networks with n vertices and has already provided new results of interest on these
networks.
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1. Introduction. The problem of determining the rigidity of a network of rigid
bars connected by joints has been studied for over a century [Ma1864]. Formally, the
problem is to compute the number of degrees of freedom of a frame, which is a graph
embedded i,n Euclidean space with distance constraints imposed by the edges. The
computation of the number of degrees of freedom also has interesting applications
to the study of glasses that are modeled as networks of atoms and bonds [Ph82],
[Th83]. If one is given a specific embedding of the graph (i.e., its geometry), one can
solve the problem by computing the rank of the matrix representing the constraints,
using ideas dating back at least to Lagrange [Lg1788]. In studying models of glasses,
however, one would like to know the effect of the network topology on the degrees of
freedom (also called zero-frequency modes). In this case, the problem of interest is
to compute the number of degrees of freedom for graphs embedded generically [LY82]
(meaning essentially that the vertices do not lie on an algebraic surface), a number
that is independent of the embedding. The standard approach in studying models of
glasses is to choose a particular embedding and compute the rank of the appropriate
matrix. However, standard matrix methods, such as Gaussian elimination, use O(n2)
storage and O(n3) time for a system of n vertices, making this approach practical only
for networks of a few hundred vertices. Thus, it would be valuable to have an efficient
algorithm that is purely combinatorial (requires only the graph as input).
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On the other hand, finding a purely combinatorial algorithm for computing de-
grees of freedom in three dimensions is a key open problem in mathematical rigidity
theory. The existing combinatorial approaches work only in two dimensions and rely
on a theorem of Lamas [Lm70] (also proved in [LY82]). A consequence of this theorem
is that counting degrees of freedom can be reduced to computing a mamum indepen-
dent set in a certain matroid. Elegant algorithms that test independence have been
devised. One, due to Lovsz and Yemini [LY82], uses a theorem of Nash-Williams to
reduce the problem to finding a special decomposition of a graph into forests. Another
approach, due to Crapo [Cr93], reduces the problem in a different way to finding a

decomposition of a graph into trees. Both of these algorithms are implemented using a
classic matroid-partitioning algorithm of Edmonds. Gabow and Westermann [GW88]
devised new general matroid algorithms, which they specialized to give an O(n2) algo-
rithm for computing degrees of freedom in two dimensions. Hendrickson [He90] gave
a different O(n2) algorithm based on bipartite matching.

Despite considerable effort, as noted in [He90], [LY82], Laman’s theorem does
not seem to generalize to three or more dimensions. No combinatorial algorithm for
computing the generic degrees of freedom is known in higher dimensions, although
interesting related results have been obtained, for example, by Tay [Ta84] and White
and Whiteley [WW87].

This paper provides a new combinatorial strategy that yields a practical algorithm
for computing a nontrivial lower bound on the degrees of freedom and suggests a new
approach for computing degrees of freedom combinatorially. The algorithm given here
has been implemented and used to approximate degrees of freedom in network models
much larger than were examined previously. This work has already uncovered an

unexpected empirical relationship between the rigidity and the average network degree
in the standard model of glasses described below in 8 [FT92]. The algorithm can be
adapted for networks that are embedded in two or three dimensions and have either
universal or fixed-angle joints (as discussed below). Numerical results are given here
for a well-known network model of glasses which suggest that the bound produced by
the algorithm compares favorably with the exact answer. An eiicient implementation
of the algorithm that has proved practical for inputs of up to 4,000 vertices is given.
For bounded-degree graphs, the implementation uses O(n) space and O(n2) time and
is much faster than standard matrix methods.

There are two main results in this paper which are combined to construct the
algorithm. The first of these is a recurrence relation (inequalities 3(a)-(c) of 5) for
computing a lower bound on the number of degrees of freedom. The recurrence relation
is derived from a simple but powerful constraint-counting argument [Ma1864], [Ph82],
[Th83] that is implicit in [Lm70] as well. The recurrence is used to construct the chain
decomposition algorithm (5), in which the graph is first reduced to a collection of
cycles by the successive removal of special paths called "chains." The order in which
chains are removed is crucial to the quality of the lower bound. The second main
result is that one can obtain a "locally optimal" chain decomposition by using two
simple rules for selecting chains (Theorem 1, 6).

Since an important motivation for this paper is to provide a useful tool for study-
ing rigidity in models of glasses as in [HT85], the results here are stated for frames
with fixed-angle joints, in which the angle between each pair of adjacent edges is spec-
ified. In the existing mathematical literature on rigidity, frames are assumed to have
universal joints, meaning that edges may rotate freely about the vertices. All of the
results here can easily be restated for frames with universal joints. The fixed-angle
joint problem can in fact be reduced to the universal joint problem by adding bars



390 D.S. FRANZBLAU

between each pair of second neighbors in the graph; the algorithm presented here is
more direct and faster in practice.

The remainder of this paper is organized as follows. In 2, the number of degrees
of freedom of a frame () is defined. In 3, the fundamental constraint-counting
strategy is explained. In 4 and 5, the recurrence relation for counting constraints
and the resulting chain decomposition (CD) algorithm are derived. Rules for choosing
a locally optimal chain decomposition are given in 6. Implementation of the algorithm
is sketched in 7, and computational results are presented in 8. A summary of results
and open questions is given in 9.

2. Terminology and definition of degrees of freedom. Throughout this
paper, standard graph-theoretic terminology will be used IBM76]. A graph or network
G (V, E) consists of a set V of vertices and a set E of edges, unordered pairs [i, j]
of distinct vertices in V. The terms frame and network model will be used to refer
to a graph such that each vertex i is assigned a point bi in Euclidean k-dimensional
space, and each edge is a straight line segment. For concreteness, assume k 3 (it is
straightforward to modify the discussion in this section for arbitrary k). Both V and
E are assumed to be finite. Use of the methods here for infinite, periodic systems is
discussed in 8.

To determine the rigidity of a frame, one treats the edge lengths and angles be-
tween adjacent edges as constraints on "motions" of the vertices and then computes
the number of degrees of freedom, here called . This number is defined as the dimen-
sion of the subspace of "infinitesimal motions" that do not violate the constraints. A
detailed sketch of the definition and its derivation is provided in this section. How-
ever, the results of this paper depend only on the inequalities (2a, b) of 3. Readers
interested only in the lower bound algorithm may go directly to 3.

An "infinitesimal motion" of a vertex is represented by adding a "small" dis-
placement vector yi to hi. Let bij by -bi and yij yj -yi. Let x (Xl,X2,
x3,... ,X3n) (Yl,Y2,.-. ,Yn) be the vector describing the complete set of 3n inde-
pendent vertex displacements. To determine whether such a displacement violates
the constraints imposed by the rigid bars and fixed-angle joints, one can introduce a
"potential" function U(x) such that U(x) 0 if and only if x is a motion that does
not violate the constraints. For example, if x is a (rigid) translation of the system,
U(x) 0. Since we are only concerned with U(x) for x 0, one may use the quadratic
potential [HT85]

(1) U(x) -(bij. yij)2 + (bi Yik + Yij" bik) 2.

The first sum is over all pairs (i, j) such that [i,j] is an edge of G. The second
sum is over all triples (i,j,k) such that [i,j] and [i, k] are each edges. Note that if
one includes only the first sum, U is a potential function for a system with universal
joints.

One can show that the set {x U(x) 0} is a linear subspace. First observe that
U(x) xTDx, where D is the 3n 3n symmetric matrix with terms

where the partial derivatives are evaluated at x 0. One can then show that Dx 0
if and only if U(x) 0.
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The matrix D is called the dynamical matrix [AM76] and has a simple physical
interpretation. If x x(t) is a function of time and if U(x) represents the potential
energy of the system, then the equations of motion for the system are of the form
Cx’(t) + Dx(t) 0. Thus, D is the matrix analog to the force constant of a spring
obeying Hooke’s law. (See [LT85, 5.12].)

The number of degrees of freedom of a frame G is defined to be the dimension
of the kernel of D, {x Dx 0}, and will be denoted here by (D). (In lattice
dynamics, a basis vector of the kernel is called a "floppy" or "zero-frequency" mode
and represents a vibrational mode that does not increase the energy of the system.)

There is an equivalent definition that is the foundation of all combinatorial meth-
ods for computing . First write U gTg, where g is the vector whose components
are (bij. yj) and (bij’yik T Yij" bik). Let A be the matrix such that g Ax; then,
each row of A represents exactly one constraint. One can show that D ATA, and
rank(D) rank(A). Thus, since rank(A) is the number of independent rows (and
columns) of A and the number of columns of A is 3n, 3n- rank(A). In other
words, we have the well-known result that is 3n (the number of degrees of freedom
of n unconstrained vertices) minus the number of independent constraints [Th83]. A
is also called the rigidity matrix.

There are various geometric degeneracies that can affect . [Cu90] has a detailed
discussion in the case of universal joints in two dimensions (see also [WW87]). The
case of fixed-angle joints is even more complex. However, we assume throughout that
all graphs are embedded generically as in [LY82], and hence (G) is well defined.

We need another simple but important observation. If G has three or more
vertices (which do not all lie on a line), the kernel of D must contain six independent
vectors representing three rigid translations and three rigid rotations. Hence, we shall
assume throughout that _> 6. Note that in k dimensions, there are k independent
translations and k(k- 1)/2 rotations.

3. Computation of by counting constraints. A simple lower bound on, the number of degrees of freedom, is given in [Th83] and is the starting point for
the algorithm given here. The bound comes from the definition of as 3n minus the
number of nonredundant constraints, where a single constraint is either an edge length
or an angle between a pair of adjacent edges. Let the degree of a vertex v, deg(v), be
the number of edges Iv, w] that have v as an end point. Although there are C(deg(v), 2)
angle pairs at a given vertex v, if the degree of v is at least 2, the number of independent
angle constraints associated with v is at most 2 deg(v) 3. If m is the number of edges
there are at most m edge-length constraints. Thus, one obtains

(2a) (G) >_ 3n- m- (2 deg(v) 3),

where the sum is over all vertices of degree 2 or more. Assuming G has three or more
vertices, there are six rigid motions, so we also have

(2b) (G) >_ 6.

The maximum of the right sides of (2a) and (2b) will be referred to henceforth as
the mean field bound, using the terminology of [Th83]. Despite the simplicity of this
bound, it has had considerable impact on the understanding of glasses [HT85], [eh82],
[Th83]. (In view of (2b), many authors define the degrees of freedom to be - 6; it
is straightforward to rewrite the results here using the alternate definition.)
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FIG. 1. Example in which the mean field bound overcounts constraints. Since three constraints
determine a triangle, constraints on edges yz, zx and angle Lyzx also determine O,Lzyx, and
yxz; the constraints on --C, /yxw, and zxw, determine -C, xyw, Lxwy, and wyz, for a total
of seven redundant constraints.

It is not hard to construct examples in which is larger than the mean field
bound. For example, in the frame of Fig. 1 with n 11 and m 13, applying (2)
gives _> 6. However, seven of the constraints are redundant, so in fact, _> 8.
The method introduced in the following sections finds such redundant constraints
essentially by detecting subgraphs in which (2b) rather than (2a) is applicable.

4. Recurrence relation for counting constraints. The new approach to
computing a lower bound on b is based on a recurrence relation derived from the
inequalities in (2). The terminology below will be used to express this relation in a
compact form.

A path of length q in G is a subgraph containing a sequence of q edges in which
at most two edges share any vertex; i.e., a subgraph containing distinct vertices,
h0, hi, h2,..., hq and q edges, [h0, hl], [hl, h2],..., [hq_, hq]. A path will usually be
represented by listing the sequence of vertices with no commas: hohlh2.., hq. The
length of (number of edges in) path P will be denoted by IPI. A cycle of length q is
the same as a path of length q except that its end points are the same (h0 ha).

A chain is a path or cycle C such that, if vertex is not an end point of C, then
the degree of in G is exactly 2 and if is an end point of C, then the degree of in
G- C is at least 2. (G- C is the graph obtained by deleting the edges of C and then
deleting any vertices of degree zero.) Note that if C is a path, then each end point
has degree 3 or more and if C is a cycle, then its (single) end point has degree 4 or
more. (Under certain conditions, a chain is also called an "ear.")

For example, in the (disconnected) graph in Fig. 2(d) in 5, ijkl and nopn are
both chains of length 3 and mr is a chain of length 1. The cycle ihgfi is not a chain
because the degree of i is only 3; abcdea is not a chain because every vertex has degree
2. Note that each graph in Fig. 2 is G- C for a chain in the succeeding graph. The
recurrence in the following lemma is obtained by counting constraints due to a single
chain.

LEMMA 1. If C is a chain in G, (G) _> (G C) + ICI 6.
Proof. Observe that

(G) 3n #{constraints in G C}
#{constraints due to C alone}
#{constraints at end points of C}



FRAME RIGIDITY 393

and
(G C) 3(n -ICI + 1) #{constraints in G C}.

For C alone, there are ICI edge constraints and ICI- 1 angle constraints. Whether
C is a cycle or path, the number of additional independent angle constraints at the
end point(s) of C is at most four. The result then follows from simple algebra.

In a graph of minimum degree 2, notice that if C is a chain, then G C also has
minimum degree 2. (The minimum degree of a graph is the ,minimum degree among
all vertices.) Furthermore, G has no chains if and only if every vertex has degree 2,
i.e., G is a union of disjoint cycles. Thus, in this case, a basis for the recurrence is
provided by the following lemmas, which are proved easily by counting constraints.

LEMMA 2. If a graph R is a cycle, then

(R) > IRI.
LEMMA 3. If G has connected components H1, H2,..., Hm, then

Throughout this paper, all graphs are assumed to have minimum degree at least
2. There is no loss of generality because vertices of degree 0 or 1 can be deleted
first and taken into account by using constraint-counting arguments as in 3. If u has
degree 0, then (G) (G- u) + 3. If u is a vertex of degree 1, with neighbor v,
let G1 be G with edge In, v] deleted (but v remaining). If deg(v) < 3 in G, then
)(G)

_
)(GI) - 3- deg(v). If deg(v) _> 3, it follows that (G) _> )(Gi).

5. Chain decomposition algorithm. In the chain decomposition (CD) algo-
rithm, chains are removed until only cycles remain. Therefore, is initialized using
Lemmas 2 and 3. Finally, chains are added back, using Lemma 1 to update at each
step.

To describe the decomposition the following notation will be used. Let P*
(P1,P2,...,Pk) be any sequence of paths or cycles. Let G(0) G,G(1) G-
P1, and in general, G(i) G(i 1) Pi. If Pi is a chain in G(i 1) for all i,
then P* is a chain sequence in G. If, in addition, G(k) contains no chains, then P*
is a chain decomposition of G. (This is similar to an "ear decomposition.") One
possible chain decomposition for the graph of Fig. 2(d) is (mr, lrqn, ijklmn); another
is (nopn, mnqr, ijkl).

Ri R R3

m k

FIG. 2. Example of CD algorithm on the network in (d), given the chain decomposition
(lr, ijklm, noplt). (3) /)1 (i) 6, 1, 2, 3; (b) 21 (3) :-- max{6 -- 3 6, 6} 6; (c) )1 (2)
6 -t- 6 + 4 6 10, (3) 0; (d) 1 (2) :- max(10 -t- 1 6, 6} 6, 1 :-- 6 + 6 + 0 12.
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give

(3a)

To use the recurrence effectively, one must refine Lemmas 1 and 2 using (2b) to

(G) _> max{(G C) + ICI- 6, 6},

(3b) (G) >_ max{lRI, 6}.

(This is valid since all graphs have minimum degree 2 and 3 or more vertices.)
Another simple but key observation is that the constraints introduced by a chain

can only affect the vertices in the connected component containing that chain. Thus,
if C is contained in component H and if G- H is nonempty (i.e., (G- H) _> 6),
Lemma 1 can be further refined to give

(3c) (G) >_ (G H) + (H C) + IC 6.

The CD algorithm is given below and illustrated in Fig. 2. The input is a graph
G, of minimum degree 2 (see the discussion at the end of 4). The output of the
algorithm is a lower bound on , denoted 1(G). The notation 1 (i) means 1 of the
current component i.

CHAIN DECOMPOSITION ALGORITHM
1. Find a chain decomposition of G: C* C1, C2,..., Ck.
2. Let R1, R2,..., Rj be the cycles that remain after the chains are removed

from G.

For each i, let component be Ri; 1(i):= max{lRil, 6}. End for.

3. For each m from k down to 1:
Case 1. Cm has both end points in component i.

Add Cm to component i; 1(i):= max{l(i)+ IVml- 6, 6}.
Case 2. Cm has end points in distinct components i and j [1 (i), 1(j) _> 6].

(a) )1 (i) :---- 1 (i) -- )1 (j) + IVml 6; /)1 (j) := 0.
(b) Add component j and Cm to component i; delete component j.

End for
a. 1 :-- 1(i).

6. Finding a good chain decomposition. The order of chains in a decompo-
sition is critical. For example, the chain decomposition used in Fig. 2 gives the bound

Pl 12, whereas the decomposition (ijkl, nopn, mnqr) for the same frame yields the
better bound 1 15.

Let 1(C*) be the output of the CD algorithm using the decomposition C*.
Ideally, one would like to find an optimal chain decomp..osition, i.e., a C* such that
1 (C*) _> 1 (C*) for any other chain decomposition C*. I have not yet found an
efficient method to construct an optimal decomposition but have discovered two rules
that are necessary in an optimal decomposition and sufficient to produce a locally
optimal decomposition (see Theorem 1 below). The first rule, motivated by examples
such as in Fig. 2, is to create new connected components whenever possible. The
second rule, motivated by examples such as in Fig. 1, is to remove the longest chains
first. Using these rules as heuristics works well in practice.

The terms used in Theorem 1 are as follows. First, a chain C in a connected
component H will be called a disconnecting chain if H-C has two nonempty connected
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components (e.g., ijkl in Fig. 2(d)). Otherwise, C is a nondisconnecting chain. Next,
a chain decomposition, C* (C1,..., Ci, Ci+l,... Ck), is locally optimal if, given any i

such that it is possible to exchange Ci and C+1 (i.e., C* (C1,..., Ci+l, Ci,..., Ck)
is also a chain decomposition), 1(C*) >_ 1 (C*). In other words, C* is locally optimal
if no interchange of successive chains leads to a better decomposition.

THEOREM 1. The chain decomposition C* (C1, C2,...) is locally optimal if,
for each >_ 1, chain Ci is selected using the following two rules:

1. If there is any disconnecting chain in G(i- 1), then Ci is a disconnecting
chain.

2. Otherwise, Ci is a nondisconnecting chain of maximum length in G(i- 1).
(Recall that G(i- 1) is the graph G after chains C1, C2,..., C-1 have been removed.)

Proof. See the appendix. D

7. O(m2) implementation. The CD algorithm has three phases: (1) selecting
a chain decomposition; (2) initializing 1 of each remaining cycle; (3) adding chains
back in reverse order, updating 1 at each step. Detecting a disconnecting chain is
similar to the problem of finding an "articulation point" in a graph, so a natural
strategy for selecting each chain in the decomposition is a modified depth-first search
[Ba88, p. 184]. Since each edge is in at most one chain, this leads to an O(m) bound
on both time and storage for finding each chain (where m is the number of edges).

It is not hard to show that the number of chains in a decomposition is exactly
m-n: letting c be the number of chains in a decomposition, 2m deg(v) 2n+2c.
Hence, phase 1 can be implemented with O(m) space and O(m2) time. Since the
graphs of interest in applications are all of bounded degree, in practice, the algorithm
uses O(n) space and O(n2) time. This is a significant savings over straightforward
rank or eigenvalue computation, which uses O(n2) storage and O(n3) time.

For very large networks it would be desirable to reduce the time needed to select
each chain. An obvious improvement is to store the lengths of nondisconnecting
chains in a heap [Ba88, p. 71] in order to facilitate finding a maximum length chain.
Removing a single chain affects at most three existing chains since at most two new
vertices of degree 2 are created, so the heap could be updated in O(log m) steps. Thus,
it is likely that there is an O(m log m) implementation of phase 1; the key problem
that remains is how to update the depth first search "forest" efficiently after each
chain removal.

One strategy for reconstructing the graph in phase 3 is to treat it as a sequence
of m- n "union-find" operations on the set of m edges, which can be implemented
well within O(m log m) time [Ba88, p. 304]. However, one can also use the recursive
structure of the algorithm to perform phases 2 and 3 efficiently. The main observation
is that each chain that is removed can be associated with a node in a binary tree. This
is illustrated in Fig. 3 for a decomposition of one component of the graph of Fig. 2(d).
The root of the tree represents an initial graph G (assumed connected). When a chain
is removed, a child is created for each resulting component (one or two). A node is a
leaf if the corresponding component is a single cycle.

To compute 1, define )1 (k) for each node k of the binary tree. Then 1 (k) is
computed when either k is a leaf (using Lemma 2) or 1 has been computed for the
children of k (using the refined version of Lemma 1). Then, 1 of the root is 1 (G).

If the nodes of the binary tree are created in depth-first order (as indicated in
Fig. 3) then in order to represent the component corresponding to a node, one need
only store a pointer to the root of a tree in the current depth-first search forest (for
the original graph). The only other information that one must store at a node is
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FIG. 3. Binary tree representation of components created by removing chains in a decompo-
sition. The nodes (rectangular boxes) are numbered in depth-first order, as generated; the node at
the top is the root. The chain corresponding to each node is shown as a dotted line. The graph
is a component of the network in Fig. 2(d); the chain decomposition (ijkl, nopn, mnqr) is selected
using the rules of 6. The values of1 are computed while "backing up" from each node and so are

computed in. the following order: 1 (5) :- 6, )1 (4) :-- 6, 1 (3) :- 6, )1 (2) :- 6, 1 (1) :-- 9.

(1) pointers to its parent and children, (2) the length of the chain removed, and (3)
the value of 1 for the node. Since the tree has O(m) nodes, phases 2 and 3 can be
completed in only O(m) steps, using O(m) additional storage. (Note: to reduce the
number of tree nodes, children are generated for a node only for disconnecting chains;
information on nondisconnecting chains can be stored in one separate stack.)

8. Illustration of lower bound on a standard network model. Although
it would be most desirable to have a guaranteed bound on the error 1, I do not
know of such a bound at present. I have, however, tested the algorithm extensively on
a class of network models commonly used to study rigidity of glasses [HT85]. Typical
output is illustrated in Fig. 4. The results show that the lower bound is generally
quite close to the exact answer and is substantially better than the (linear) mean field
bound, which was previously the only bound available for systems too large to be
treated with matrix methods.

The graphs used here were derived from a diamond structure [AM76]. Each
sequence of input graphs was obtained by deleting edges selected at random. (Such a
model has been used to simulate glasses made up of atoms that can form two, three,
or four bonds with neighboring atoms [HT85].) For consistency, in the rare instances
in which the depletion resulted in a disconnected graph, that trial was not used. Also,
if a selected edge had an end point of degree 2 it was not removed, so that all graphs
had minimum degree 2.

The plots in Fig. 4 show the results of computing 1 as wellas the mean field
bound (2a) and the exact value of for two sequences of graphs obtained as described
above. The exact answer was computed from the dynamical matrix D by counting
the number of zeros in the list of eigenvalues; 1 was computed by implementing the
CD algorithm.

The average degree (the sum of the degrees divided by the number of vertices)
was chosen as the independent variable to facilitate comparison with [HT85]. For a
graph of minimum degree 2, the mean field bound is linear in , which can be seen by
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FIG. 4. Comparison of lower bounds on a finite graph (n 512), representing a diamond
structure network with random edge removal (a-c) and biased edge removal (d-f). x denotes some
computed value of . The number of vertices is n, and nk is the number of vertices of degree k,
where n n2 + n3 + ha. The right axis is labeled with true values; the left axis is labeled with the
same values divided by 3n to be independent of network size; both the left and right labels apply to
each figure. (a, d) average degree versus (x -6), where x is the mean field bound (dotted line), l
(diamonds), and the exact value ( + 3 as explained in text) (circles); (b, e) average degree versus
error, ( + 3 x), where x is the mean field bound (inverted triangles) and 1 (diamonds); (c,
f) average degree versus nk/n for k 3 (triangles) and k 4 (squares).

applying m (1/2) deg(v) (n/2) to (2a) to get

(5)(4) (G)_>n 6-.’
The degree 2.4 is a critical point, since (6- (5/2)4) 0 there; the results of
[HT85], [Th83] suggest that there is a transition between floppy and rigid states in
glasses that occurs near this critical degree. This is reflected in the errors in the
approximations, plotted in Figs. 4 (b, e). In each case, both the mean field bound
and the CD algorithm are very accurate when the average degree is far from 2.4, and
the largest error occurs at 2.4. However, the CD algorithm gives a much more accurate
overall picture of the behavior of

In the graphs represented in Figs. 4(a-c), edges were selected uniformly at random
for removal. To verify the robustness of the CD algorithm, the graphs represented in
Figs. 4(d-f) were constructed by biasing the random edge selection to increase the
number of vertices of degrees 2 and 4, which would be expected to produce more long
(floppy) chains. The difference between the two methods of edge selection can be seen
in Figs. 4(c, f), which give the fractions of degree 3 and degree 4 vertices obtained for
each trial.

The error in the mean field bound, shown in Figs. 4(b, e), is significantly larger
when biased rather than random depletion is used. However, the error in the CD
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bound is relatively small in both cases. In another test case (not shown), I used
extremely biased depletion in which case edges were removed only from a fixed region
of the initial graph, hence generalizing the example of Fig. 1. The mean field bound
is very poor in this case, but the error in the CD bound was even smaller than in the
cases shown. Thus, the CD algorithm is a useful tool for approximating the effects of
the topology of a frame on its degrees of freedom.

Although the algorithm is described for finite frames, in the study of solids, an
infinite model is generally preferred since surface effects are eliminated. The frames
represented in Fig. 4 were derived from a 512-vertex, three-dimensionM frame rep-
resenting an infinite diamond structure. That is, the infinite periodic network is
embedded in R3, an appropriate parallelpiped is selected as a "unit cell," and the
plane boundaries of the cell are identified (as in a torus). (I also tested the algorithm
using a finite fragment of the diamond structure and achieved with similar results.)

Three "extra" zero-frequency modes must be added to the exact value of for an
infinite system. These represent three rigid rotations, which are included implicitly
in computing 1 but which do not appear as vectors in the kernel of the dynamical
matrix. The reason is that in the potential (1) of 2, the edges represent vectors
between vertices in the infinite system and each vertex is actually an infinite equiva-
lence class of vertices. A displacement vector x represents the simultaneous identical
displacements of all vertices in each class. Thus, a rigid rotation of the vertices in the
finite representation is generally not a degree of freedom (zero-frequency mode) of the
infinite system.

9. Conclusions. This work introduces a new combinatorial approach to the
problem of determining the rigidity of a network of rigid bars. I have described an
algorithm based on this approach that computes a lower bound on the number of
degrees of freedom for frames with fixed-angle joints in three dimensions which has
proven useful in the study of network models of glasses. The method can easily be
adapted for work for frames that have universal joints; one need only modify the
inequalities in (2) and (3).

A natural next step is to compute nontrivial bounds on the error - 1. I have
preliminary results that promise a complementary algorithm for computing an upper
bound on , which would allow one to bound the error for any specific input. It
would also be of interest to find an efficient algorithm for determining an optimal
chain decomposition, i.e., one that maximizes 1. The more difficult question remains
open, however: for frames in generic position and arbitrary dimension, does there exist
an efficient combinatorial algorithm for computing exactly?

Appendix: Proof of Theorem 1. Given any i, let C* (C1,.. Ci, Ci+1,...,
Ck) and C* (C1,..., Ci+l, Ci,... Ck). To prove the theorem, it is sufficient to show
the following. If Ci is a disconnecting chain or Ci+l is a nondisconnecting chain and
ICil _> [Ci+ll, then 1(C*) >_ 1(C*). This statement follows directly from a case
analysis given in the three lemmas stated and proved below.

To simplify the notation, let Ci and Ci+l be the first two chains in a decomposi-
tion, called CA and CB. We assume that both CA, CB and CB, CA are chain sequences,
i.e., the two chains do not "interfere" with each other. (There are analogous lemmas
even when the chains cannot be directly interchanged; they are more complicated
to state and prove but follow from similar arguments.) The shorthand 1 (CA, CB)
and /)1 (CB, CA) will be used to mean the result of applying the CD algorithm to
the respective decompositions (CA, CB, C;) and (CB, CA, C;), where C; is a fixed
decomposition of G CA CB.
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(c)
FIG. 5. Representation of cases described in Lemmas 4, 5, and 6. Boxes represent connected

subgraphs. Chains, shown as dotted lines, can have any number of edges. (a) CA and CB are both
disconnecting chains (Lemma 4); (b) CA is disconnecting, but CB is nondisconnecting (Lemma 5);
(c) CA and CB are both nondisconnecting (Lemma 6).

To facilitate the proofs of the lemmas, let ((x)) max(x, 6}. Then the following
algebraic rules are straightforward to prove

z < ((x)).
(b) If x _< y, then ((x)) _< ((y)).
(c) If y _> 0, then ((x + y)) _< ((x)) + y.
(d) If x _< y, then ((z + y)) + x _< ((z + x)) + y.
LEMMA 4. If CA and CB are disconnecting chains, then 1(CA, CB)

)I (CB CA).
Proof. Assume that CA and CB are in the same connected component H (oth-

erwise the statement is trivial) andthat G H. Since CA, CB and CB, CA are both
chain sequences, we can assume that H- CA has components H1, H2 and that CB is
contained in H1. Assume that H1 -CB has components Hll, H12 and that the end
point of CA is in H12. (See Fig. 5(a).)

Then, since 1 (Hi) _> 6 for any component Hi,

)1 (CA, CB) el(H1) -+- 1(H2) --ICAI- 6

)I(Hll) - 1(H12) --ICBI- 6 / 1(H2) --ICAI- 6,

)I(CB, CA) (H12 (-J CA (-J U2) -- 1(Hll) -{- ICB[ 6

1(H12) + 1(H2) + ICAI- 6 + 1(Hll) + ICBI- 6.

Clearly, these are the same, only summed in different orders. D
LEMMA 5. If CA is disconnecting and CB is nondisconnecting, then I(CA,

CB) >_ )I(CB, CA).
Proof. Again assume that CA and CB are in the same connected component H

and that H- CA has components H1 and H2. We may assume that CB has both end
points in H1 and that G- H. (See Fig. 5(5).)

Again, since 1 (Hi) is always at least 6,

)I(CA, CB) el(H1) - 1(H2) + levi 6

(()1 (H1 CB) -ICsl- 6)) + 1(H2) + IC l- 6,

I(CB, CA) (()([H1 (.J CA U H2] Cs) / ICBI 6))
((1(H1 CB) / 1(H2) / ICAI- 6 -t-ICBI- 6)).

Letting x el(H1 --CB) -}-ICBI--6 and y 1(H2)+ ICAI-6 the result follows
from algebraic rule (c). D
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LEMMA 6. If CA and CB are nondisconnecting and ICAI >_ ICBI, then 1(CA,
CB

_
)I (CB CA).

Proof. Again, the only case of interest is when CA, CB are in the same component
H and G H. (See Fig. 5(c).) It may happen that CB becomes a disconnecting chain
after CA is removed, and vice versa, but this does not affect the computations. We
get

1(CA, CB) ((1(H CA) + ICAI 6))
((((1 (H CA CB) + ICs[- 6)) + ICAI- 6)),

)I(CB, CA) ((((I(H CA CB) + ICAI- 6))

If z el(H-CA--CB)-6,x ICBI, and y ICAI, then the result follows from
algebraic rules (d) and (b). D
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APPROXIMATION ALGORITHMS FOR
MINIMUM-TIME BROADCAST *

GUY KORTSARZ AND DAVID PELEG

Abstract. This paper deals with the problem of broadcasting in minimum time in the tele-
phone and message-passing models. Approximation algorithms are developed for arbitrary graphs as
well as for several restricted graph classes.

In particular, an O(vfvT)-additive approximation algorithm is given for broadcasting in general
graphs, and an O(log n/ log log n) (multiplicative) ratio approximation is given for broadcasting in
the open-path model. This also results in an algorithm for broadcasting on random graphs (in the
telephone and message-passing models) that yields an O(log n/ log log n) approximation with high
probability.

In addition, the paper presents a broadcast algorithm for graph families with small separators
(such as chordal, k-outerplanar, bounded-face planar, and series-parallel graphs), with approximation
ratio proportional to the separator size times log n. Finally, an efficient approximation algorithm is
presented for the class of graphs representable as trees of cliques.

Key words, broadcast, approximation

AMS subject classifications. 05C85, 68Q25, 90C27, 90B35

1. Introduction.

1.1., Minimum-time broadcast. One of the most important efficiency mea-
sures of a communication network is the speed by which it delivers messages between
communicating sites. Therefore, much of the research in this area concentrates on
developing techniques for minimizing message delay.

This work concerns efficient algorithms for broadcast in a communication network.
The network is modeled by a connected graph and assumes the telephone communica-
tion model (cf. [HHL88]). In this model messages are exchanged during calls placed
over edges of the network. A round is a series of calls carried out simultaneously: Each
round is assumed to require one unit of time, so round t begins at time t- 1 and ends
at time t. A vertex may participate in at most one call during a given round, however,
there are no limitations on the amount of information that can be exchanged during
a given call. At a given round, if a call is placed over an edge e, we say that e is active
in this round, otherwise it is idle. The set of rules governing the activation of edges
at each round is called a schedule.

A broadcasting problem refers to the process where a distinguished vertex v orig-
inates a message M that has to become known to all other processors. The efficiency
of a broadcast scheme is usually measured by the number of time units it takes to
complete the broadcast. Given a scheme S for broadcasting in a graph G, denote the
broadcasting time from v using S by b(v, G, S). Define b(v, G), the broadcast time of
a vertex v in G, as the minimum time for broadcasting a message originating at v in

* Received by the editors March 22, 1993; accepted for publication (in revised form) June 1,
1994.
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G, i.e.,
G) G,

We denote it simply by b(v) when the context is clear. We denote

b(G) mvax{b(v
Given a network G (V, E) and an originator u, the minimum broadcast time (MBT)
problem is to broadcast the message from u to the rest of the vertices in b(u) time
units. This problem has received considerable attention in the literature. For example,
broadcasting in trees is studied in [SCH81], and broadcasting in grid graphs is studied
in [FH78]. For a comprehensive survey on the subject of gossiping and broadcasting
see [HHL88].

The MBT problem in general graphs is Ne-complete (cf. [GJ79]) and, thus, is
unlikely to be solved exactly. However, several approaches toward coping with the
MBT problem have been considered in the literature. A dynamic programming for-
mulation for determining b(v) and a corresponding broadcast scheme for an arbitrary
vertex v are proposed in [SW84]. Since the exact algorithm is not efficient for large
networks, several heuristics are presented in [SW84] for achieving a broadcast scheme
with good performance.

Note that at each round, the informed vertices transmit the message outside to the
uninformed vertices. Since calls are placed along nonadjacent edges, the set of active
edges at each round constitutes a matching between the informed and the uninformed
vertices. In general it may be preferable to transmit the message first to vertices with
certain properties, e.g., to vertices whose degrees are maximal among the uninformed
vertices and thus are likely to be able to inform a large number of vertices. Thus the
approach of [SW84] is based on assigning weights to the vertices and looking for a
matching that also maximizes the sum of the weights of the vertices. The drawback
of such a heuristic approach is that it provides no guarantee on the performance of
the algorithm.

Consequently, in this paper we consider approximation schemes for broadcast,
namely, algorithms that may not give an exact solution but still give a solution that
is guaranteed to be "not too far" from the optimum.

1.2. Related communication models and primitives. Most of our results
in what follows are formulated for the broadcast operation in the telephone model.
However, a number of these results apply directly, or with minor changes, to some other
related communication primitives and models. Let us now introduce these alternate
models and primitives.

A generalization of broadcast that we consider is to assume the set V0 of informed
vertices at the beginning of the run need not consist of a single vertex but can be an
arbitrary subset of V. Denote this problem by SMBT, and denote the time needed to
broadcast from V0 by b(Vo, G) or b(Vo). As mentioned in [GJ79], SMBT is NP-complete
even for k 4 where k is the bound on the time for completing the broadcast.

Another important and well-studied communication primitive is the gossip oper-
ation. A gossip problem refers to the process of message dissemination, where each
vertex v originates a message my and all messages have to become known to all ver-
tices. The problem of performing the gossip primitive in minimum time is called the
minimum gossip time (MGT) problem. The problem of efficient gossiping has also
received considerable attention, mainly in the telephone model. For example, the pa-
pers [HMS72], [FP80] concern gossiping on the complete graph and on grid graphs,
respectively.
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Let us now turn to alternative communication models. Several generalizations of
the telephone model appear in the literature. In [Far80], Farley suggests reconsidering
the assumption that a vertex may call only neighboring vertices. Farley defines a
possible variant of the model using long-distance calls, called the open-path model. In
the open-path model, communication is carried along vertex disjoint paths. At each
round, an informed member v may call an uninformed vertex u on an (arbitrarily
long) path, adding u to the set of informed vertices. Two paths corresponding to
two different pairs must be vertex disjoint. We note the time needed to complete the
broadcast from a distinguished vertex v in the graph G in the open-path model, by
bop(V, G) (or bop(V)). We also denote

The problem of broadcasting from a vertex v in bop(V, G) time units is referred to in
what follows as OMBT.

In fact, Farley defines a second "long-distance" variant named the open-line
model. This model is similar to the open-path model, except that the paths used
in a communication round need only be edge disjoint. This model is less interesting
for our purposes, since the problem of approximating broadcast in this model is es-
sentially solved up to logarithmic factors. This is because, as shown in [Far80], the
open-line model enables broadcast from an arbitrary vertex in [log n] time units.

Another common model of communication is the message-passing model, which
is based on the assumption that a processor may send at most one fixed-size message
in each time step, along one of its outgoing edges, but the communication pattern
need not be a "matching." That is, it is possible that Vl sends a message to v2 while
during the same round v2 sends a message to v3.

1.3. Contributions. In what follows we consider approximation schemes for
broadcast (and some related primitives). Formally, we call an algorithm A for broad-
casting on a family of graphs " a k-approximation scheme if for every G E 9r and
vertex v E V,

b(v, a, A) <_ k b(v, a).

We say that a scheme S has a (k, M)-approximation ratio if

b(v, G, S) <_ k b(v, G) + k’.

A ratio is k-additive if it is an (O(1), k)-approximation ratio.
In this paper, we give approximation schemes for broadcast on several networks

classes and analyze their approximation ratio.
The next two sections are dedicated to preparing the background for our approx-

imation algorithms. Section 2 introduces the basic notions and definitions concerning
transmission schedules and broadcast. Next, 3 presents some of our main technical
tools. Specifically, it defines the minimum weight cover (MWC) problem and its close
variant named the minimum vertex weight cover (MVWC) problem and provides a
pseudopolynomial algorithm for solving them. The usefulness of this algorithm for
handling transmission scheduling problems is demonstrated via a "toy example" of
the bipartite edge scheduling (BES) problem. The MWC algorithm is used in virtually
all our subsequent approximations for MBT.

In 4 we turn to approximations for the broadcast problem itself. To motivate
the need for approximations, we examine three heuristics proposed in [SW84] for the
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MBT problem, analyze their behavior on the wheel graph (see Fig. 2), and show that
their output solution could be away from the optimum by a factor as high as v/ (on
the n-vertex wheel). We then give an approximation algorithm for general n-vertex
graphs with an O(v/-)-additive ratio.

Next, we show that in the open-path model, the OMBT problem has an approxi-
mation algorithm on arbitrary n-vertex graphs with a (multiplicative) approximation
ratio O(log n/log log n). This algorithm has the additional desirable property that it
solves the MBT problem (in the original telephone model) on random graphs (taken
from the class Gn,p) and yields an approximation ratio O(log n/loglogn) with high
probability.

Section 5 presents an approximation scheme for broadcasting on graphs enjoy-
ing small separators, with approximation ratio (n)-logn for graph families with
separators of size (n) (on n-vertex graphs). In particular, this algorithm yields
an O(log n) approximation for chordal and O(1)-separable n-vertex graphs (including
series-parallel graphs and k-outerplanar graphs for fixed k) and an O(nl/4/v/logn)
approximation for n-vertex bounded-face planar graphs.

Finally, in 6 we consider a special family of graphs called trees of cliques, gener-
alizing trees, and give an approximation scheme for broadcasting on such graphs with
additive-O(log2 n) ratio.

Our results for the broadcast operation carry over to the gossip operation as well.
To see this, note that in the telephone model, any scheme for broadcast can be used
to perform the gossip operation. This is done as follows. First, fix a root vertex v
and perform a convergecast operation (which is the opposite primitive to broadcast),
collecting all the messages from the rest of the vertices to v, using the broadcast
scheme in reverse. Then v, knowing all the information, performs a broadcast of the
combined message. It follows that our results for MBT hold for MGT as well.

Although we formulate our statements in the telephone model, virtually all our
results for broadcast hold also for the message-passing model, since as far as the
broadcast operation is concerned, these two models are equivalent in power. (This is
no longer the case for more involved operations, such as gossip.)

2. Preliminaries.

2.1. Graph definitions. Throughout this paper we use the following terminol-
ogy to describe the behavior of the network. Our network is represented by a graph
G (V, E), and we denote the number of vertices of a graph G by n and the number
of edges by m.

Given a graph G (V, E) and two vertices v, w E V, we denote the number
of edges in a shortest path between v and w by dist(v, w). We denote Diam(v)
max{dist(v, w)}. The diameter of the graph G is Diam(G)- maxv{Diam(v)}.

A cluster in a graph G is a subset V of the vertices such that the subgraph induced
by V is connected. Two clusters V, V are said to be disjoint if V 3 V --0. Two
disjoint clusters C1 and C2 are said to be independent if there is no edge connecting
a vertex of C1 to a vertex of C2.

DEFINITION 2.1. Let G (V, E) be a graph, and let S c V be a subset of the
vertices. A subtree T (V, E of G rooted at a distinguished vertex vo is a shortest
paths tree (SPT) leading from v0 to S iff S C_ V1, each path from vo to vi S in T is
a shortest path in G, and every leaf of T belongs to S. Denote an SPT leading from a
vertex vo to a set S by SPT(vo, S).

We now state the definition of a control graph of a subset V0 C_ V, in a graph
G (V, E). This definition will be useful in most of our approximation algorithms.
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DEFINITION 2.2. Suppose that the clusters (i.e., connected components) formed
when extracting Vo from the graph G are (C1,..., Ck}. The control graph of Vo in
G is a bipartite graph Dvo,G (V1, V2, A), where V1 V0, V2 (C1,..., Ck), and A
contains an edge (v, Ci) iff there is an edge between v and some vertex of Ci in G.

2.2. Schedules and broadcast.
DEFINITION 2.3. Given a graph G (V,E), two edges el,e2 E E are called

adjacent iff they share exactly one vertex and nonadjacent otherwise. A subset of
edges E E is an independent set (of edges) iff every two edges el, e2 E are
nonadjacent.

Fact 2.4. At each round t, the set of active edges is independent.
The MBT problem is formally defined as follows. Let v0 V be a distinguished

vertex. A broadcast from v0 is a sequence

{V0} V0, El, V1, E2, Ek, Vk V

such that for 1 _< _< k, the following hold.
1. C_ V and Ei C_ E.
2. Each edge in Ei has exactly one end point in k-l.
3. The set Ei is an independent set of edges.
4. Y -1 J (v "(u, v) E}.
In this case we say that the broadcast is performed in k time units. The MBT

problem concerns looking for the minimal k such that broadcasting in k time units is
possible, for a given graph G and vertex v0. This k.is denoted b(v0, G).

For any connected graph G of n vertices and originator u, b(u) >_ [log n ,1 since
in each time unit the number of informed vertices can at most double. Another simple
lower bound for b(v) for an arbitrary v is b(v) >_ Diam(v), since a vertex may only
send information to a neighboring vertex at each round. An example of a graph for
which b(G) [log n is gn, the complete graph of n vertices.

In any connected graph G, a broadcast from a vertex u determines a spanning tree
rooted at u. The parent of a vertex v is the vertex w that transmitted the message to
v. Clearly, one may assume that such a vertex is unique. Even when using an arbitrary
spanning tree, it is clear that at each step the set of informed vertices grows by at least
one. Thus for each network G, b(G) _< n- 1. We cannot always improve upon this
result. For example, in Sn, the star of n vertices, the broadcast time is b(Sn) n- 1.
We summarize this discussion as follows.

Fact 2.5.
1. For every graph G (V, E) and vertex v V, [log n <_ b(v) <_ n- 1.
2. b(gn [log n
3. b(Sn) n 1.
4. For every graph G- (V, E) and vertex v V, b(v, G) >_ Diam(v).
Note that Fact 2.5 holds in the open-path model as well, except of course for

claim 4; we cannot argue that bop(G) _> Diam(G).
3. The minimum-weight cover problem. The MWC problem is a basic tool

we use in our approximation algorithms for MBT. In this section we define the problem
and provide a solution for it.

3.1. The problem. In order to describe the MWC problem we need some pre-
liminary definitions. Let G (V1, V2, A,w) be a bipartite graph with bipartition

All logs in this paper are taken to base 2.
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(V1, V2), edge set A, a weight function w A H Z+ on the edges, and no isolated
vertices. A feasible solution to the MWC problem is a control function F V2 -- V1,
where F(v2) vl implies (vl, v2) E A. Each vertex vl E V1 is called a server, and
each vertex v2 V2 is called a customer. If F(v2) Vl we say that Vl controls (or
dominates) V2.

We adopt the following notational convention.
DEFINITION 3.1. Consider a bipartite graph G (V1, V2, A,w) as above and a

control function F. For each server v V1, we denote the clients dominated by v by
T)I (v),..., T)k(v) and the edges connecting them to v by e (v, T)(v)). Furthermore,
we assume (without loss of generality) that these vertices are ordered so that w(e) >_

i.
The weight of F is defined as

W(F) max{max{/+ w(e)}}.
vEV1

The MWC problem is now defined as follows. Given a bipartite graph G
(V1, V2, A, w) as above, determine a control function F" V2 V1 whose weight
is minimal. We call this function F the minimum control function for G (or just the
minimal function).

It is important to note that in all the applications to the MWC problem given in
this paper, the weights satisfy w(e) <_ n. Thus, in order to use this problem as a basic
auxiliary tool for the study of MBT, a pseudopolynomial solution for it will suffice.

A special variant of the MWC problem arises when for each v2 V2 the weights of
the edges entering v2 are identical. In this case, we might as well associate the weight
with v2 itself. We call this variant of the problem the MVWC problem. If all the
weights are identical (thus without loss of generality all the weights are 0), a solution
only needs to minimize the maximal number of vertices dominated by a single vertex
of V1, i.e., minimize the size of the largest inverse image of F; hence, it is possible to
use the modified weight function

w’(F)- max I{v2 e V2"F(v2)- Vl}l.
vl EV1

3.2. An algorithm for MWC. This subsection presents a pseudopolynomial
solution to the MWC problem. The algorithm is based on a procedure FLOW, which
given an instance G (V1, V2, A,w) and a positive integer j, checks if there exists a
control function F for G of weight )4;(F) _< j. This procedure is then used to search
for the minimum control function by going over the possible j values.

The solution method employed by Procedure FLOW for this problem involves flow
techniques. Specifically, the procedure constructs a modified flow graph j based on
G and j, with the property that G has a control function F with weight 1/V(F) _< j iff
it is possible to push IV21 units of flow from the source to the sink on (j.

The graph G is modified by Procedure FLOW into ( as follows. Create a source
vertex s and a sink vertex t. Notice that for the function F to be of weight j, a server v
cannot dominate a customer u such that w(v, u) >_ j. Assume that wv is the maximal
weight that is less than or equal to j 1 of an edge incident to v E V1. Duplicate v
into wv + 1 different copies and arrange the copies in an arbitrary order vl,..., vv+1.
For vl, the first copy of v, create a directed edge (s, Vl) with capacity j -w. and a
directed edge (vl, u) with capacity 1, from Vl to every customer u V2 such that
(v, u) A. For v the ith copy of v, _> 2, create a directed edge (s, v) with capacity 1
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FIG. 1. A bipartite graph G with its weights, and the corresponding flow graph 3.

and a directed edge (v, u) with capacity 1 to all the customers u such that (v, u) E A
and w(v, u) _< wv i + 1. Finally create for each customer u E V2 a directed edge (u, t)
with capacity 1. See Fig. 1 for an example of a graph G and the associated flow graph

PROCEDURE FLOW
Input: a graph G (V, E) and an integer j.

Construct the flow graph (j.1.

2. Compute the maximal flow on (j from s to t.

Since there are exactly IV21 edges entering t and each of them is of capacity 1,
the maximal flow from s to t cannot exceed IV21. We now claim the following lemma.

LEMMA 3.2. Consider an MWC problem on a given graph G and the correspond-
ing flow graph j constructed by procedure FLOW for some integer j. Then the max-

imal flow from s to t on j is IV21 iff there exists a control function F for G such
that )IV(F) <_ j. Furthermore, the required control function F for G can be computed
efficiently from the flow assignment for j.

Proof. For the first direction, we assume that there exists an integral flow function
for Gj with I1/1 flow units entering t and show how to (efficiently) construct the
required control function F.

Let us note that since each edge pointing from a vertex v2 V2 to t has capacity
1 and all the edges entering v2 have capacity 1 as well, only a single edge entering v2

may carry positive flow of one unit. Hence since the total flow is IV21, one such edge
must exist for each vertex v2 V2. Consequently, define F(v2) Vl such that Vl is
the vertex for which the flow through (vl, v2) is 1.

We need to show that this definition of F meets the requirement, namely, W(F) <_
j. This is shown as follows. Note that since the total flow entering all the copies of
a vertex v V1 does not exceed j, each server of V1 may dominate no more than j
customers in V2. For every server v V1 and integer m, denote the number of v’s
customers Tl(v) such that w(e) >_ m by rm(v); alternatively, recalling that the edges
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e are ordered in nonincreasing weight order, we have

r.(v) max{/ w(e’) > m}.

We argue the following.
CLAIM 3.3. rm(V) <_ j--re.
Proof. Consider first the value m wv. Since only the first copy of v can dominate

vertices u such that w(v, u) Wv, v does not dominate more than j -wv such vertices.
Now consider m < Wv. Note that only the copies number 2, 3,..., wv m + 1 can

aid in increasing the value of rm(V), each by at most 1. Thus rm(V)

_
j --Wv + (Wv

m+ 1-2)+ 1 =j-m. D
COROLLARY 3.4. Every 1

_
i

_
k satisfies i

_
j- w(e).

Proof. Let m w(e). By the last claim, rm(v) <_ j m, so it remains to show
that i <_ rm(v). This follows readily from the definition of rm(v).

The remainder of the proof of this direction follows in a straightforward way from
Definition 3.1" since by the last corollary max/{/+ w(e’)}

_
j for every j, it follows

that Via(F) <_ j as well.
To prove the other direction, assume that there exists a control function F for

G such that 142(F)

_
j. Thus each server dominates no more than j customers, and

furthermore v does not dominate more than j- customers whose corresponding
weights are i or larger. We now use F to define a flow function for the flow graph Gj
as follows.

Consider a server v. As before, order its customers T)i(v),..., Tk(V) by nonin-
creasing weights of their edges. Augment the flow through vl, the first copy of v,
by j -Wv, adding a flow of 1 from VI to each of )1 (V),..., )j--wv (V). The weight of
the next client of v, namely, T)j_v+l(v), is smaller than Wv, and therefore there is
a directed edge from the second copy, v2, to that vertex. Thus it is still possible to
augment the flow by 1 through v2. In a similar way, it is possible to continue this pro-
cess and augment the flow by k through all of v’s clients, {/)(v),..., T)k(v)}. Since
this is true for any server, it follows that in total, a maximal flow of IV21 can be
attained.

The minimum weight control function itself can now be found by using procedure
FLOW within a binary search on the possible range of j values. Formally, we do the
following.

PROCEDURE MWC
1. Start with j -- min{w(e)} + 1 and j2 -- max{w(e)} +2. repeat

(a) j - 2
(b) Apply Procedure FLOW to G with j.
(c) If the maximal flow is

/* hence there exists a control function F of weight j */
then set j - j, else set j2 - j.
until j j2 _< jl + 1.

3. Return the minimum control function F corresponding to the maximal flow
computed on (yl.

Clearly, when this process terminates, we are left with a minimum control function
F, whose weight is 14;(F) jl for the value of j upon termination.

The flow computation is performed for at most a polynomial number of times.
Note, however, that a vertex may be duplicated in a number of copies that can equal
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the maximal number in the input; hence the solution is not strongly polynomial in
the input. To summarize, we have established the following.

THEOREM 3.5. There exists a pseudopolynomial algorithm for solving the MWC
problem.

Since MVWC is a special case of MWC, we can deduce the following corollary.
COROLLARY 3.6. There exists a pseudopolynomial algorithm MVWC for solving

the MVWC problem.

3.3. The bipartite edge scheduling problem. Before embarking on our main
task of approximating broadcast problems, let us first try to demonstrate the way in
which the MWC algorithm can be used for this purpose. To do that, we introduce
a model problem called the BES problem, which will serve as an illustrative example
for the usefulness of MWC.

The BES problem is defined as follows. Assume that we are given a bipartite
graph G (V1, V2,A) where the vertices of V1 know an initiation message that
must be broadcast to the vertices of V2. That is, the initial set of informed vertices is

V1. Again, call each vertex in V a server and each vertex in V2 a customer.
Further suppose that each customer v2 6 V2 has a task tv. to perform. The

customer must first receive the initiation message before it can start performing
its task. Moreover, the length of the task tv. (i.e., the time it takes v2 to complete
it) depends upon the source of the initiation message, namely, which vertex of V
transmits the message to v2. Formally, for each edge e (v, v2) 6 A there is a weight
w(e) 6 Z+, such that if v2 receives the initiation message from Vl, then it takes
w(e) time units for v2 to complete the task t., starting from the arrival time of the
message.

The BES problem is to minimize the completion time of the entire process, namely,
the time by which every vertex in V2 completes its job. The bipartite vertex scheduling
(BVS) problem is the variant of BES in which every vertex v’ 6 V2 has entering edge
weights that are identical (and hence can be thought of as vertex weights, w(v’)).

To see the relationship between the BES problem and the previously discussed
MWC problem, note that MWC is in fact the main component in solving the problem,
since once a control function F is defined for the graph G, it is intuitively most efficient
for each server v to send the initiation message along its edges in nonincreasing order
of weights. It is therefore easy to see that the following (pseudopolynomial) procedure
will be optimal for BES.

ALGORITHM BES
1. Apply Procedure MWC to compute a minimal control function F for G.
2. Every server v E V1 sends the initiation message to its clients T)(v),...,

7)k(v) in this order.
/* recall that clients are ordered by nonincreasing edge weights */

3. Each customer v E V2 starts performing its task immediately after it is in-
formed.

Fact 3.7. Algorithm BES optimally schedules any BES instance.
Since BVS is a special case of BES, we can deduce the following corollary.
COROLLARY 3.8. There exists an optimal pseudopolynomial algorithm for BVS.
Example. In order to demonstrate the relevance of the BES for broadcasting, let

us consider the following restricted variant of SMBT. Let V0 be the base set of an
SMBT instance. Suppose that when extracting V0 from the graph, the remainder of
the graph becomes disconnected and breaks into k (connected) clusters C1,..., Ck.
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FIG. 2. The wheel of nine vertices.

Furthermore, suppose that every cluster Ci contains a representative vertex vi, such
that every vertex v E V0 is either connected to vi or not connected to any vertex of Ci.
Finally, assume that we can optimally compute the broadcast times b(vi, Ci) for every
cluster Ci (e.g., when the clusters Ci are, for example, trees or grids or of logarithmic
size).

Intuitively, we can view this variant of the broadcasting problem as a special
case of the BVS problem, as follows. Form the control graph Dvo,G of V0 in G as in
Definition 2.2. Define the weight w(Ci) on a vertex Ci E V2 as the time required by the
representative vertex, vi, for broadcast in Ci. Now apply the BVS algorithm to this
graph, taking V1 to be the base set and V2 to be the collection of clusters {C1,..., Ck }
and regarding the task of each vertex Ci in V2 as performing broadcast in the cluster
by the representative vertex vi. Since in each of the clusters only the representative
vertex is connected to the "outside world," the vertices outside the cluster cannot
aid in this internal broadcast process; hence, the vertex weights on V2 are defined
appropriately.

It is straightforward to show that the solution to the BVS problem yields exactly
the minimum broadcast time from V0. Further, note that since the vertex weights in
this problem represent broadcast times in a cluster of the graph, it follows from Fact
2.5 that they are no larger than n- 1, and hence the BVS instance can be solved
polynomially.

4. Approximating broadcast in general graphs. In this section we give an
approximation scheme for broadcasting in general graphs, both in the telephone model
and in the open-path model. We begin by motivating the need for approximation
schemes for broadcasting.

4.1. The heuristic approach. In this subsection we demonstrate the fact that
the natural heuristics proposed in [SW84] might be inadequate in some simple cases.
The example considered is a wheel, i.e., a cycle of n- 1 vertices numbered 1,..., n- 1,
arranged by increasing order of indices, with an extra vertex v0 connected to all the
vertices in the cycle (Fig. 2). Let us first give tight bounds on the minimum broadcast
time from v0.

LEMMA 4.1. In the n-vertex wheel, b(vo) O(v).
Proof. First let us show that b(vo) (v/). Assume that the broadcast takes

k time units. The vertex v0 can inform up to k different vertices. Therefore there is
a .vertex w whose distance on the ring from the vertices directly informed by v0 is at
least [[(n- 1)/k/2J. Thus the time for informing w is at least [(n- 1)/k/2J + 1.
The minimum broadcast time is achieved when [[(n- 1)/k/2J + 1 k, in which case
k _> v/(n- 1)/2, yielding the desired lower bound on the broadcast time.

To prove that b(vo) O(x/-), note that if v0 informs all vertices whose index



APPROXIMATION ALGORITHMS FOR MINIMUM-TIME BROADCAST 411

is congruent to 1 mod[v/n- 1 and then these cycle vertices inform the rest of the
ertices, the total time for broadcasting is no more than 3. [v/n- 1/2 + 1 time
units.

Now consider the following three heuristics suggested in [SW84] for MBT. The
first heuristic is based on defining, for a set of vertices V c_ V,

D(V’)- E d(v).
vEV

At each round i, select from all possible maximum matchings between the set of
informed vertices and the set of uninformed vertices, a matching satisfying that the
set V/ C_ V \ of "receiving" end vertices in the matching has maximal Da(V). Let
us describe a possible broadcast scenario. At the first round, v0 delivers the message
to the vertex 1. At round 2, v0 calls n- 1 and 1 calls 2. It is easy to see that starting
from the third round one can choose a maximal matching that enlarges the set of
informed vertices by 3 at each round. For example, at the third round v0 may call
n- 3, n- 1 calls n- 2, 2 calls 3, and so on. Note that the above scenario conforms with
the given heuristic, since the degree of all the vertices in the wheel (except v0) is 3.
Thus using this heuristic, it might take (n) time units to complete the broadcasting.

A second heuristic approach suggested in [SW84] is the following. Define the
eccentricity of a set V C V to be

Dist(V’) E Diam(v).
vEV

Choose, among all the possible maximal matchings, a matching for which the eccen-
tricity of the set of newly informed vertices is maximal. In a way similar to that above,
it is easy to see that there are cases in which this approach leads to a broadcast time
of (n). The last heuristic suggested in [SW84] is a combination of the former two,
and it, too, may lead to an (n) broadcast scheme.

It follows that, for this example, all of these heuristics may yield broadcast times
that ar.e (V) times worse than optimal. We do not know whether this ratio is

guaranteed by any of the three heuristics.

4.2. Approximating MBT. In this subsection we consider approximation
schemes for broadcasting in general graphs. By Fact 2.5, the scheme that chooses
an arbitrary broadcast tree is at worst an (n- 1)/[log n approximation scheme. We
improve upon this approximation ratio and present an algorithm that guarantees an

O(v)-additive ratio.
The method used for the approximation is based on dividing the set of vertices

into clusters of size [v/ and broadcasting separately on those clusters. Let us start
by describing the various tools used by the algorithm. At the heart of our scheme is
the following decomposition lemma.

LEMMA 4.2. The set of vertices of any graph G (V, E) can be (polynomially)
decomposed into two sets of clusters .4 and B, such that 1,41 <_ V/d, the clusters in
4 U B are pairwise disjoint, (J 4) (J B) V, the size of each cluster C’ E .4 is

IC’l [V/, the size of each cluster C’ e B is bounded by IC’l <_ v, and the clusters
in B are pairwise independent.

Proof. The proof the lemma follows by direct construction. Let us next present
the decomposition procedure. The algorithm maintains three different sets of clusters
A, B, and C.
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PROCEDURE DECOMPOSE
1. At the start C - {V}, J[ +-- 0, B - 0.
2. repeat

(a) Choose a cluster C in C and an arbitrary (connected) subcluster C’ of C
such that IC’l [x/-].

(b) Remove C’ from C, and set j[ j[ U {C’}.
/* Now C \ C’ is composed of several independent clusters. */
Add the clusters {C"" C" c_ C \ C’, IC"l- [v]} to A.
Add the clusters {C"" C"C_ C \ C’, IC"l > [v/-]} to C.
Add the remaining clusters in C \ C to B.

until C 0.

It is clear from the construction that all the clusters in ,4 have exactly
vertices. Thus the number of clusters in j[ cannot exceed v/. It is also clear that the
number of vertices in each cluster in B is no more than vf.

To prove that the clusters in B are independent, it is sufficient to claim that at
each stage, all the clusters of B t2 C are such. The proof is by induction on the stage
number. At the basis B C and the claim follows vacuously. Now assume that
after stage all the clusters in C and B are pairwise independent. In the next stage
we exclude a subset of vertices from some cluster C E C; thus the remaining vertices
decompose into independent clusters. The clusters added to B and C are a subset of
those clusters; thus the claim follows by this fact and the induction hypothesis.

Note that the construction of Procedure DECOMPOSE in the proof of Lemma 4.2
allows us to find such a decomposition in O(E. v) time, since checking which are
the newly formed clusters at each stage takes O(E) time.

Our next tool exploits the use of a minimum control function for broadcast. Let
G (V, E) be a graph and V c V subset of the vertices. Form the control graph of
V in G, Dv,,G (V1, V2, A), as in Definition 2.2. Let the weight of each edge be 0.
In this scenario we claim the following.

LEMMA 4.3. Let F be a minimum control function for Dy,,c. Then 14;(F)
(V’,).

Proof. Consider an optimal communication scheme S from V on G. For every
cluster Ci V, choose one of the vertices that is among the first to transmit the
message to a vertex in Ci. Since the clusters Ci are pairwise independent, such a
vertex is in V for each i. The above determines a function F from V to V1.

Consider an arbitrary vertex v V. If v dominates j clusters, then there is a
cluster Ci V such that v transmits the message to Ci in the jth round (or later). By
the way F’ was chosen, j <_ b(V’, G). Thus by definition, 1/Y(F’) _< b(V’, G). However,
the weight of F satisfies 142(F) _< 14;(F’). The proof follows.

Our final tool involves broadcasting on a tree. Recall that given a tree T
(V1, E) and a vertex v V it is easy to compute the optimal scheme for broadcasting
on T from v [SCH81]. Let us call the optimal scheme for broadcasting in a tree the
OT scheme.

In the next lemma we use a shortest paths tree SPT(v, 5’) rooted at a vertex v and
leading to a set S of vertices (see Definition 2.1). Note that it is easy to construct such
a tree in time polynomial in IEI using a shortest path tree algorithm; simply construct
a shortest path tree T spanning all the.graph vertices, and iteratively exclude from it
each leaf not belonging to S, until no such leaf exists.

LEMMA 4.4. Transmitting a message from a vertex v to a subset V C_ V, IVI
of the graph, can be performed in no more than 1 + Diam(v) time units.
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Proof. Construct an arbitrary tree SPT(v, V) rooted at v and leading to the
vertices of V. Use the OT scheme to broadcast the message to all the members of the
tree. Consider any leaf u. We would like to show that u gets the message within the
specified time bounds. This is done by "charging" each time unit elapsing until u gets
the message to a distinct vertex of the tree and then bounding the number of charges.

Consider the situation immediately after an ancestor v of u receives the message.
The vertex v is currently the lowest ancestor of u that knows the message. Thereafter
v starts delivering the message to its children. When v delivers the message to a child
whose subtree T does not include u, choose arbitrarily a leaf in T and charge this
time unit to the leaf. When v delivers the message to the ancestor of u, charge this
time unit to v.

Note that at every time unit we charge a single vertex, on account of u, and
thus the total number of units charged is exactly the time before the message reaches
u. Also note that no leaf is charged twice and that u is not charged. Finally note
that every ancestor of u (except u itself) is charged once. Thus the time it takes the
message to reach u is bounded by Diam(v) plus the number of leaves in T beside u.
Since each leaf is a member of V, the proof follows.

We are now ready to combine the three tools discussed in the above lemmas into
an algorithm, named APPROx_MBT, for approximate broadcast on general graphs.

ALGORITHM APPROx_MBT

Input: a graph G (V, E) and a distinguished vertex v0 E V.
1. Decompose the vertices of V into two sets of clusters j[ and B using Procedure
DECOMPOSE of Lemma 4.2.

2. Choose for each cluster C in j[ a single representative vertex vc. Let R denote
the set of representatives, R {vcIC fit}.

3. Transmit the message from v0 to all the vertices of R by choosing an arbitrary
tree SPT(v0, R) leading from v to R and applying the OT scheme to the tree.

4. Choose for each cluster C ,4 an arbitrary spanning tree rooted at its repre-
sentative vc, and broadcast (in parallel) in the clusters of ,4 according to the
OT scheme.

5. Construct the bipartite control graph Dvo,G where V0 ([J Ji)U{v0 }. Compute
a minimum control function F on DVo,G using Procedure MWC. Assume that
a vertex v dominates clusters C1,..., Ck B. Choose for each Ci an arbitrary
vertex vi Ci connected to v, and deliver the message from v to Vl,... vk
(in arbitrary order). This is done in parallel for all the dominating vertices
of V0.

6. Choose for each cluster in/3 an arbitrary spanning tree rooted at an informed
vertex, and transmit the message in parallel to all the vertices in the clusters
of 13 using the OT scheme in each cluster.

THEOREM 4.5. The broadcast time of Algorithm APPROx_MBT from a vertex vo
in a graph G is bounded by 3. / + Diam(v0) + b(vo) time units.

Proof. By Lemmas 4.4 and 4.2 the time it takes to complete stage 2 is bounded
by v 1 + Diam(v). The fact that each cluster in 4 has exactly [v/-] vertices
and Fact 2.5 imply that stage 3 takes no more than x/ time units. By Lemma 4.3,
14;(F) _< b(([.J ji)U {v0}) _< b(v0); thus stage 4 takes no more than b(vo) time units.
Finally, the fact that the clusters in B are of size no larger than vf implies that stage
5 takes no more than v 1 time units.
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The ratio guaranteed by the theorem is O(x/)-additive. Consequently, whenever
the broadcast time of a network is (vf), e.g., in the wheel of n vertices, the scheme
of Algorithm APPROx_MBT is a constant approximation scheme. For example, for
each network whose diameter is at least v/-, the above is a 5 approximation scheme.
However, in the general case, the optimal broadcasting scheme may achieve time that
is close to [log n. Thus, in the general case our method is a (3. x/-/[logn + 2)-
approximation scheme and also an O(v//Diam(G))-approximation scheme. In order
to improve upon this it may be necessary to achieve, say, a good approximation scheme
for networks of "small" diameter.

4.3. Broadcasting in the open-path model. Let us turn to the open-path
communication model. Algorithm APPROx_MBT can be generalized to give a good
approximation scheme for the open-path broadcasting problem. It is easy to see that
Lemma 4.3 holds even in the open-path model.

LEMMA 4.6. Let T be a tree rooted at v, with up to k leaves. Then it is possible
to broadcast a message from the root v to all the vertices of the tree in the open-path
model, in no more than 2. k + log n time units.

Proof. We first recall the following fact, proven in [Far80].
Fact 4.7 [Far80]. Broadcasting in the open model on a path of m vertices can be

completed in [log rn time units.
To prove Lemma 4.6 we give a two-stage procedure. In the first stage we proceed

in the following recursive fashion. As soon as a vertex v is informed, it checks if the
subtree Tv, rooted at it contains a vertex of degree at least 3, i.e., with at least two
children. If no such vertex exists (i.e., the subtree Tv, is a path), then v does nothing.
Otherwise, assume that the highest such vertex in the tree rooted at v is v’. That is,
the subtree Tv, is composed of a path connecting v to v’, plus the subtree T,, (note
that possibly v" v). Then v makes a long-distance call to all the children of v’, in
arbitrary order.

It is easy to see that when this first stage is finished, the tree can be decomposed
into a union of disjoint paths where for each path, one end vertex knows the message.
During the second stage, each informed end vertex of each path informs the rest of
the vertices in the path as in Fact 4.7.

In analyzing the delays occurring before a message reaches a leaf u, we separate
our analysis to the first and second stages. This first stage is handled by a charging
rule somewhat similar to that used in the proof of Lemma 4.4. Note that at each
time step t, there is a unique ancestor low(u, t) of u that is responsible for it, namely,
the lowest ancestor currently holding the message. At time step t, low(u, t) sends the
message to some child v" of a vertex v with at least two children. If u does not belong
to the subtree Tv,,, charge a delay to an arbitrary leaf in Tv,,. When the message is
sent to a child v of a vertex v such that v" is a ancestor of u, charge the delay to
v. Note that only leaves and vertices with degree at least 3 are charged, and none of
them is charged more than once. The number of vertices of degree 3 or higher is no
more than k- 2; hence, the total delay in stage 1 is bounded by 2. k- 2.

In the second stage the broadcast takes place along vertex disjoint paths, each
with no more than n vertices. Hence by Fact 4.7 this stage can be completed in [log n
time units. In total, the communication delay is bounded by 2. k- 2 + [log n. [:]

This discussion motivates the following approach for approximating OMBT. First
we define sets of representatives, {R1,...,Rf}, where RI V IRfl

_
log/t, and

f

_
log n/log log n. To each set Rj and vertex v E Rj there is a corresponding tree

Tv, containing at least [log n] vertices of Rj-1. The trees corresponding to different
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vertices in Rj are vertex disjoint.
The main algorithm operates in f stages. The first stage informs the vertex set

Rf. The algorithm then proceeds to inform the sets Rj in reverse order of indices, i.e.,
at the end of stage i, the message is known by the set Rf-i+l, and the goal of the
next stage is for Ri-i+l to inform RI-i.

We next present Procedure CHOOSE_REP, whose task is to choose the sets Ri of
representatives and the corresponding trees Tiv, v E Ri. After that, we give the main
algorithm that uses Procedure CHOOSE_REP to approximate OMBT.

Throughout the execution of Procedure CHOOSE_REP we extract trees from G.

PROCEDURE CHOOSE_REP
Input: A graph G (V, E) and a distinguished vertex vo E V.

1. RI+-V,iI.
2. repeat

c {v}, +-0.
(b) while C # 0 do:

(i) Choose cluster A C. Select [log n] vertices in AR arbitrarily, except
that if v0 A, take v0 as one of them. Let the chosen vertices be
v,..., V[og ], such that we set v v0 if v0 A. Select in A a subtree
T/ leading from v to {v,..., Vog] }.

(ii) Extract T/" from A.
(iii) Set C - C A {B: B is a connected component of A \ T’,

r og l}.
end-while

(e) For every tree T obtained in stage (b), add its root
(4) +- +
until IRil _< rlogn].

Let us first state the following properties of Procedure CHOOSE_REP. The proof
follows directly from the algorithm.

CLAIM 4.8. Let the number of stages in Procedure CHOOSE_REP be f. Then
1. voR,
2. IRiI <_ n/ log n, and
3. f _< (log n/log log n).
We now proceed to define the main algorithm. Throughout the algorithm we

maintain a set R of informed vertices that equals R for some j. The point is that j
decreases by one in each iteration, thus at the end R R V.

ALGORITHM APPROx_OMBT
Input: A graph G (V, E) and a distinguished vertex v0 E V.

1. Apply Procedure CHOOSE_REP on G and v0. Assume that the sets of repre-
sentatives are {R1,..., RI}.

2. Choose an arbitrary tree leading from v0 to the other vertices of Rf, and inform
all the vertices in RI using the scheme suggested in the proof of Lemma 4.6.

3. R-RI,i f.
4. repeat

(a) Each vertex u Ri informs (in parallel) all the vertices in T/u using the
scheme suggested in the proof of Lemma 4.6.

(b) Let G G \ [.JeR T/- Let C,..., Cs denote the clusters in the graph
induced by G.
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(c) The vertices (.JT inform a vertex vj in C, for each 1 < j < s, using a
minimum control function computed by Procedure MWC, as in step 5 of
Algorithm APPROx_MBT.

(d) Choose for each j, a tree TLj leading from vy to the vertices in Ri-1 3 C.
(e) The vertices vy inform the vertices of TLy using the scheme of Lemma 4.6.
(f) R - Ri-1, i -- i- 1.
until i- 1.

It is clear from the algorithm that when stage 4(e) of Algorithm APPROx_OMBT
is completed, all the vertices of Ri- know the message. It follows that at the end all
the vertices are informed.

THEOREM 4.9. Algorithm APPROx_OMBT is a O(log n/ log log n) approximation
scheme for OMBT.

Proof. By the definition of Procedure CHOOSE_REP, IRfl < log n. Thus it follows
by this fact and Lemma 4.6 that step 2 of Algorithm APPrtox_OMBT takes O(log n)
time units. Let us now analyze the communication time of stages 4(a) to 4(e) for a fixed
i. Since for every u e Ri, every leaf in T belongs to Ri-1 and IT 3Ri- [log HI, it
follows that the number of leaves in T/ is bounded by [log HI; thus, by Lemma 4.6 the
communication time of informing the vertices ofT in step 4(a) is bounded by O(log n)
time units. In step 4(c) the vertices in JT inform a vertex of each clusters C. It
follows by a similar argument to Lemma 4.3 that the number of time units is bounded
by bop(V0). Finally, it follows from step (b) of Procedure CHOOSE_REP that for every
j, C N Ri-1 < log n; thus, by Lemma 4.6, step 4(e) takes no more than O(log n) time
units. Summarizing, for a fixed i, the communication complexity of the scheme is
bounded by O(bop(Vo) + log n) O(bop(Vo)). By Claim 4.8, f < log n/log log n. Hence
the desired result follows. [3

Let us remark that we choose trees with [log n] leaves since this is the only
lower bound known on the broadcasting time. If, however, it is known that for some
particular family of input instances the broadcast time is bounded below by Hik for
some k smaller than log n/loglogn, then it is possible to construct trees with Hik

leaves and get an O(k)-approximation scheme for k < log n/log log n.

4.4. Broadcasting on random graphs. The method of Algorithm
APPROx_OMBT can be used to deal with the MBT problem as well. However, at
each stage, broadcasting in a tree T may take O(log n + h(T)) time units, where h(T)
is the height of T. Since the diameter of a subcluster of a graph G may largely increase,
this may not be a good approximation scheme in the worst case.

However, it is instructive to consider the behavior of Algorithm APPROx_OMBT
on random inputs. Let us consider a random graph G E Gn,p. The graph consists of
n vertices, where for each pair of vertices v, w E V, the edge (v, w) E is drawn with
probability p, where p is constant, 0 < p < 1. It is well known that the diameter of each
vertex-induced subcluster of Gp,n is bounded by O(log n) with high probability [Bo185].
For such graphs the scheme of Algorithm APPROx_MBT yields only an O(v/-/log n)-
approximation ratio. In contrast, Algorithm APPROx_OMBT is an O(log n/log log n)-
approximation scheme for random graphs with high probability.

COROLLARY 4.10. There exists a polynomial algorithm that broadcasts on a ran-
dom graph G Gn,p in no more then O(log n/log log n). b(G) time units with high
probability.

5. Separator-based strategies for broadcasting. An important method for
dealing with optimization problems on graphs is the divide-and-conquer approach
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[AHU74]. The idea is to find a small set of vertices whose removal splits the graph into
connected components of roughly equal size and then to solve the problem recursively
by handling each of the components separately. Unfortunately, general graphs do not
necessarily have small separators. However, some important families of graphs do.
The notion of a separator is formalized in the following definition.

DEFINITION 5.1 Let 99(n) be a nondecreasing function, and let y and p be fixed
numbers such that 0 < p < 1.

1. A graph G (V, E) has a (p, y)-separator if there exists a set S c V such that
the removal of S leaves no connected component of size greater than p.n, and

2. A graph G (V,E) is (p, v(n))-separable /f every vertex-induced subgraph
G’ c G of n’ vertices has a (p, (n’))-separator.

Given a (p, (u))-separable graph, denote the corresponding separator of every
subgraph G by sep(GI). This section examines the idea of using the separability
property of a graph in order to achieve fast approximation schemes for broadcasting.

5.1. Broadcasting schemes for separable graphs. In order to develop a
separator-based broadcasting scheme, we first need to generalize Lemma 4.3. Suppose
that a graph G contains a set V0 of informed vertices. Denote the clusters created
when extracting V0 from the graph by C1,..., Ck. Choose for each Ci an arbitrary
nonempty subset C c Ci. We can use the fact that in broadcasting it is necessary
to inform the vertices of C to achieve a lower bound on the best possible time for
broadcasting. As before, we use Procedure MWC developed in 3.2. Let us first define
a MWC instance B’ MWC(V0, {Ci,..., C}) as follows.

1. Form the control graph DVo,G of V0 in G.
2. Put weights on the edges as follows. For an arbitrary vertex v E V0 connected

to a vertex in Ci, choose a vertex v E Ci connected to v that is closest to the set C.
Attach a weight dVc =- dist(v’, C) to the edge (v, Ci).
(Note that in Lemma 4.3 the construction is similar, except that we choose as subset

C Ci, for every i.) We make the following claim.
LEMMA 5.2. If F is a minimal control function for B, then )IV(F)

_
b(Vo, G).

Proof. First we argue the following technical claim, implicitly used also in
[SCH81].

CLAIM 5.3. Let di,ti Z+, for 1 <_ <_ k, such that dk <_ d_ <_ <_ d, and
the t ’s are all distinct. Then maxi{i + di } _< max{ti + d}.

To any communication scheme from a base set V0 such that IV01 > 1, there is a
corresponding spanning forest of G, where each tree in the forest is rooted at a vertex
v of V0 and represents the set of edges that carried the message from v (i.e., the nodes
of the tree are those that received their copy of the message along a path originating
at v). Assume that S is an optimal communication scheme for broadcasting from the
base set V0. Denote the forest corresponding to S by ’. Every vertex v V0 that
sends the message to some vertex in one of the Ci clusters roots a tree T. ’. Let
us define a function F’ {C1,..., Ck} Vo as follows. Pick a vertex w C that
is among the first in C to receive the message (breaking ties arbitrarily). Suppose
that w E Tv; then set F(C) v. Now consider a vertex v V0 that dominates a
nonempty set of clusters. Say that v controls Ci (i.e., F’(Ci) v), and assume that
ui is the (unique) child of v in Tv that is an ancestor of wi. Clearly, we can assume
that ui Ci.

Say that v sends the message to ui at time ti. The time that passes before ui can
inform any vertex in C (specifically w) is at least d(u, C), thus by the fact that w
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is one of the first vertices in C that received the message, ti + dist(u, Ci) _< b(V0, G),
thus t + dv < b(V0, G) and so

m.ax(t + d } <_ b(Vo, G).

Thus from Claim 5.3 we deduce that

m.ax{i + dvc } <- b(Vo G)

Since this holds for every vertex, we conclude 1/V(F’) <_ b(Vo, G). Since F is a minimum
control function,

Note that we can use an algorithm similar to Algorithm BES of 3.3 to establish
the following fact.

Fact 5.4. In the above scenario, it is possible to inform at least one vertex in C,
for every i, in no more than kV(F) time units.

It is possible to use Fact 5.4 in order to construct schemes for broadcasting from
a distinguished vertex v in a graph with a "small" separator. Let G be a (p, o(n)}-
separable graph. Throughout the run, the set V0 will denote the set of already informed
vertices.

ALGORITHM APPROX_SEP
1. v0 - {v}.
2. Construct a separator sep(G) for G.
3. Build an arbitrary tree SPT(v, sep(G)) (V1, El) rooted at v and leading to

the members of sep(G). Broadcast the message to the vertices of the tree using
the OT scheme.

4. Vo +-- go u V1.
5. Repeat

(a) Assume the clusters formed when extracting V0 from the graph are C1,...,
Ca. Each Ci has a separator sep(Ci) C UC U.--U C where C{ C{
C sep(Ci)’sl are connected components.
repeat
(i) For each i pick the lowest index j(i) that has not been chosen yet (for

i).
(ii) Build the instance B’ MWC(V’, C{ j()" 1 _< i _< k}) of the MWC

problem, as described.
(iii) Compute a minimum control function F for B’ using Procedure MWC.
(iv) Send the message to at least one vertex of C(i) for every i and j, using

the minimal function F and the scheme suggested in Fact 5.4.
until the C’s clusters are exhausted for every i and j.

(b) For every and j, broadcast (in parallel) the message within C using the
best known scheme for C. (If no good known scheme exists for the kind of

graph C is, broadcast using an arbitrary tree.)
(c) V0 - Vo U sep(C1) U... U sep(Ck).
Until V0 V.

It is easy to see that when Algorithm APPROX_SEP terminates, all the vertices
in V are informed.

LEMMA 5.5. On a (p, o(n))-separable graph, Algorithm APPROX_SEP terminates

the broadcast process from a vertex v in O(log n) o(n) b(v) time units.
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Proof. Clearly, the number of times the external loop is performed, is bounded
by O(log n). Stage 3 takes no more than (G)+ Diam(v) time units. We next must
bound the number of times that the internal loop is performed. Note that this number
is bounded by the maximal number of connected components of the separator sep(C)
of any of the clusters C. Further, note that after the external loop has been executed i
times, the size of any separator of any cluster C is bounded by (p. n) < 99(n). Thus,
the number of connected components in the graph induced by Sep(C) is also bounded
by 99(n). Thus every internal loop is carried out for no more than 99(n) times.

Next we bound the maximal time taken by each iteration of the internal loop.
By Lemma 5.2 and Fact 5.4, each execution of the repeat loop of stages 5(a)(i)-(iii)
takes no more than b(V0, G) < b(v, G) time units. Thus the total time spent in stages
5(a)(i)-(iii) (which is no more than the number of external loops times the number of
internal loops times the maximum time taken by an execution of an internal stage) is
bounded by O(log n). q(n), bop(V).

We now bound the number of time units spent in step 5(b). After the external
loop took place times, the size of the separator and, hence, the size of every connected
component of a separator are bounded by (p. n) < (n). Thus this is also a bound
on the time spent in step 5(b), for a fixed i. Summing up this bound for every i, we
conclude that the total time spent in step 5(b) is bounded by

<i<:O(log n)

q(p n) < 0(99(n). log n).

Thus, in total, the broadcast time is bounded by O(log n). (n). b(v, G). D
Further, it can be shown that if we can assure that every separator sep(C) is

connected and b(sep(C)) < k for some integer k < (n), then the bound is improved
to

(1) O0og k).

THEOREM 5.6. Algorithm APPROX_SEP i8 an O(logn). q(n)-approximation
scheme over (p, q(n))-separable graphs.

5.2. Applications. In this subsection we give some examples of graph families
for which Algorithm APPROX_SEP can be applied. The first example is that of chordal
graphs. A chord in a cycle of at least four vertices is an edge connecting two vertices
that are not adjacent in the cycle. A chordal graph is a graph with the property that
every cycle of four vertices or more has a chord. The following theorem is shown in

[GRE84] regarding chordal graphs.
THEOREM 5.7 [GRE84]. Every n-vertex chordal graph G contains a (polynomially

computable) maximal clique C, such that if the vertices in C are deleted from G, every
connected component in the graph induced by any of the remaining vertices is of size
at most n/2.

An O(IEI)-time algorithm for finding a separating clique that satisfies the condi-
tion of the theorem is also given in [GRE84].

Thus chordal graphs always have separating sets that are connected (and more-

over, are cliques). Since it is possible to broadcast a message in a clique of m vertices
in [logm time units, it follows from (1) that the time needed to broadcast in a chordal
graph using the scheme of Algorithm APPROX_SEP is no more than

log n. (b(v, G) + [log hi) + Diam(v).
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Consequently, Algorithm APPROX_SEP is a (2logs / 1)-approximation scheme for
broadcasting in chordal graphs.

COROLLARY 5.8. There exists a polynomial (2logs + 1)-approximation scheme
for broadcasting on chordal graphs.

A second example is the family of a c-separable graphs, consisting of graphs for
which (n) c for some constant c. These graphs were considered, for instance, in
[FJ90]. It follows from Theorem 5.6 that Algorithm APPROX_SEP is an O(logn)-
approximation scheme for broadcasting in such graphs.

We now present two examples of O(1)-separable graph families. The class of
k-outerplanar graphs is defined as follows. Consider a plane embedding of a planar
graph. The nodes on the exterior face are termed layer 1 nodes. For > 1, the layer
i nodes are those that lie on the exterior face of the embedding resulting from the
deletion of all layer j nodes, j < i. A plane embedding is k-outerplanar if it contains
no node with layer number larger than k. A planar graph is k-outerplanar if it has a
k-outerplanar embedding. A graph is called outerplanar if it is a 1-outerplanar graph,
i.e., a graph that can be embedded in the plane such that all the vertices lie on one
face [Har69].

In [FJ90], Frederickson and Janardan show that any k-outerplanar graph is

(2/3, 2. k)-separable. An O(n)-time algorithm to find the separator is given in [FJ90].
Thus Algorithm APPROX_SEP can be used to broadcast in a k-outerplanar graph
achieving an O(k log n)-approximation scheme. Thus we have the following theorem.

THEOREM 5.9. There exists an O(k log n)-approximation scheme for broadcasting
on a k-outerplanar graph.

COROLLARY 5.10. There exists a polynomial O(log n)-approximation scheme for
broadcasting on the family of outerplanar graphs.

The third example is the well-known family of series-parallel graphs. Two edges
in a graph are in "series" if they are the only edges incident to a node and "parallel" if
they join the same pair of nodes. The definition of a series-parallel graph is recursive.
First, an edge is a series-parallel graph. Next, the graph obtained by replacing any
edge in a series-parallel graph either by two series edges (adding a vertex) or by two
parallel edges is series-parallel. In IFJ90] it is shown that every series-parallel graph
is (2/3, 2)-separable and the separator can be found in O(n) time. Thus Algorithm
APPROX_SEP is a polynomial O(log n)-approximation algorithm for broadcasting on
a series-parallel graph.

THEOREM 5.11. There exists a polynomial O(logn)-approximation scheme for
broadcasting on a series-parallel graph.

The last example is of the family of bounded-face planar graphs. The size of a face
of a planar graph is the number of vertices in the face, counting multiple visits when
traversing the boundary (cf. [Mi86]). The following theorem is shown in [Mil86].

THEOREM 5.12 [MilS6]. Every planar graph with bounded-face size is (2/3,
O(v/-))-separable, and the separator can be chosen to be a simple cycle or a single
vertex.

A linear time algorithm to find the separating cycle or vertex is also given in

[Mil86]. We use this to derive the following theorem.
THEOREM 5.13. There exists an O(n/a/x/logn)-approximatiou scheme for

broadcasting on bounded-face planar graphs.
Proof. Use the algorithm of [Mil86] to compute the separators needed for Algo-

rithm APPROX_SEP. At each step of Algorithm APPROX_SEP, if the separator is a
cycle, instead of broadcasting to all the vertices of the cycle separator, choose arbi-
trarily a "starting" vertex in the cycle and give it an index 1, while giving indices to
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FIG. 3. A tree of cliques (TOC) G. The large circles represent the vertices of the correspond-

ing tree T(G).

the rest of the vertices in increasing order, according to their clockwise position.
Broadcast the message to every vertex whose index is congruent to 1 mod In14.

v/log, in every separating cycle. The number of recipients of the message in each
cycle is O(nl/4/x/logn). This is done as in Algorithm APPROX_SEP by using the
technique for MWC problems. After the corresponding cycle vertices get the message,
they can clearly inform the rest of the cycle vertices in no more than O(nl/4. v/log n)
time units. Finally note that informing the vertices of the first cycle, i.e., the cycle
separator of the graph itself, can be done in similar way. The broadcast time using
this scheme is no more than

lg3/2n

(()i Ttl/4 ) lga/2n

12)i0 b(v) -- ni/4V/lOgn
i=1

/log n
i=1

+ O(nl/av/logn) + Diam(G) O(nl/a/v/iogn b(v).

This is slightly better than the result given for general graphs in Theorem 4.5 (in the
worst case).

6. Broadcasting in a tree of cliques. In this section we present a broadcast
scheme for graphs that are in a "tree of clusters" form. We illustrate this method
by giving an approximation scheme for a special kind of graph family called trees of
cliques, generalizing the family of trees.

6.1. Trees of cliques.
DEFINITION 6.1 (see Fig. 3). A graph G (V, E) is a tree of cliques (TOC) if
1. the vertex set V can be decomposed into a disjoint union of sets C,..., Ck

such that each Ci induces a clique (i.e., a complete graph) in G, and
2. the auxiliary graph T(G) (,) whose vertices are {C1,..., Ck} and

whose edges are

/-- {(Ci, Cy) there is an edge (vi, vj) E E, for vi e Ci, vj Cy }

is a tree.
To broadcast a message from a vertex v in a TOC, we use the following idea. In

order to deliver the message between vertices of different cliques (i.e., from cliques to
their clique children), we use the techniques developed for MVWC problems. It follows
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that the total broadcast complexity spent while delivering a message between cliques
is bounded by O(b(v)). We can achieve an efficient method, since there is an efficient
method for message delivery in a clique. We then develop an alternative method for
delivering the message inside the cliques. In this method, every vertex participates
in the message delivery in its clique only for a small (fixed) number of rounds and is
thus free sooner to help in sending the message down the tree to its clique children.
Using this method we establish some improved bounds in restricted cases.

6.2. The broadcast scheme. Let G be a TOC. The notions of child, parent,
height, and so on are defined in G as in the tree T(G); specifically, the parent of a
clique C is denoted by p(C), the height of a rooted TOC G is denoted by h(G), the
subtree rooted at a given clique C is denoted by Gc, and T(G)c is defined accordingly.

Let G be a rooted TOC. The parent index, PI(C), of a nonroot clique C in G is
defined to be the number of vertices in C that are connected to at least one vertex
in the parent clique p(C). The parent index of the root is defined to be 1. Similarly
the child index, CI(C), of a nonleaf clique C is the number of vertices in C that are
connected to at least one of the vertices of the children of C.

A TOC G is parent c-restricted if it is possible to root G at a clique C such that
PI(C) <_ c for every clique C. Note that the fact that a TOC is parent c-restricted
does not preclude the possibility that every vertex in P(C) will have an arbitrarily
large (total) number of adjacent vertices in the clique children. A child c-restricted
TOC is defined similarly. Note that if a TOC is child c-restricted, there are no more
than c vertices in p(C) that can inform the vertices in its clique children. It follows
that it seems easier to approximate the broadcast problem on a TOC if it is child
c-restricted than if it is parent c-restricted.

We next give a broadcast scheme on a TOC. We assume that the clique partition
of the TOC is given. Before presenting the approximation algorithm, let us give
two definitions. The first definition is of the rank of a clique C in a rooted TOC
G. This definition induces a definition of a controlling vertex F(C) of C, such that
F(C) E p(C), for any nonroot clique C. Recall that for a clique C in the tree, Tc is
the subtree rooted by C.

DEFINITION 6.2. Define rank(C) 0 for a leaf C in G. Define inductively the
rank of a nonleaf clique C in T(G) as follows.

1. Form the control graph DC,Tc (V1, V2,A) of C in T(G)c.
2. Compute recursively the ranks of the children of C.
3. Set rank(C) I/Y(F), where F is the minimal function with respect to the

MVWC problem resulting by the construction of step 1 taking the weight of a clique
child vertex C’ to be w(C’) rank(C’).

4. Define (C’) F(C’), for every child C’ of C.
This definition of rank tries to capture the minimal degrees needed for the cliques

to control their clique children. It also identifies those vertices that dominate children
cliques in the TOC. Denote

Dom(C) {w e C" there exists a child Ci of C such that F(Ci) w}.

Our second definition concerns the degree of cliques in the TOC and attempts to
capture the number of vertices there are in a subtree rooted at a clique C.

DEFINITION 6.3. Let G be a rooted TOC. The degree of a leafC in G is deg(C)
O. The degree of a nonleaf clique C in T(G) is defined recursively as follows:

1. Compute the degrees of C’s children in G.
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2. Let C1,..., Ck denote C’s children in G, ordered by nonincreasing degrees,
i.e., deg(Ci) _> deg(Ci+l) for every i.

3. Define deg(C)= maxi{[log[i/PI(C)])] + deg(Ci)}.
Let us now describe a scheme called the Fibonacci method, for message dissemi-

nation within a clique. In this scheme we try to save time in informing the vertices
within the clique so that a vertex will be able to start sooner to deliver the message
to its clique children. Let vl,..., Vk be k vertices in a clique C. We assume that
C contains an informed vertex vo. Our goal is to broadcast the message from vo to
{vl,..., v}. This is done as follows:

1. In the first two steps, vo sends the message to vl and v2.
2. Now define a delivery scheme for vi, _> 2, as follows: each vertex vi spends

the first two rounds after it gets the message on delivering the message within
the clique. The delivery scheme prefers vertices Vm with lower index. In each
round j, the vertices that are required to participate in the delivery within
the clique in this round send the message to the next lowest index vertices
among {vl,..., Vk} that did not get the message yet.

For instance, in round 3, vl and v2 send the message to v3 and va; in round 4,
vl, v2, v3, va send the message to v5, v6, v7, v8; and in round 5, v2,..., v8, send the
message to V9,..., V15.

Let G be a TOC, and let Co be a clique in G and v0 E Co a distinguished vertex.
The goal is to broadcast the message from v0 to all the vertices in G. We next give
two recursive approximation algorithms for the problem.

Input:
1.

ALGORITHM APPROX_TOC2a
A TOC G and a root clique Co and an informed vertex v0 E Co.
Compute ranks and define a dominating vertex (Ci) C for any clique chil-
dren Ci of any clique C G G as indicated by Definition 6.2, using Algorithm
MVWC.

2. As soon as a clique C contains an informed vertex v G C, v sends the message
to all the vertices in the clique C, using an optimal procedure for the clique.

3. Each vertex w G Dom(C) starts sending the message to a single arbitrary
vertex in each of the cliques it controls. The delivery is performed in nonin-
creasing order of ranks; i.e., if rank(C’) > rank(C"), then w sends the message
to a vertex in C before it sends it to a vertex in C".

Next, let us modify Algorithm APPROx_TOC2a to get Algorithm APPROx_TOCb.
Instead of delivering the message within the clique using all the vertices through the
entire process, as done in step 2 of Algorithm APPROX_TOC2a, we use the Fibonacci
delivery scheme. Thus in Algorithm APPROx_TOC2b step 2 is replaced by the follow-
ing step:

2. Let C be a clique in G containing an informed vertex v E C. Assume that
Dom(C) {vl,..., vk}. For every vertex vi, let Cmax(Vi) be the clique dom-
inated by vi with maximal degree. Assume without loss of generality that
for every i, deg(Cmax(Vi)) >_ deg(Cmax(Vi+l)). Apply the Fibonacci delivery
method within the clique, from the informed vertex v to {Vl,..., vk }.

It is easy to see that when the execution of this modified version of Algorithm
APPROx-TOC2a terminates, every clique contains at least one informed vertex (how-
ever, not necessarily all the vertices in all the cliques are informed, since in any clique
a vertex is informed only if it controls a nonempty set of children cliques). Thus
to terminate the broadcast, in every clique the informed vertices deliver (in paral-
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lel) the message to the rest of the vertices in the clique, using the optimal delivery
procedure for the clique. We call this modified version of the algorithm Algorithm
APPROX_TOC2D.

6.3. The broadcast complexity of the scheme. We now analyze the broad-
cast complexity of the scheme. Before stating the next claim, which speaks about
the Fibonacci delivery method, recall the sequence of Fibonacci numbers defined as
follows: Zl z2 1, zi+2 zi+l + zi for >_ 1 (cf. [HW56]).

LEMMA 6.4. Let C be a clique, and suppose that v, Vl,..., vk E C and v uses the
Fibonacci method to send a message to Vl,..., vk. Then i rounds after vl receives the
message from v, there are exactly zi+2 informed vertices in (vl,..., v).

Proof. The claim holds for 1, 2, and 3 by a direct inspection. Now
assume it is true for _> 3 and that at times i- 2, i- 1, and the number of informed
vertices in (Vl,..., vk} is zi, zi+l, and zi+2, respectively.

The number of vertices that delivered the message only once within the clique
is Zi+l -zi. The number of vertices that have not yet broadcast the message at
all is zi+2 Zi+l. Thus the total number of informed vertices in the next round is

Zi+2 2F (Zi+2 Zi+l) -- (Zi-{-i Zi) Zi+2 - Zi+l Zi+3. D
Let us now study the time needed to inform k vertices Vl,..., vk in the Fibonacci

method. Since zi (((1 + v/)/2) -((1 v)/2)i)/vf (cf. [HW56]),

zi >_ ((1 + 1

Thus the number of rounds before vi is informed in the Fibonacci scheme is no greater
than [1.441. log i + 2.

We now make the following claim.
LEMMA 6.5. For any tree of cliques G (V, E) rooted at a clique Co, rank(C0) _<

Proof. We prove the lemma by induction on the height of the TOC. If h(T(G)) 0
the claim holds trivially since rank(C) 0. Assume the claim for height k. Consider a
tree of height k + 1. Assume that the children of Co in T(G) are C1,..., Cl. Consider
an optimal scheme S for broadcasting from the base set C. For each clique Ci choose
a vertex vi E V that is among the first vertices that transmit the message to a vertex
in Ci. Since the clusters Ci are independent, all of the selected vertices vi are in Co.
We have defined a function F from the children of C to the vertices of C. Denote the
subtree corresponding to Ci by Ti and the corresponding subgraph of G by Gi.

Assume that v is first to deliver the message to the cliques C,...,C, that
Ft(C) v for every i, and without loss of generality that the cliques C are ar-
ranged by nonincreasing order of ranks. Further, assume that v delivers the message
to a vertex in C at time ti. We claim that

m.ax{ti + b(C, Gi)} <_ b(C, G),

since ti is the first time that a subset of the vertices of C receive the message. There-
after they must deliver the message to the rest of the vertices of Gi, and this clearly
takes at least b(C, G) time units. Since h(G)

_
k for every i, by the induction

hypothesis,

m.ax{ti + rank(C)} _< b(C, G).
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By Lemma 5.3,

m.ax{i + rank(C)}

_
b(C, G).

Since this is true for any vertex v, ld;(F’)

_
b(C, G). Thus it follows from Definition

3.1 plus the fact that rank(C0) is the weight of the minimal function that rank(C)

_
b(Co,

LEMMA 6.6. Let G be a TOC rooted at Co and vo a vertex in Co. Then deg(C)

_
Proof. Consider an optimal scheme S for broadcasting from v in G. At the first

round to where a vertex of a clique C in G receives the message, there are at most
q- PI(C) informed vertices in C. Note that the vertices of Tc, cannot receive the
message through any alternative route other than via the vertices adjacent to p(C);
it follows by the doubling argument of Fact 2.5(1) that for any > q, it will take at
least [log(1/q)] rounds until/ vertices of Tc, are informed. Suppose that C has
children C1,..., Cz ordered by nonincreasing order of degrees. For any l, 1 _< <_ j,
the first time that all the first cliques C1,..., Cz contain an informed vertex is at
least to + [log 1/q]. The rest of the proof follows in a straightforward way by induction
on h(G).

We are ready to analyze the complexity of the broadcast scheme. Let us divide
the delays encountered by a message before it reaches a vertex in some leaf clique C
into the following two possible types:

1. Delays encountered when a predecessor clique C" of C delivers the message
to another subtree rather than the one containing C, and

2. Delays encountered by the message when it is being broadcast within a prede-
cessor clique of C.

We bound delays of the first type by proving the following (where v0 is the
originator of the message.)

LEMMA 6.7. There are no more than b(vo)- d(Co, C) delays of the first type,
where d(C0, C’) is the distance between Co and C’ in the tree T(G).

Proof. The proof follows by Lemma 6.5 and straightforward induction on

(T()).
We now consider second-type delays. Let us first analyze the number of such

delays in Algorithm APPROX_TOC2a. In this case, the number of type 2 delays en-
countered by a message before it reaches a leaf C is bounded by i [log Ci], where
C is the ith clique in the path connecting C and p(C’) in T(G). If there are h cliques
in the path, then the number of type 2 delays is bounded by h. log(n/h).

Since both log n and h are lower bounds on the broadcast time, the worst case
is when h log n, and in this case the number of type 2 delays is bounded by log n.
(log n log log n). Thus we have the following theorem.

THEOREM 6.8. Algorithm APPROx_TOC2 is an additive log n- (log n-log log n)-
approximation scheme for broadcasting in a TOC.

Let us now analyze the situation in Algorithm APPROX_TOC2b. Let C1,..., Ct
be the children of C, ordered by nonincreasing order of degrees, and let Dom(C)
{Vl,..., vk}. Assume without loss of generality that the vertices vi are ordered such
that deg(Cm(vi)) _> deg(Cmx(Vi+)) for every i. Since Ci is dominated by one of
the first vertices, the number of type 2 delays encountered by the message before it
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is sent to Ci is no more than

1 + [1.441. log/] + 2 + 2 (1.441. log/] [1.441. logPI(Ci))
+ + 5

0
PI(C) + O(log PI(C)).

Thus the next claim follows from Lemma 6.6 and by induction on h(G). Suppose
that the ith clique in the path in T(G) from the root to a leaf C is Ci.

CLAIM 6.9. The number of second-type delays encountered by the message before
it reaches C in Algorithm APPPox_TOC2b is bounded by

For example, consider a parent c-restricted TOC G for a constant c. It follows
that Algorithm APPROx_TOC2b is a constant approximation scheme for broadcasting
in such a TOC. (If the goal is to broadcast the message from a vertex v that is not in
C, where C is the clique that determines the fact that G is c-restricted, simply deliver
the message to a vertex v in C, by a shortest path, and then use the APPROx_TOC2b
scheme to broadcast from v. The fact that b(v) and b(v’) differ by at most Diam(G)
guarantees that the scheme is still an O(log c)-approximation scheme.) As one can
easily check, the scheme is also an O(log c)-approximation scheme in the case of a
child c-restricted TOC. We summarize this discussion in the following theorem.

THEOREM 6.10. Algorithm APPROx_TOC2b is a min{O(logcl),O(logc2)}-
approximation scheme for broadcasting in a child cl-restricted, parent c2-restricted
TOC.

Note that similar methods can be used to broadcast in a more general class of
a "tree of clusters" graphs as long as there exists a fast approximation scheme for
broadcasting in the clusters.

Note added in proof. Recently, a new approximation algorithm was presented
for the minimum broadcast time problem [R94]. That algorithm has (multiplicative)
approximation ratio O(log2 n/ log log n). Hence the new algorithm improves on the
result of Theorem 4.5 for graphs whose broadcast time is O(vlog logn/log2 n) or
smaller. For graphs with larger broadcast time, our x/-additive algorithm still yields
better approximation.
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Abstract. Bounds are obtained for the solution to the divide-and-conquer recurrence

M(n) max (M(kl) -b M(k2) +... + M(kp) + min(f(kl),...,f(kp))),
kl q-...-bkp-.-n

for nondecreasing functions f. Similar bounds are found for the recurrence with "min" replaced
by "sum-of-all-but-the-max." Such recurrences appear in the analysis of various algorithms. The
bounds follow from analyses of partition trees.

Key words, recurrence relations, divide and conquer, algorithmic analysis, partition trees
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1. Introduction. We consider the following four similar recurrences:

(1) M(n)

(2) M(n)

max (M(ki)+ min f(ki)),kl.-b...Wk,--n p>2 l<i<p

kl +...+k=n /)>_2 l_<i_<p

with M(1) given, and

(3) M(n)

(4) M(n)

with M(1), M(2),..., M(p-1) given, where "sam" is the sum of all but the maximum,
defined formally as

sam f(x) E f(x) max f(x).
xES xES

xS

Note that in recurrences (1) and (2), the maximum is over all partitions of n into at
least two parts, while in recurrences (3) and (4), the maximum is over all partitions
of n into exactly p parts. Divide-and-conquer recurrence relations of these types, for
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various functions f, occur in a variety of problems in the analysis of algorithms (all-
nearest-neighbors [7], tree-drawing algorithms [6], and so on). When p 2, recurrence
formulas (1)-(4) are identical; this case has been thoroughly investigated by Li and
Reingold [4]. Our purpose is to obtain bounds for these recurrence formulas for general
p, for nondecreasing f; in so doing, we sharpen one of the bounds in [4] and provide
a solution to a problem left open there.

In studying M(n) as defined by recurrence formulas (1)-(4), we will use trees to
represent the recursive evaluation. Let 7"(n) be the set of partition trees: ordered
trees with n- 1 internal nodes and n external nodes (leaves) such that each internal
node has at least two subtrees and such that the subtrees are in nondecrehsing order,
from left to right, by the number of leaves in the subtree. For a node N of a partition
tree T, we denote by #N the number of leaves in the subtree rooted at N. We define
the functions/(T) and F(T) by

F(T) E f(-C/:N),
leftmost

nodes N of T

(T) E f(#i),
nonrightmost
nodes N of T

where a node is "leftmost" if it is the leftmost child of its parent and a node is
"nonrightmost" if it is not the rightmost child of its parent.

If f is nondecreasing, the formation rule for partition trees makes the relationship
between recurrence formulas (1)and (2)and partition trees

for recurrence (1) and

M(n) riM(l)+ max F(T)
Tear(n)

M(n) riM(l)+ max
TeT(n)

for recurrence (2). We will, therefore, be able to bound M(n) by bounding F(T) and
’(T). Similar relationships hold for recurrences (3) and (4), respectively, but with
the maxima taken over p-cry trees.

2. Recurrences (1) and (2). Let B(n) be the set of binary partition trees, that
is, partition trees in which every internal node has exactly two subtrees. Notice that
for T E B(N), F(T) =/(T). The following results tell us that we need only consider
binary partition trees to bound M(n) for recurrences (1) and (2).

LEMMA 2.1. For recurrence (1) and f nonnegative and nondecreasing,

M(n) riM(l) + max F(T).
T()

Proof. Since f is nondecreasing we know that

M(n) riM(l)+ max F(T).
TeT(n)

We note here that Li and Reingold [4] considered only the case when f is nondecreasing, claiming
that the (less interesting) nonincreasing case is easily handled by induction once a simple observation
has been made. This claim is wrong, as discussed in Alonso [1].
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We will prove, using a slight modification of Knuth’s natural correspondence [3,
p. 333], that to each tree T E T(n) there corresponds a binary tree B e /(n) such
that

since B(n) C T(n),

F(B) >_ F(T);

max F(T)

_
max F(T),

TU() T()

and we will be done.
We construct B from T inductively. If T has only binary nodes, then B T.

Otherwise, T has at least one internal node with three or more subtrees, as shown in
Fig. 1. Replace this subtree with that shown in Fig. 2. Since f is nonnegative, this

FIG. 1.

FIG. 2.

transformation does not decrease the value of F.
COROLLARY 2.2. For f nondecreasing, recurrence (1) has the same solution as

recurrence (3) with p 2.
LEMMA 2.3. For recurrence (2) and f nondecreasing,

M(n) riM(l) + max F(T).
TEll(n)

Proof. Since f is nondecreasing, we know that

M(n) riM(l) + max /(T).
TEar(n)
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For any binary tree B,/(B) F(B), since for binary trees the minimum is identical
to the sum of all but the maximum. The same construction as in the previous lemma
shows that for any T E T(n), there corresponds a binary tree B B(n) such that
/(T) =/(B). Thus we have

F(B) (B) (T).
Since B(n) C T(n),

max F(B)= max /(T),
BeB(,) Ten-(n)

and the result follows.
COROLLARY 2.4. For f nondecreasing, recurrence (2) has the same solution as

recurrence (3) with p 2.
THEOREM 2.5, For f nonnegative and nondecreasing in recurrence (1), and for

f nondecreasing in recurrence (2), the solution M(n) satisfies2

aM(l) + j=IE [n/2JJf(2Y-) + .= f
i=1

2k

<_ M(n)
LlgnJ t-1

_< aM(l)+ E [n/2iJf(2J) + E f(2k+l)’
j=l j=l

where n 2kl + 2k2 +... + 2k, 0 <_ k < k2 < < kl, and >_ 1.

Proof. This follows directly from the last two corollaries, together with Corollary 9
in [4].

THEOREM 2.6. For f nonnegative and nondecreasing in recurrence (1), and for
f nondecreasing in recurrence (2), the solution M(n) satisfies

(5)
Llgnj-1

i----0

<_ M(n)

<_nM(1)+ - i+l f(i).
i=1

Proof. This follows directly from the last two corollaries, together with Theo-
rem 4.10 at the end of this paper. [3

Examples of these bounds applied to various functions f can be found in Table 1
in [4].

3. Recurrence (3). In bounding the growth of M(n) as defined by recurrences
(3) and (4), it is necessary to make some assumptions about the initial values M(1),
M(2), M(p- 1). For example, we could assume that M is concave (or convex)
on these values; without some such an assumption, the asymptotic behavior of M
would be obscured by idiosyncrasies arising from these initial values. To avoid such

2 We use lg x for log2 x throughout this paper.
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difficulties, we assume that M is defined only for n such that (p- 1)l(n- 1), that
is, n must be of the form n (p- 1)/+ 1. This assumption is natural in the
context of divide-and-conquer algorithms in which O(p) O(1) dummy elements are
introduced to make the size of the input conform to the assumption. The assumption
is also natural in the context of algorithms based on p-cry trees in which every node
is either a leaf or has p children; such trees have (p- 1)// 1 leaves.

The tree transformation technique of the previous section does not work for re-
currences (3) and (4). Instead, for recurrence (3), we will use counting arguments to
bound the number of leftmost nodes with a certain range of descendant leaves. Let
P(n) be the set of p-cry trees with n (p- 1)/+ 1 leaves and let

Ri(n)-- max E 1.
TET(n)

leftmost nodes N in T
with pi-1 < N _< pi

Thus Ro(n) is the largest possible number of leftmost leaves in a p-cry tree with n
leaves and R1 (n) is the largest possible number of internal nodes that are leftmost
children of their parents and have exactly p descendant leaves. Ri(n) 0 for >
[logp nJ, since a leftmost node with p[logp nJ + 1 or more descendant leaves has p- 1
siblings to its right, each of which has at least as many descendant leaves, for a total
of

p(p[logr, nJ .+. 1) p[logo nJ+ q._ p > plogr, n n

descendant leaves, which is impossible.
We need the following generalization of the well-known observation that a binary

tree with n external nodes contains n- 1 internal nodes.
LEMMA 3.1. A set of k p-cry trees with a total of I internal nodes contains a

total of I(p- 1)+ k external nodes.

Proof. The I internal nodes have a total of Ip children, including the I- k that
are not the roots of the k trees. The remaining Ip- (I- k) I(p- 1) + k children
must be external nodes. [3

We can now express an upper bound for F(T) (and hence M(n)) for nondecreasing
functions f in terms of R, since f(pi) is no smaller than the contribution of a node
counted in Ri(n). Thus

F(T) E f(#N)
leftmost

nodes N of T

p- 1/(1) + [f(#N)-/(1)],
leftmost

nodes N of T

since by Lemma 3.1 there are (n- 1)/(p- 1) internal nodes, each of which has a
leftmost child. For f nondecreasing, f(x)- f(1) is a nonnegative, nondecreasing
function of x, and hence

F(T) <_ n- 1
[logp n]

i--0

R(n)[f(p) f(1)] + R[og, nl(n)[f([n/pJ) f(1)],
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because f(#N) f(1) <_ f(p) f(1) when p- < #N <_ p, and because no leftmost
node N can have #N > [n/p[. However, for i= 0, f(p)= f(1), so we have

F(T)

_
and hence

[logv nJ
n--1

i--1

R(n)[f(p) f(1)] + R[logvnj(n)[f(Ln/pJ) f(1)],

M(n) nM(1) + max F(T)
TEP(n)

[logp nJ
n-1< riM(l)+ f(1) + E Ri(n)[f(p) f(1)]
p-1

=1

+ Rko" j (n)[Y(Ln/pJ) f(1)]
so that an upper bound on R(n) will give an upper bound on M(n).

Let > 0. Given a tree T E 7(n) with Ri(n) nodes N for which pi-1 < #N <_ p,
contract it by deleting alI external nodes and all internal nodes whose leftmost child is
not counted in Ri(n), preserving any parent-child relationships among internal nodes
that are not deleted. Then, add an external node for every missing child among the
remaining nodes so that each node is properly p-cry. The result of this contraction
is a set of p-ary trees that contain among them exactly R(n) internal nodes and, by
Lemma 3.1, at least R(n)(p- 1) + 1 external nodes. By construction, each of these
external nodes corresponds to a subtree of T with at least pi-1 + 1 leaves (because
each subtree of a node counted in Ri(n) has at least as many descendant leaves as
the leftmost subtree, which has at least pi-1 _{_ 1). Thus there must have been at least
[Ri(n)(p- 1)+ 1](p-1 + 1) leaves in T, and therefore

(7) n >_ [Ri(n)(p- 1)+ 1](pi-1 + 1),
or

(S) Ri(n)<_
(p_l)(pi_+1) p-1

This bound can be strengthened when 1, since no subtree in a p-ary tree (except
a leaf) can have fewer than p leaves, so (7) becomes

n >_ [R(n)(p- 1)+ lip,

or

p2_p p- 1

Thus (6), (8), and (9) combine to give

(10) M(n) <_ riM(l)

In-1 [ n

p- 1 p2_p

p2_p p-1
f(P)+

n
+ (p[lgv’q- + 1)(p- 1)

[logp nJ

E (pi- + 1)(p- 1)
i--2

[logp nJ

E (pi- + 1)(p- 1)

p 1 f [n/pJ ).

p- 1
f(pi)
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To obtain a lower bound for M(n), we construct a tree Tn E P(n) for which
F(Tn) is large. Let n be of the form (p- 1)// 1; the tree Tn is defined recursively
as follows. T1 is the empty p-cry tree consisting of a single leaf. Given n > 1, let
m logp nJ and r n- pro; Tn is formed by combining p- 1 copies of Tp.-i on
the left with a copy of Tp.-+r on the right in Fig. 3. We have

FIG. 3.

(11) M(n) > nM(1)/ F(Tn),

so we need to compute F(Tn).
Let Si(n) be the number of nodes N in Tn for which #N pi; clearly, when

i<m,

Si(pm) =pm-i.

Also, let i(n) be the number of nodes N in Tn for which #N -pi but that are not
on the rightmost boundary of Tn. We prove by induction on n that for n > pi,

(12) (n) (p 1) (p ))pi

As the basis, observe that for n pi the formula correctly gives i(n) 0. Now
suppose n > pi and let m [log nJ and r n- pro. Since > pi, we know m i.

For m i, (12) correctly gives i(n) 0, so, sume m > i, and we have

() (p + )
(p- 1)S(p-) + L(p- + r)

[pm-1 + r pi
(- )--+ (- ) -- )[p pm--I +r--pij=(p-l) m--i+.

(P-1)P

=(p-l)-[ n-pi

as desired.
Let v be the highest node Mong the right boundary of Tn such that p #v <

p+. We have

n #v + (n)p,
because the leaves of Tn appear in subtrees of vi or in one of the (n) subtrees of
size p. So (12) gives us

#v &()p’
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pi

where {x} x- [xJ is the,fractional part of x.
Now any node u of Tn not on the right boundary of Tn--and hence any leftmost

child of a node---has #u p for some i. Hence we can write

(13) F(Tn)
logp n]

number of leftmost nodes )N in Tn with /:N- pi f(pi),

and the coefficient of f(pi) splits into two partswthe leftmost children whose parent
is not on the right boundary of Tn and the remaining leftmost children (that are in
the subtree rooted at Vi+l). A node not on the right boundary of Tn has p equal-
sized children, so the parent of such a node with pi descendant leaves must have pi+l
descendant leaves. Thus there are ;i+1 (n) such parent nodes and hence that same
number of leftmost nodes N in Tn with #N pi and the parent of N not on the
right boundary of Tn. The remaining leftmost nodes N in Tn with N pi have
their parents on the right boundary of Tn; therefore, these parent nodes each have p
children, p- 1 of which are not on the right boundary. Each of those p- 1 non-right-
boundary children is a node with pi descendant leaves--we know there are i(/:vi+)
such nodes, by definition of i, so we have a total of i(/:vi+)/(p- 1) such parent
nodes on the right boundary, each of which has a leftmost child N with #N pi.
Therefore

(14) ( number of leftmost nod.es )N in Tn with #N p
&(#v+)+()+
p-1

because

(p- 1)Lx] / L{x}p / 1] L(p- )Lx] / {}p / 1] L(p- 1)x + {x} + 1].

Combining (11), (13), and (14) gives

(5)
logp nJ

M(n)>_nll(1)+ E [
i--1

+ (p 1)pi f ),
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which we combine with (10) to give the following theorem.
THEOREM 3.2. For f nondecreasing, the function defined by recurrence (3) for n

of the form (p- 1)/+ 1 with M(1) given satisfies
Llogp nJ

nM(1) + E
i=1

< M(n)
< nM(1)

n-1

p-1

+ (p_ 1)p f(Pi-)

[logp nJ

p-p p-1 E (pi-+l)(p-1) p-1
f(1)

n+ p2 p p- 1
f(p) + E (pi-1 + 1)(p- 1) p- 1

f(pi)

q-
(pl_log, n]-I -t- 1)(p-- 1) p-- 1

f([n/pJ).

For example, when f(x) x, Theorem 3.2 tells us that

1
-n logp n- O(n) < M(n) < p
p p 1

n logp n + O(n).

Similarly, when f(x) logp x we get

( 1 ) ( 3 1 )M(1)+ (p_l)2 n-O(1) <M(n) <_ M(1)+
(p_l)2 +p(p_l)3 n+O(1).

We can compare the upper and lower bounds on M(n) in general for f positive.
Let U(n) and L(n) be, respectively, the upper and lower bounds in Theorem 3.2.
For convenience, assume M(1) 0 since the M(1) term occurs with the identical
coefficient in both U(n) and L(n). Then, from (10) and (15) we have

Llogp n]
n

U(n) < E (pi-1 + 1)(p- 1)f(pi)+
i=0

[logp nJ
L(n)_ E lpJ f(pi)"

i=0

Using

we obtain

(p/logp nJ-1 + 1)(p- 1)
f(Ln/pJ),



MULTIDIMENSIONAL DIVIDE-AND-CONQUER MAXMIN RECURRENCES 437

and thus

U(n) p2 (L(n) <- p ’ l
2+

For n pm this can be improved to

p2
L(n) p- 1

4. Recurrence (4). As in the previous section, we assume that M is defined
only when (p- 1)[(n- 1), that is, only for n of the form n (p- 1)// 1.

A lower bound for M(n) as given by recurrence (4) follows directly from our
analysis of F(Tn) in the previous sectionmin that analysis we counted the leftmost
children of a node; here we need to count the^nonrightmost children, and hence p- 1
times our value for F(Tn) gives a bound for F(Tn). Thus (15) becomes

(16) M(n) riM(l) / max /(T)
TeT’(n)

>_ nM(1) + fi’(Tn)
riM(l) + (p- 1)F(Tn)

[logp nJ

i=1

TO obtain an upper bound on M(n) as given by recurrence (4), we follow the
strategy used in the previous section and use counting arguments to bound the number
of nonrightmost nodes with a certain range of descendant leaves. Let

L(T) 1,
nonrightmost nodes
N in Twith N>

(the root of the tree is considered a rightmost node) and let

Li(n) max Li(T).
Tep()

Notice that P(n) is nonempty only for n 1 (mod p- 1); thus i(n) is defined only
when (p- 1)[(n- 1). We need the value of Li(n) in what follows; to compute it we
first observe the following lemma.

LEMMA 4.1. The number of leaves in any tree (not necessarily of fixed arity) is
one more than the number of nonrightmost nodes.

Proof. The proof comes from simle induction on the height of the tree.
It follows from this lemma that Lo(n) n- 1. Furthermore, we use this lemma

to prove the following theorem.
THEOREM 4.2. For n > l(p- 1) + 1, n 1 (mod p- 1),

(p-+l(n) g(p-l+() (-l+p-1 () l(p 1) + p

Pro@ Notice that the last of these terms, with -1, correctly gives 0(n)
n- 1. We have
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because (p- 1)I(#N- 1) for any node N in T e 79(n).
Take any tree T E :P(n), label each node N with #N, and remove all nodes N of

T labeled l(p- 1) / 1 or less; we thus obtain a tree T’ with LL(p-1)+I (T) nonrightmost
nodes. It follows from Lemma 4.1 that T’ has LL(p_)+ (T) / 1 leaves. Each of these
leaves represents a subtree of T that has at least (1 / 1)(p- 1) / 1 l(p- 1) /p leaves--
otherwise that node would have been removed (the next larger possible number of
leaves is (1 / 1)(p 1) / 1). Thus

or

(l(p- 1)/ p)(L(p_)+ (T)/ 1) _< n,

Ll(p-1)+l (T)

_
l(p 1) + p

By the definition of ]t(p-)+l (n), then,

lLt(p-)+l (n) < l(p 1) +p

To prove that this value is a lower bound on t(p_)+(n), we construct a tree T
with n leaves such that

Lt(p_)+ (T) > l(p 1) + p

Let

and

u=
i(p-1)+p

v n mod (l(p- 1) / p),

so that we have u >_ 0, v _> 0,

n- 1 u(1 + 1)(p- 1) + (u + v- 1),

and hence u + v 1 (mod p- 1) because n =_ 1 (mod p- 1). Thus P(u + v) is not
empty; let T P(u + v). Replace each of the rightmost u leaves of T by any tree
from P(l(p- 1)/ p) to obtain a tree T 79(n). When T is subjected to the pruning
process described at the beginning of the previous paragraph, the result is a tree with
at least u leaves, each representing a subtree of T that has at least l(p- 1) /p leaves.
Hence by Lemma 4.1, T has at least u- 1 nonrightmost nodes N with
#N > l(p- 1)+p.

Now for our analysis of (4). There are exactly Li_I(T)- Li(T) nonrightmost
nodes N in T with #N and so we have

(17) /(T) -[Li-1 (T) Li(T)]f(i).
i>1

This sum is actually finite because Li(T) 0 when > [(n-p)/2J+l and T e P(n). If
v is the nonrightmost node, aside from the root, with the largest number of descendant
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leaves, then v has a right sibling with at least as many descendant leaves and at least
p- 2 siblings with at least one descendant leaf each; thus

2#v +p- 2 < n,

or

so that

2 +1

for all nonrightmost nodes, as claimed.
We can use equation (17) and Theorem 4.2 to obtain an upper bound on Y(T).
THEOREM 4.3. Given an increasing sequence of integers ao 0 < c1 < < ck,

ak > L(n- p)/2J + 1, satisfying (p- 1)l(ai- 1), 1 < k, and a coesponding
sequence of functions L(n), 0 k, satisfying, for all n 1 (mod p- 1),
Li(n L(n) a(n), L(n) n- 1, and L(n) O, then for nondecreasing f,

k

(T) < [ i_(n) Li (n)]f(ai)

k-1

L*[ i-l(n) L (n)]f(ai) + L_
i=1

for all T P(n).
Pro@ First we prove the result for integer-valued functions L(n); later we show

how to remove this restriction. We have, by the definition of ,
Y(T) f(#Y).

nonrightmost
nodes N of T

This sum of n- 1 terms can be written as

J
(T) E[L_I (T) L(T)If(/i),

i=1

where 1 </32 < < j are the values assumed by #N as N ranges over the internal
nodes of T; since #N assumes only values of the form (p- 1)/+ 1, each/i satisfies
(p- 1)1(/5i- 1) and hence/i_1 </3i (p- 1). Thus we can write (T) as a sum of
n- 1 terms

(18) ,>(T) I(Z ) +... +

(A term f(/3i) can occur more than one time, of course.) The upper bound we want
to prove has the same form, namely,

k

(19) E[L_(n) L(n)]f(ai) f(a) +... +
i=1
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kalso a sum of Y-i=l [Li_l (n) Li (n)] L)(n) Lk(n (n 1) 0 n 1 terms.
We compare the sums in (18) and (19) term by term, showing that the tth term of
(18) is less than or equal to the tth term of (19).

On the right-hand side of (18) the (n- L3,_ (T))th to the (n- L3(T) 1)st
terms are f(i), while on the right-hand side of (19), the (n- L’_l(n))th to the
(n- L(n)- 1)st terms are f(ai). Suppose the tth term of (18) is f(3). Then

n L_I (T) < t < n LZ (T).

However, LZ_I (T) L_(p_)(T), because, by the definition of there are no nodes
N satisfying L_I (T) < #N < Lz(T), but/3_ </3- (p- 1) </3. Thus

n L_(p_) (T) < t.

Since L(n) > L(T) for any T e P(n), we have

n- Z-(p-1)(n) < t.

Let u be the least index for which a > (p- 1); hence a > 5. Such an index
u exists because L(n) 0 and T has, by the definition of/3, a node N with #N >
/3- (p- 1). However L_(n) > ],_, (n) by hypothesis and au-1 </3- (p- 1), so

],_, (n) > ]-._(p-1)(n) and hence L,_l(n > /_(p_l)(rt). Thus

and therefore the tth term of (19) is f(at) > f(au) > f() (because f is nondecreas-
ing), which is what we wanted to prove.

We now show how to reduce the non-integer-valued case to the integer-valued
case. Let the functions L(n) be given and define

A(n) [L’ (n)j.

We have

L. (n) >, ]-,a (n),

but the ],a (n) are integer valued, so

A (n) >_ L, (n).

We can thus apply our theorem, which yields

k

fi’(T) <_ -[A_l(n)- h(n)]f(a),
i--1

for all T P(n). However,

k k

L*
i=1 i=1
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because

since L)(n)--n- 1, L(n)= 0, and f is nondecreasing, v1

This theorem has several interesting corollaries. First, there is a p-dimensional
analogue of Corollary 9 in [4].

COROLLARY 4.4. For f nondecreasing, the function defined by recurrence (4) for
n of the form (p- 1)/+ 1 with M(1) given satisfies

Llogp ((n-p+2)/2)J (p)
M(n) < nM(1)+ n(p- 1)

pi
i-1

( n
/ -lf

p[log, ((n-Zp+2)/2).] 2

Proof. Apply Theorem 4.3 with k [logp((n-p + 2)/2)J, a0 0, ai pi,
l<_i<k, ak=(n-p+2)/2, L(n)=n/pi-l, l <_ < k and L*(n) O.

Next, a much tighter upper bound is given in the following corollary.
COROLLARY 4.5. For f nondecreasing, the function defined by recurrence (4) for

n of the form (p- 1)/+ 1 with M(1) given satisfies

k(/--3)/2J

( 1
M(n)<_nM(1)+n E (p-1)i/l

i--0

+ (p- [(- //J +

1
} f((p- 1)i + 1)(- )i +p/

-1) f((p-1)[(1-21) j +1).
Proof. Apply Theorem 4.3 with k J, ai (i 1)(p 1) +.1

and L(n) n/(a+p-1)-l, for 1 _< < k, ao 0 and L(n) n-l, and
Ok

n--p+2
2 and Lk (n) O.

For p 2, the bound in Corollary 4.5 becomes

[n/2j--1
f(i) + O(f(Ln/2J))(20) M(n) <_ nM(1) +n E i(i + l)

i--1
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a major improvement over the upper bound given in Corollary 9 in [4]. For example,
when f(x) x and M(1) 0, we know (see [2, Eq. 2.50], for example) that M(n)
1/2nlgn+O(n). The upper bound (20)gives M(n) <_ nlnn+O(n), 0.693...nlgn/
O(n), while the result in [4] gives only M(n) <_ n lg n / O(n). When f(x) lg x and
M(1) 0, (20) gives M(n) <_ 1.137... n + O(logn), while the result in [4] gives only
M(n) < 2n 4-O(logn).

When f(x) [lg x we know from [4] that M(n) nM(1) + n -[lg nq 1, and
we can use summation by parts (see, for example, [2, Eq. 4.65] or [3, Ex. 1.2.7-10])
with (16)and (20)to obtain

n M(1) + n + O(log2 n) <_ M(n) <_ nM(1) + nE 2 +--- + O(log n)
i--o

riM(l) + 1.2645... n / O(logn).

Most interesting is the case f(x) [lg xj. We know from [4] that M(n)
riM(l) + n- [lgnJ -(n), where (n) O(logn) is the number of 1-bits in the
binary representation of n. Using summation by parts with (16) and (20), we obtain
the sharp result that M(n) riM(l) / n + O(log2 n).

COROLLARY 4.6. For f nondecreasing, the function defined by recurrence (4) for
n of the form (p- 1)l + 1 with M(1) given satisfies

M(n) <_ nM(1)+
L(/-1)/2J

i=0
(p- 1)i + 1 (p- 1)i + p

Proof. Apply Theorem 4.3 with k [t_AJ n+-e2(p-1) J’ Oi (i 1)(p- 1) + 1 and
nL(n) a(n)= L(i-1)(p-1)+pJ 1 for 1 <_ <_ k, and a0 0 and L(n)= n- 1.

The upper bound in Corollary 4.6 is sharper than those in Corollaries 4.4 and 4.5;
in fact,it is sharper than any other upper bound of the same form. Let n be fixed
and consider the partial order on the set/g(n) of upper bounds for M(n) of the form

k

(21) V(f) nM(1)+ E vif(i)
i--1

that hold for all nondecreasing functions f. Upper bounds V and W are comparable,
V - W, if V(f) <_ W(f) for all nondecreasing functions f; V and W are incomparable
if there exist nondecreasing functions f and g such that V(f) < W(f) and Y(g) >

LEMMA 4.7. Let
k

V(f) nM(1) + E vif(i)
i--1

and
k

W(f) nM(1) + E wif(i).
i--1

Then V - W if and only if for all j, 1 <_ j <_ k,

(22)
k k

=j =j
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Proof. If V - W, then (22) follows by considering the step function

fj(x) { 0, x < j,
1, x>_j.

On the other hand, suppose that (22) holds. To prove that V - W, we must
show that V(f) <_ W(f) for all nondecreasing functions f. Let ](x) f(x)- f(1);
](x) is a nonnegative, nondecreasing function of x and, moreover,

W(I) V(f) W(]) V(]),
so we need only prove that V(f) <_ W(f) for nonnegative, nondecreasing functions f.
Such a function can be written as a linear combination of the step functions fj(x),

k

y(x) + h(x),
j’-I

where h(x) 0 when x is an integer, 1 _< x < k, and the ci are nonnegative. Because
Y only uses f at integers, we have Y(f) V(f- h), and we have

V(f) V(f h)
k

nM(1) + E vi[f(i) h(i)]
i--1

k k

aM(l) + E vi E cjfj(i)
i--1 j--1

=nM(1)+Evicj,

since fj (i) is 1 if > j, and 0 otherwise. Thus,

k k

v(S) nM(1) + E cj E v,,
j--1 i=j

and so by (22),

k k

V(f) <_ nM(1) + E cj E’j=l i=j

W(f)

by a similar argument.
LEMMA 4,8. Let

k

V(f) nM(1) + E v,f(i).
i--1

Then, for 1 <_ j <_ k, -,k=j vi >_ Lj_l(n).
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Proof. Suppose E,k__j v, < tj-1 (n). Consider the step function

fj(x)---{ 0 ifx<j,
1 otherwise.

We have

M(n) nM(1)+ max /(T)
TeP(n)

riM(l)+ max
TeP(n)

nonrightmost
nodes N of T

nM(1) + max ETT)(n)
non_rightmost nodes

N in ’1’ with N > j-

nM(1) + max Lj_I(T)
TP(n)

=nM(1)+tj_l(n)
k

>nM(1)+vi
i--j

contradicting the fact that V is an upper bound.
THEOREM 4.9. The upper bound of Corollary 4.6,

V(f) riM(l) + 1)i+p

is the minimum element of the partial order/d(n); that is, V is in bl(n) and is less
than or equal to any other element in bl(n).

Proof. The upper bound V is of the form (21) with k (p- 1)[(/- 1)/2J + 1,
l= (n- 1)/(p- 1),

t,_(n)- t,(n) if (p- 1)l(i- 1),
vi 0 otherwise,

so V is in/2(n).
kGiven any element W e L/(n), W(f) nM(1) + -= wif(i), pad the shorter of

V and W with zeroes so the two are the same length. By Lemma 4.8, for 1 _< j _< k,

k

i=j

k

--E[i-l(n)--i(n)]
i=j

k

EVi
i--j

so V - W by Lemma 4.7.
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Combining all of these results yields the following theorem.
THEOREM 4.10. For f nondecreasing, the function defined by recurrence (4) .for

n of the form (p- 1)/+ 1 with M(1) given satisfies

nM(1) + (p- 1)
[logv nj

E -+ (-f)pi f(Pi
i-.1

-1)

<_ M(n)

<_nM(1)+ E (p-1)i+l (p-
i-o

L(/-3)/2J

( 1
_<nM(1)+n E (p-1)i+l

i-0

(+ (p- 1)[(/- 1)/2J + 1

n J)f((P-1)1)i+p
+i)

1
] f((p- 1)i

1)i /
+1)

1) f((p-1)l(1-21)J+1)
_< nM(1) + n(p 1) f(pi)p__T_ + n

1 I
n p + 2

Proof. All of the inequalities except that between the two larger upper bounds
follow immediately from our preceding discussion. Let W(f) be the largest of the
three upper bounds and let V(f) be the second largest of the three upper bounds.
We must show that V - W in order to prove the theorem. Write V(f) in the form

and W(f) in the form

with

V(f) (vi vi+l)f(i)
i-1

W(:)- E (wi-wi+l):(i),
i-1

n

j(p- +
when(j-1)(p-1)+l<i<_j(p-1)+l,

n
1

when pj-1 < <_ pJ, and

v[ -,+ w[.-+ 0.

Since vi <_ wi for each i, it follows that V - W by Lemma 4.7.
For example, when p 2, the bounds of Theorem 4.10 simplify to (5). When

f(x) x, we use the lower bound and the middle of the three upper bounds in
Theorem 4.10 to find that

p-1
nlogp n + O(n) <_ M(n) <_ n Inn + O(n).
P
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Similarly, when f(x)= logp x, we obtain

M(1)+p_l n+O(logn)
< M()

< M(1)+ +p-1

when f(x)= [logpx, we obtain

( 1 )M(1)+p_,I n+O(log2n)

< _/1//(n)

_< M(1)+2p_2 n+O(logn),

and when f(z) [logp z], we obtain the sharper result that

( 1)M(n) M(1) + n + O(log2 n).
p-1

1 )(p 1) lnp
n + O(log n),

We can compare the upper and lower bounds in Theorem 4.10 on M(n) for f
positive. Let U(n) be the largest of the three upper bounds in Theorem 4.10 and
L(n) be the lower bound in Theorem. 4.10. For convenience, assume M(1) 0,
since the M(1) term occurs with the identical coefficient in both U(n) and L(n). It
then follows from Corollary 4.4 and (16) that the same calculations that we did for
recurrence (3) lead to

U(n) ( f(L’-+?J) )L(n) <- 2p 1 +
f(pllOg,,(,-p)]-l

for recurrence (4), because

L(n) >_ n(p- 1) Llog_J-1 f(pi)
2p

i=0

logp n-p+2

U(n)<_n(p-1) E f(pi)
p----V- + Pf 2

i--1

5. Conclusions. It is worth noting that, in contradistinction to the binary case
explored in [4], even as strong a property as the concavity of f is insufficient to
determine the exact location of the maximum in recurrences (3) and (4). For example,
in recurrence (3) with p 3 and f nondecreasing and concave, direct calculation gives
unique values for M(n), 3 <_ n <_ 53, n odd, but gives

M(55) 55M(1) + max{19f(1) + 5f(3) + f(5) + 2f(9),
19f(1) + 6f(3)+ f(9) + f(13)}

55M(1)+ 19f(1) + 5f(3) + f(9) + max{f(5) + f(9), f(3) + f(13)},
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which is indeterminate given only that f is nondecreasing and concave. For f(x) x,
f(3)+f(13) is larger while for f(x) lnx, f(5)+f(9) is larger; both of these functions
are nondecreasing and concave. In recurrence (4) with p 3 and f nondecreasing
and concave, direct calculation gives unique values for M(n), 3 <_ n <_ 13, n odd, but
gives

M(15) 15M(1) -b max{Ill(I) + 2/(3) / f(7), 10f(1) + 4f(3)}
15M(1) / 10f(1)/ 2f(3) + max{f(1) + f(7), 2f(3)},

which is similarly indeterminate.
Thus we leave it as an open problem to find general conditions on f under which

the exact location of the maximum in recurrences (3) and (4) is determined. Such a
condition would likely involve the signs of the differences Af, A(2)f, A(p)f, just
as the case p 2 involves conditions on the signs of Af (that is, f nondecreasing)
and A(2)f (that is, f concave or convex).
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P-COMPONENTS AND THE HOMOGENEOUS DECOMPOSITION
OF GRAPHS*
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Abstract. In this paper we introduce and investigate the notion of p-connectedness. As it turns
out, this concepts leads naturally to a unique tree representation for arbitrary graphs: the leaves of
this tree are the p-connected components along with weak vertices, that is, vertices of the graph that
belong to no p-connected component. We then show how to refine this decomposition to obtain a
new decomposition that extends the well-known modular decomposition.

Key words, graph decomposition, p-connectedness, graph algorithms, structural graph theory
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1. Introduction. It is a standard paradigm to model problems arising in com-
munications, very large-scale integration (VLSI) design, database design, network
protocol design, and other areas of computer science and engineering by graphs in the
hope that the resulting graph problems can be solved quickly. A powerful tool for
obtaining efficient solutions to graph problems is the divide-and-conquer paradigm,
one of whose manifestations is graph decomposition.

An increasingly popular approach to graph decomposition involves associating
with a given graph G a rooted tree T(G) whose leaves are subgraphs of G (e.g.,
vertices, edges, cliques, stable sets, cutsets) and whose internal nodes correspond to
certain prescribed graph operations. Of particular interest are classes of graphs G for
which the following conditions hold:

T(G) can be obtained e]ficiently, that is, in time polynomial in the size of G;
T(G) is unique up to labeled-tree isomorphism.

Tree representations satisfying the conditions mentioned above have been ob-
tained for several classes of graphs, including cographs [4], interval graphs [3], chordal
graphs [6], [15], maximal outerplanar graphs [1], traveling salesman problem (TSP)
digraphs [10], P4-reducible graphs [7], P4-extendible graphs [8], and P4-sparse graphs
[9], among many others.

A well-known form of graph decomposition is the modular decomposition (also
called substitution decomposition). The modular decomposition has been discovered
independently by researchers in many areas. The reader is referred to MShring and
Rademacher [13], where some applications are discussed.

The purpose of this paper is to introduce and investigate a new graph-theoretic
concept that we refer to as the p-connectedness of a graph. On one hand, the p-
connectedness generalizes the usual connectedness. On the other hand, this concept
leads naturally to a structure theorem for general graphs which, in turn, suggests
a unique tree representation for arbitrary graphs: the leaves of this tree are the p-
connected components and the weak vertices, that is, vertices of the graph that belong
to no p-connected component. By refining our first result, we obtain a new decom-
position for arbitrary graphs that we call the homogeneous decomposition. As with
the modular decomposition, we produce a unique decomposition tree for arbitrary
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graphs; however, our decomposition can be seen as a natural extension of the mod-
ular decomposition, since it goes further in decomposing graphs that are prime with
respect to the modular decomposition.

The principle contribution of this paper, as we see it, is the structure theorem
mentioned above, which is the backbone of the whole paper, since all our results follow
directly or indirectly from it. This new structure theorem sheds a new light, on the
modular decomposition and, at the same time, suggests a natural way of extending
it.

The paper is organized as follows: 2 presents the basic definitions and introduces
some new terminology; 3 studies separable p-components, a key ingredient in our
decomposition; 4 presents a structure theorem for arbitrary graphs in terms of p-
connected components; 5 gives our first decomposition scheme for general graphs,
which we call the primeval decomposition, together with a corresponding unique tree
representation; 6 discusses the homogeneous decomposition of graphs and a second
tree representation for general graphs; finally, 7 summarizes the results and presents
open problems.

2. Basics and terminology. All the graphs in this work are finite, with no loops
or multiple edges. We assume familiarity with standard graph-theoretical terminology
compatible with Bondy and Murty [2]. At the same time, to specify our results, we
define and use some new terms.

Let G be an arbitrary graph. For a vertex x of G, we let N(x) denote the set of
vertices of G that are adjacent to x. Adjacency is assumed to be non-reflexive, and
so x N(x); we let Gs stand for the subgraph of G induced by S. Occasionally,
to simplify the notation, we blur the distinction between a set S of vertices and the
graph Gs that it induces and use the same symbol for both.

If a vertex x is nonadjacent to a vertex y, we say that x misses y (similarly,
y misses x). A vertex z is said to distinguish vertices u and v whenever z misses
precisely one of u, v. We let Pk stand for the chordless path on k vertices. In a P4
with vertices a, b, c, d and edges ab, bc, cd, the vertices a and d are referred to as
endpoints while b and c are termed midpoints. Let S induce a P4 in G; a vertex u
outside S is said to have a partner in S if u belongs to a P4 involving three vertices
from S.

Call a subset C of vertices of G p-connected if for every partition of C into non-
empty disjoint sets A and B, some P4 in G contains vertices from both A and B. If C
is maximal with this property, then C is called a p-connected component of G or simply
a p-component. For further reference we make the following simple observation.

Observation O. Let G be an arbitrary graph. The following statements hold"
(0.1) G admits a unique partition into p-components;
(0.2) the p-components are closed under complementation;
(0.3) every p-component is a connected subgraph of G and G.
(To settle (0.1), consider the binary relation R on the vertex set of G defined by

writing xRy if and only if x and y belong to a common p-connected set C. It is easy
to confirm that R is an equivalence relation. The p-components of G are precisely
the equivalence classes under R, hence the uniqueness. (0.2) follows from the fact
that the P4’s are closed under complementation; (0.3) follows from the definition of
p-components together with (0.2).)

Let S be a set of vertices in G; for a vertex u outside S, write
u E T(S) whenever u misses no vertex in S;
u I(S) whenever u misses all the vertices in S;
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u E P(S) whenever u misses some, but not all, vertices in S and u has no
partner in S.

For further reference, we take note of the following simple observations.
Observation 1. Let S induce a P4 in G. A vertex u outside S belongs to a

P4 involving a midpoint (endpoint) of S whenever one of the following conditions is
satisfied:

(1.1) u distinguishes the midpoints of S;
(1.2) u distinguishes the endpoints of S;
(1.3) u is adjacent to both endpoints and misses both midpoints;
(1.4) u e T(S) misses a vertex in P(S);
(1.5) u e I(S) is adjacent to a vertex in P(S);
(1.6) u e T(S) distinguishes adjacent vertices in I(S);
(1.7) u I(S) distinguishes nonadjacent vertices in T(S).
(To justify (1.1)-(1.3), note that u induces a P4 with three vertices in S; (1.5)

follows from the easy observation that every vertex in P(S) distinguishes an adjacent
midpoint-endpoint pair in S. Consequently, if some vertex u in P(S) is adjacent to
some vertex v in I(S), then vertices u and v, together with suitably chosen midpoint-
endpoint pair s, s’ in S, induce a P4. (1.4) follows from a mirror argument. Finally,
(1.6) and (1.7) follow directly from the definition of the sets involved.)

Let B be an arbitrary p-component in a graph G. Note that the maximality
implied by the definition guarantees that every vertex outside B belongs to precisely
one of the sets T(B), P(B), I(B). Next, we make some observations about the
relationships between vertices in T(B), P(B), and I(B) for an arbitrary p-component
B.

Observation 2. The following statements must hold:
(2.1) for every set S inducing a Pa in B, no vertex in P(B) misses an odd number

of vertices in S or is adjacent to endpoints only;
(2.2) no vertex in I(B) is adjacent to a vertex in P(B);
(2.3) every vertex in T(B) is adjacent to all vertices in P(B);
(2.4) no vertex in I(B) distinguishes nonadjacent vertices in T(B);
(2.5) no vertex in T(B) distinguishes adjacent vertices in I(B).

(This follows trivially from Observation 1, together with the assumption that B is
maximally p-connected.)

3. Separable p-components. A p-component B is said to be separable if it
partitions into nonempty, disjoint sets B and B2 such that every P4 with vertices
from both Bi’s has its midpoints in B and its endpoints in B2. For convenience, we
denote this partition as (B,B2). Separable p-components play a crucial role in our
decomposition theorem. We therefore investigate some of their basic properties. In
this context, to simplify the exposition, we refer to a Pa with vertices from both Bi’s
as crossing. Note that separable p-components are closed under complementation,
since a Pa is crossing in both G and ; consequently, in the partition (B,B2)
becomes (B2,B). The reader is referred to Fig. 1 for an illustration of this concept.

Observation 3. A p-component B is separable whenever P(B) is nonempty;
furthermore, for every vertex p in P(B), (B(p),B2(p)) is a partition of B, with

B1 (p) N(p) N B and B2(p) B \ B1 (p).
(Since B is a p-component, there must exist a P4 in B with vertices from both

Bi(p)’s. Let r be an arbitrary such Pc. (2.1) guarantees that the endpoints are in
B2(p) and the midpoints are in B (p). Since r was arbitrary, the conclusion follows.)
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FIG. 1. Illustrating separable p-components.

Our first result states a fundamental property of separable p-components that is
used repeatedly in the remainder of this paper.

THEOREM 1. In a separable p-component, every vertex belongs to a crossing P4.
Proof. Consider an arbitrary separable p-component B with a partition (B1,B2)

as described above. Since separable p-components are closed under complementation,
we need only prove that every vertex in B2 belongs to a crossing Pa.

If the statement is false, then we find a nonempty subset A of B2 such that no
vertex in A is on a crossing P4. Write C B \ A. Note that since B is separable, the
p-connectedness of B implies that C : 0. Similarly, the p-connecteness of B implies
the existence of a P4 with vertices from both A and C U B1. Since no vertex in A is
on a crossing P4, the vertices of r belong to A t2 C. Without loss of generality, we let
r be induced by {u, v, w, z}; furthermore, we let u denote a vertex of r that belongs
to C. Note that the definition of C guarantees that some set S {u, b, c, d} induces
a crossing P4 having u, d as endpoints and b, c as midpoints.

We claim that there is no labeling of the vertices of r for which the edges are uv,
vw, and wz, with u, w in C and v, z in A. (To see this, note that since z is adjacent to
w but not to u, w and d must be distinct vertices; otherwise by (1.2) z would belong
to a crossing P4. Next, by (1.1)-(1.3), v E T(S). Because z misses u, (1.2) and (1.4)
imply that z I(S). Now, however, either zwvb or zwbu is a crossing P4, depending
on whether or not w misses b.)

It is easy to confirm that for a suitable labeling of the vertices in r, we have the
following:

u C, v A, with u and v nonadjacent;
w adjacent to both u and v;
z misses w and distinguishes u and v.

We claim that

(3) v 1(,9) and w T(S).

(First, if w T(S), then since w cannot be a midpoint of any crossing P4 it must
be the case that w is adjacent to b and misses both c and d; put differently, wbcd
is a crossing P4 having w as one of its endpoints. Note that since v is adjacent to
w, (1.1)-(1.3) imply that v E T({w, b, c, d}). Now, however, uwvc is a crossing P4, a
contradiction. Thus w T(S).

Note further that by (1.2), v belongs to P(S)U I(S). We may assume that
v belongs to P(S); otherwise there is nothing to prove. Specifically, v is adjacent
to b and c and misses u and d. We want to show that this assumption leads to a
contradiction.
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To see this, consider first the case where z misses u (and therefore z is adjacent to
v). We must have z adjacent to b; otherwise zvbu would be a crossing P4, contradicting
that v E A. Now, however, either ubzd or zbwd is a crossing P4 with one midpoint
in B2, depending on whether or not z is adjacent to d. Either possibility contradicts
that B is separable.

Next, if z misses v, z must be adjacent to u. Note that z misses c; otherwise uzcv
would be a crossing Pa involving v. Now, however, we have reached a contradiction:
zuwc is a crossing P with one of its midpoints in B2, contradicting that B is separable.
Thus (3) must be true.)

We now continue with the proof of Theorem 1. Note that z cannot miss u and
be adjacent to v, otherwise, by (3), either vzbu or zvwb is a crossing P4, depending
on whether or not z is adjacent to b. Therefore, it must be the case that z misses v
and is adjacent to u. Note that z misses c; otherwise by (3), zcwv would be a
crossing P involving v. However, this implies that zuwc is a crossing Pa with u as
one of its midpoints, contradicting that B is separable. This completes the proof of
Theorem 1.

THEOREM 2. If a p-component is separable, then its partition is unique.
Proof. Suppose that Theorem 2 is false; let (B1,B2) and (B,B) be distinct

partitions of a p-component B. By replacing G with its complement G, if necessary,
we can ensure that

Let b be an arbitrary vertex in B1 N B. By Theorem 1, b belongs to a crossing P4
with respect to the partition (B1,B2). Since b E B, this P4 can be written as abcd
with a, d in B2 and c in B.

Similarly, since b B, Theorem 1 guarantees that b belongs to a crossing P4 with
respect to the partition (B,B). Furthermore, notice that this Pa can be written as
buvw with b, w in B and u, v in B. It is immediate that, since b B, all the
vertices u, v, w must be in B; otherwise we violate the partition (B,B2). Note that
since u belongs to B and c belongs to B, u and c are distinct vertices. We claim
that

(4) w is not adjacent to c.

(Otherwise w must be adjacent to a and miss d, or else the P4’s wcba or dwab
would violate the partition (B,B2). v thus must be adjacent to c and a, for if not,
then the P4’s vwcb or vwab would violate the partition (B,B). Now, however, either
dvab or dcva violates the partition (B,B), depending on whether or not v is adjacent
to d. Thus w misses c, as claimed.)

Note that by (4), together with (1.1) and (1.3),

w belongs to I({a, b, c, d}).

Similarly, since c is adjacent to b but not to w, it must be the case that

c is adjacent to u but not to v

and that

v belongs to I({a, b, c, d});
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Otherwise we violate the partition (B,B).
However, we have reached a contradiction: either vuba or wvua violates the

partition (BI,B2), depending on whether or not u misses a. With this, the proof of
Theorem 2 is complete.

Theorem 2 implies the following result that is used repeatedly in our subsequent
arguments.

COROLLARY 2.1. Let B be a p-component with P(B) nonempty. For every pair
of vertices p, p’ in P(B), N(p) N B N(p’) B.

Proof. By Observation 3, S is separable and both (B1 (p),B2 (p) and (B1 (p),B2(p))
are partitions of B. By Theorem 2, these partitions must coincide. The conclusion
follows.

4. The structure theorem. We are now in a position to state the following
structure theorem for arbitrary graphs that provides the foundation of our decompo-
sition scheme.

THEOREM 3. For an arbitrary graph G, precisely one of the following conditions
is satisfied:

(i) G is disconnected;
(ii) G is disconnected;
(iii) G is p-connected;
(iv) there is a unique proper separable p-component H of G with a partition

H2) such that every vertex outside H is adjacent to all vertices in H1 and
misses all vertices in H2.

Proof. We need only show that if (i), (ii), and (iii) are not satified, then (iv) must
be satisfied. For this purpose, we assume that both G and G are connected and that
G alone is not p-connected. Since both G and G are connected, a result of Seinsche
[14] guarantees that G contains a Pa. This, in turn, implies that G must contain at
least one p-component.

Choose a p-component B in G such that

P(B) is as large as possible.

We claim that

both T(B) and I(B) are empty.

If precisely one of the sets T(B) and I(B) is nonempty, then by (2.2) and (2.3)
combined, either G or G is disconnected, contrary to our assumption. Hence, if (6) is
false, then both T(B) and I(B) are nonempty.

We now need the following technical lemma. (Recall that the conditions of The-
orem 3 still hold.)

LEMMA 4. Let B be a p-component in G with both T(B) and I(B) nonempty. If
no vertex in T(B) is adjacent to all the vertices in I(B), then T(B) (2 I(B) contains
a p-component B’, with P(B) C P(B’).

Proof. Choose a vertex t in T(B) such that

IN(t) fq I(B) is as large as possible.

We claim that
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if a vertex x in T(B) is nonadjacent to a vertex in some

component Z of I(B), then x is adjacent to no vertices in Z.

(This follows by a combination of (2.5) and the connectedness of Z.)
Since, by assumption, no vertex in T(B) is adjacent to all the vertices of I(B),

(8) guarantees the existence of a component Z’ of I(B) such that t is adjacent to no
vertices in Zt. The connectedness of G, together with (2.2), guarantees that some
vertex z in Z is adjacent to some vertex t in T(B).

Our choice of t, expressed in (7), implies the existence of a vertex z in some
component Z distinct from Z such that z distinguishes and t. (2.4) guarantees
that t and are adjacent, and thus the set {t, t, z, z} induces a P4 in G. Let B
stand for the p-component containing {t, t, z, zt}.

(2.2) and (2.3), combined, imply that

P(B) C P(B’).

To see that the inclusion is strict, note that by the definition of T(B) and I(B), every
vertex in B belongs to P(B). With this, the proof of Lemma 4 is complete. [2

We now continue the proof of Theorem 3. If no vertex of T(B) is adjacent to
all the vertices of I(B), then Lemma 4 guarantees the existence of a p-component B’
with P(B) C P(B’), contradicting our choice of B in (5).

It must be the case, therefore, that some vertex t in T(B) is adjacent to all the
vertices in I(B). Let F stand for the connected component of the subgraph of
induced by T(B), containing t. Note that by (2.4), every vertex in F is adjacent to all
the vertices in I(B). Now, however, by the definition of T(B), together with (2.3), it
follows that G is disconnected (since every vertex in F is adjacent to all the vertices
in Y \ F), a contradiction. Thus (6) must be true.

Since, by assumption, G itself is not a p-component, (6) guarantees that

V B U P(B), with P(B) O.

By Observation 3, B is separable. Theorem 2 guarantees the uniqueness of the
separation. By Corollary 2.1, every vertex in P(B) has the same set of neighbors in
B. The proof of Theorem 3 is thus complete. []

5. The primeval decomposition. Our first decomposition scheme for general
graphs, which we call the primeval decomposition, relies on a number of graph oper-
ations that we present next. Let G1 (V1, E) and G2 (V2, E2) be disjoint graphs.
Define

G (G2 (V U V2, E t2 E2) and
G1 (C)G2 (Vx U V2, E1UE2U{xylx E V, y V}).

It is easy to confirm that operations @ and (C) reflect the conditions (i) and (ii),
respectively, in Theorem 3.

Operation (R), defined below reflects condition (iv) in Theorem 3. More precisely,
let G (V1, El) be a graph such that V is p-connected and separable with a partition
(VII,V12), and let G2 (V2, E2) be an arbitrary graph disjoint from G. Define

(9) G (G2 (V1 (2 V2, E1 U E2 U {xylx Yl1, y V2 }).
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Note that the (R) operation is well defined and admits a unique inverse: given an
arbitrary graph G that satisfies condition (iv) in Theorem 3, the graphs G1 and G2,
featured in (9), are uniquely determined.

To specify our results, we call a vertex of a graph G weak if it is involved in no p-
component of G. As it turns out, all graphs are constructible from atomic subgraphs
by means of the operations, ), (C), and (R) that we just defined. More precisely, we
have the following result.

THEOREM 5. Every graph G is either p-connected or it can be obtained uniquely
from its p-components and weak vertices by a finite sequence of operations ), (C), and
(R).

Proof. We proceed by induction on the size of G (V, E). If we assume the
statement true for all graphs with fewer vertices than G, we need only prove that the
statement holds for G itself.

For this purpose, we assume that G is not p-connected. Note that if G or G is
disconnected, then G arises from two of its proper induced subgraphs by a or
operation, and the conclusion is guaranteed by the induction hypothesis. Finally, by
Theorem 3, if both G and G are connected and if G itself is not p-connected, then
there exists a unique separable p-component H of G and a partition (H1,H2) of H,
such that every vertex in V \ H is adjacent to all the vertices in H1 and misses all the
vertices in H2. Now, however, it is obvious that G arises uniquely from the graphs
GH and Gv \ H by a (R) operation. The proof of Theorem 5 is thus complete.

Theorems 3 and 5 suggest a natural way of associating with every graph G a
unique tree T(G) called the primeval tree of G. To anticipate this we notice that the
leaves of T(G) are precisely the p-components of G, along with weak vertices of G;
an internal node A of T(G) is labeled (0 _< _< 2) whenever the subgraph H of G
corresponding to the subtree T of T(G) rooted at A arises from two of its proper
induced subgraphs by an (C) operation.

We are now in a position to describe the formal construction of the primeval
tree of an arbitrary graph G. The details are spelled out by the following recursive
procedure.

Procedure Build_Primeval_Tree(G);
{Input" an arbitrary graph G (V, E);
Output" the primeval tree T(G) corresponding to G.}
begin

if] V I= 1 or G is p-connected then
return the tree T having G as its unique vertex;

else if G is disconnected then begin
let G, G2,..., Gp (2 _< p) be the components of G;
let T, T2,..., Tp be the corresponding primeval trees rooted at rl, r2,..., rp;
return the tree T(G) obtained by adding r, r2,..., rp as children of a 0-
node
end

else if G is disconnected then begin
let G, G2,..., Gp (2 _< p) be the components of G;
let T1, T2,..., Tp be the corresponding primeval trees rooted at r, r2,..., rp;
return the tree T(G).obtained by adding r, r2,..., rp as children of a 1-
node
end

else {now G satisfies condition (iv) in Theorem 3} begin
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writeG GI(R) G2asin(9);
let T1, T2 be the corresponding primeval trees rooted at r and r2;
return the tree T(G) obtained by adding rl, r2 as children of a 2-node

end {if};
end; {Build_PrimevM_Tree}

By Theorems 3 and 5, it follows immediately that the primeval tree associated
with a graph G is unique up to labeled tree isomorphism. Furthermore, the primeval
tree of an arbitrary graph G can be obtained in polynomial time in the number
of vertices in G. To see that this is the case, observe that detecting whether G
(respectively, G) is connected can be done trivially using depth-first search; detecting
the p-components of G can be done in a similar way. Finally, in case condition (iv) in
Theorem 3 holds, the unique subgraphs featured in (9) can be obtained in polynomial
time using the previous observations.

6. The homogeneous decomposition. A module M in a graph G (V, E)
is a set of vertices of G that cannot be distinguished by vertices in V \ M. Note
that, in particular, G itself is a module. One form of graph decomposition, commonly
referred to as modular decomposition (also substitution decomposition [12]), partitions
a graph G into subgraphs each of which is a module in a subgraph of G. The modular
decomposition produces a tree that describes the submodules of G. It is folklore that
a number of NP-complete problems can be solved efficiently if a decomposition into
modules is available.

A proper subset Y with at least two vertices of G will be referred to as homoge-
neous (also a nontrivial module [12]) if every vertex outside Y is adjacent to either all
or none of the vertices in Y. Note that every homogeneous set is a module, but not
vice versa: in particular, the graph itself is not considered to be a homogeneous set.
MShring [12] calls a graphs that has no nontrivial module prime with respect to the
modular decomposition.

We propose a graph decomposition scheme that results in a unique tree repre-
sentation for arbitrary graphs. This will be obtained by refining the primeval tree
representation developed in the previous section. The leaves of this new tree are weak
vertices along with prime subgraphs of the original graph.

Homogeneous sets (nontrivial modules) play a central role in our decomposition
theorem. We, therefore investigate their properties in the context of separable p-
components.

LEMMA 6. Let B be a separable p-component with a partition (B1, B2). If the
subgraph of B induced by B2 is disconnected, then every component of B2 with at least
two vertices is a homogeneous set in B.

Proof. Let Z be an arbitrary component with at least two vertices of the subgraph
of B induced by B2. For later reference, note that since B2 is disconnected, B2 \ Z C_
(Z).

If Z fails to be homogeneous, then some vertex in B1 is adjacent to some, but
not all, of the vertices in Z. We propose to show that this assumption leads to a
contradiction.

To begin, we claim that if this is the case, then

P(Z) must be nonempty.

(Otherwise, some vertex in B1 belongs to a P4 involving three vertices from Z, vio-
lating the partition (B1,B2).)
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Next, we note that

(10) no vertex in P(Z) is adjacent to a vertex in I(Z).

(Let u be a vertex in P(Z) that is adjacent to a vertex v in I(Z). By the connectedness
of Z, u distinguishes adjacent vertices z, z in Z. Now, however, the P4 induced by
{u, z,z’, v} has a midpoint in B2, violating the partition (B1,B2).)

Note further that (10) along with the fact that /32 is disconnected guarantees
that T(Z) is nonempty: otherwise, B would be disconnected, contradicting (0.3). We
claim that

(11) every vertex in P(Z) is adjacent to all vertices in T(Z).

(Let a vertex p in P(Z) miss a vertex v in T(Z). By Theorem 1, there exists
a crossing P4 uvwz containing v. Trivially, the endpoints u and z are in B2 while
the midpoints are in B1. Since v misses z, it must be the case that z belongs to

B2 \ Z C_ I(Z); therefore, by (10), p misses z. Observe that u belongs to Z: otherwise,
p misses u and, for an arbitrary neighbor x of p in Z, pxvu is a P4 with one of
its midpoints in B2. Furthermore, since u belongs to Z, w cannot belong to T(Z)
(because w misses u). In addition, since w is adjacent to z, (10) guarantees that w
belongs to I(Z). Now, however, we have reached a contradiction: with x as before,
{p,x, v, w} induces a P, violating the partition (B,B2).)

Furthermore, we claim that

(12) no vertex in I(Z) distinguishes nonadjacent vertices in T(Z).

(Let_ a vertex u in I(Z) distinguish nonadjacent vertices v, v’ in T(Z). Now,
hoewver, for every choice of a vertex x in Z, {u, v, v’, x} induces a P4 with one of its
midpoints in B2, a contradiction.)

Finally, note that

(13) no vertex in T(Z) distinguishes adjacent vertices in I(Z).

(Let a vertex u in T(Z) distinguish adjacent vertices v, v’ in I(Z), and let x be
an arbitrary vertex in Z. Clearly, the Pa induced by {u,x, v, v} is crossing, and so
exactly one of the vertices v, v must belong to I(Z)N B2. Now, however, for an

arbitrary choice of the vertex p in P(Z), (10) and (11) guarantee that {p,u, v, v’}
induces a Pa that violates the partition (Bt,B2).)

To complete the proof of Lemma 6, we note that

(14) no P4 in B contains vertices from both Z t] P(Z) and B \ (Z t) P(Z)).

(Let uvwz be such a Pc. First, we argue that this Pa cannot have vertices from B
only. To see this, note that by (10) and (11), such a Pa must have either

u, w e T(Z), v e P(Z), z e I(Z), or

w, z E I(Z), u e P(Z), v T(Z).
However, the first case is invalidated by (12) while the second contradicts (13).

Therefore, the P4 uvwz is crossing.
If none of the endpoints belongs to Z, then by (10), neither v nor w belongs to

P(Z), contradicting that the Pa is crossing. Similarly, if both endpoints are in Z,
then by definition, none of the midpoints can be in T(Z) t] I(Z), contradicting that
the P4 is crossing.
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Therefore, we may assume without loss of generality that z belongs to Z while u
belongs to I(Z)NB2. (10) implies that v P(Z). Since v misses z, we have v e I(Z).
By (10), together with the fact that w is adjacent to z, it follows that w E T(Z).
Now, however, w, u, v contradict (13), and the conclusion follows.)

(14) now spells out the desired contradiction: B is not p-connected. This com-
pletes the proof of Lemma 6.

THEOREM 7. Let G be an arbitrary graph and B denote a separable p-component
in G with a partition (B1, B2). The subgraph of G (respectively, G) induced by B2
(respectively, B1) is disconnected. Furthermore, every component of the subgraph of
G (respectively, G) induced by B2 (respectively, B1) with at least two vertices is a

homogeneous set in G.
Proof. To begin, we claim that

(5) B2 is not p-connected.

(Suppose, to the contrary, that B2 is p-connected. Note that every vertex in B1
belongs to exactly one of the sets T(B2), P(B2), I(B2), for otherwise some vertex in

B1 along with three vertices in B2 induces a P4 that violates the partition (B1,B2).
By definition, no vertex in T(B2) (respectively, I(B2)) can belong to a P4 in G

involving vertices from B2. Theorem 1 guarantees that T(B2) and I(B2) are empty.
Hence, B1 C_ P(B2). However, Corollary 2.1 implies that no P4 contains vertices from
both Bi’s, a contradiction. Thus (15) must be true.)

Next, we claim that

(16) the subgraph of G induced by B2 is connected.

To justify (16), let X and Y be distinct connected components of the subgraph of G
induced by B2, and let x, y be arbitrary vertices in X and Y, respectively. By (0.2)
and (0.3), B induces a connected subgraph of G. Consequently, we find a path

(P) x zo, zl,..., zt y

in joining x and y. By taking t as small as possible, we ensure that the path (P)
is chordless.

Let zi (1 _< <_ t- 1) be the first vertex on the path (P) that belongs to BI" since
X and Y are distinct components of B2, such a vertex must exist. By our choice of
i, zi-1 belongs to X C B2.

The fact that (P) is chordless guarantees that if _< t-2, then the set (Z-l, z, Z+l, z+2}
induces crossing a Pa in G with at least one midpoint in B2, a contradiction.

Thus, t-1. A similar argument shows that if >_ 2, then the set (zi+l,zi,zi_l,
zi-2} induces a P4 in G, violating the partition (B1,B2). Consequently,

t 2 and Z1 belongs to B1.

We claim that (in G)

(17) Z misses no vertex in X t2 Y.

(Otherwise, without loss of generality, zl distinguishes adjacent (in G) vertices x’
and x" in X. Now, however, {zl,x’,x",y} induces a P4 with three vertices in B2,
contradicting that B is separable.)
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By Theorem 1, zl belongs to a crossing P4. In G, this P4 reads zluvw with
endpoints z and w in B and midpoints u and v in B2. Since u and v are adjacent
in G, they must belong to the same component Z of the subgraph of (7 induced by
B2.

Since z distinguishes u and v, (17) guarantees that Z is distinct from both X
and Y. Now, however, {x,z, u, v} induces a P4 that violates the partition (B1,B2).
Thus (16) must be true, as claimed.

We now continue with the proof of Theorem 7. If B2 induces a connected subgraph
of B, then by virtue of Theorem 3 applied to B2, together with (15) and (16), it must
be the case that

(18) B2 H tO P(H)

such that H is a separable p-component of B2, with a partition (H,H), with P(H)
0, and such that every vertex in P(H) is adjacent to all the vertices in H and misses
all the vertices in H2.

Note further that every vertex in B belongs to precisely one of the sets T(H),
g(H), I(H); otherwise, some vertex in B belongs to a crossing P4 involving three
vertices from H C B2, which contradicts the fact that B is separable. Clearly, B1 Cl

(T(H) U I(H)) is nonempty; otherwise by Corollary 2.1, every vertex in B \ H is

adjacent to the same vertices in H, which contradicts the fact that B is p-connected.
Let v be an arbitrary vertex in B A(T(H)tSI(H)). Since B is separable, Theorem

1 guarantees that v belongs to a crossing P4 uvwz with the endpoints u, z in B2 and
the midpoints v, w in B1.

First, assume that

v belongs to B1 C T(H).

Since v misses z, z cannot belong to H; by (18), z belongs to P(H). Now, however,
by (1.4), v, z, together with two vertices from H, induce a crossing P4 in B, which
contradicts the fact that that B is separable.

Next,-assume that

v belongs to B1 C I(H).

Note that u must belong to P(H): by definition, v is adjacent to no vertices in H.
Now, however, (1.5) guarantees that the vertices u and v, along with two vertices
from P(H), induce a crossing p, which contradicts the fact that B is separable.

Therefore, B must induce a disconnected subgraph of G. Lemma 6 guarantees
that every component of B2 containing at least two vertices is a homogeneous set in
B. In addition, no vertex outside B can distinguish vertices in such a component"
this is trivially true for vertices in T(B) and I(B). By Corollary 2.1, it is also true of
vertices in P(B).

A mirror argument shows that every component with at least two vertices of the
subgraph of G induced by B1 is a homogeneous set in G. With this, the proof of
Theorem 7 is complete. []

A graph G (V, E) is termed a split graph [5] if there is a partition of the vertex
set V into nonempty, disjoint sets C and S such that S is stable and C is a complete
set. A homogeneous set Y is maximal in a subgraph H of G if no homogeneous set
of H properly contains Y. Consider shrinking every maximal homogeneous set of
a p-component B to one representative vertex: the p-component C(B) obtained in
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this way is referred to as the characteristic p-component of B. Theorem 7 implies
the following simple result, whose proof is trivial. Figure 2 features a separable p-
component B along with its characteristic p-component.

B!

(a)

Bt

B

(b)

FIG. 2. Illustrating characteristic p-components.

COROLLARY 7.1. A p-component B is separable if and only if the characteristic
p-component C(B) of B induces a split graph.

To obtain the homogeneous decomposition of graphs, we augment the primeval
decomposition discussed in 5 with two graph operations and ), which we define
next.

Let G0=(V0 U {yo, yl,...,yt},Eo), GI=(V,E1),..., and Gt (gt,Et) be arbi-
trary graphs. The graph G=(V,E) is said to arise from Go and (GI,..., Gt) by a

operation if the following are true:
V U=o1/4;

EE=(Eo\{xyil xeVoU{yo, yt,...,yt},i=l,2,...,t})uUi=tEiU U
with E obtained by making every vertex in V (i 1, 2,..., t) adjacent to all
vertices in V0 adjacent to yi and E obtained by making every vertex in V
(i 1, 2,..., t) adjacent to all vertices in Vj if and only if yyj E Eo.

Loosely speaking, G is obtained by replacing every vertex y (i 1, 2,..., t) in

G0 by the graph G. To make sure that the operation (R) admits a unique inverse, we
need to make the technical assumption that every graph G remembers the identity
of the vertex y it has replaced.

Similarly, Corollary 7.1 suggests a natural way of decomposing characteristic p-
components. To see this, recall [5], [6] that a graph is a split graph if and only if both
the graph and its complement are triangulated (chordal). In addition, it is well known
(see [6, pp. 92-93]) that every triangulated graph admits a (not necessarily unique)
tree representation T. The nodes of this tree are the maximal cliques of the graph; for
every node v in the graph, the subset of nodes corresponding to the maximal cliques
that contain v is a subtree of the tree T.

In the case of a split graph that is the characteristic p-component, as in Corollary
7.1, it is easy to exhibit a tree representation that is unique. To clarify this, let the
vertices of the split graph partition, into nonempty, disjoint sets K and S, inducing a
clique and a stable set, respectively. Note that K is a maximal clique in the graph; for
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FIG. 3. A graph G.

every vertex s in S, sUN(s) is a maximal clique as well. The unique tree representation
is obtained by placing K at the root and, for all s in S, having the clique s U N(s) as
a child of the root. The operation described above is captured by a (R) operation in
our overall decomposition.

To summarize our findings, we state a result that extends Theorem 5. (The proof
is similar to that of Theorem 5 and therefore omitted.)

THEOREM 8. Every graph G can be obtained uniquely from its weak vertices and
characteristic p-components by a finite sequence of operations 0:), (C), (R), and (R).

Next, we describe the formal construction of the homogeneous tree of an arbitrary
graph G by the following recursive procedure.
Procedure Build_Homogeneous_Tree(G);
{Input" an arbitrary graph G (V, E);
Output: the homogeneous tree HT(G) corresponding to G;}
begin

ii V I= 1 then
return the tree HT having G as its unique vertex;

else if G is p-connected then begin
let C(G) be the characteristic p-component of G;
decompose C(G) by a ) operation and let T be the corresponding
tree rooted at a 4-node a;
let Y1, Y2,..., Yt be the maximal homogeneous sets of G;
let T1, T2,..., Tp be the homogeneous trees
corresponding to Y1, Y2,..., Yt, rooted at rl, r2,..., rp;
return the tree HT(G) obtained by adding a, r, r2,..., rp as
children of a 3-node;
{Comment" it is assumed that the root ri of the homogeneous tree
corresponding to Y stores Yi}
end

else if G is disconnected then begin
let G, G2,..., Gp (2 <_ p) be the components of G;
let T, T2,... ,Tp be the corresponding homogeneous trees rooted at r, r:,

rp;
return the tree HT(G) obtained by adding rl, r,..., rp as children of a
O-node
end

else if G is disconnected then begin
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let G1, G2,..., Gp (2

_
p) be the components of G;

let T1, T2,..., Tp be the corresponding homogeneous trees rooted at rl,

,rp;
return the tree HT(G) obtained by adding r, r2,..., rp as children of a
1-node
end

else (now G satisfies condition (iv) in Theorem 3} begin
write G G G2 as in (9);
let T, T2 be the corresponding homogeneous trees rooted at r and r2;

return the tree HT(G) obtained by adding rl, r2 as children of a 2-node
end {if};

end; {Build_Homogeneous_Tree}
By Theorems 3, 5, and 8 and the. previous discussion combined, it follows that the
homogeneous tree associated with a graph G is unique up to labeled tree isomorphism.
Furthermore, just as the primeval tree, the homogeneous tree of an arbitrary graph
G can be obtained in polynomial time in the number of vertices in G.

To illustrate the differences between the modular decomposition and the proposed
homogeneous decomposition the reader is referred to Figs. 3-5. To wit, the graph
featured in Fig. 3 is prime with respect to modular decomposition, and this is reflected
in the corresponding modular decomposition tree (see Fig. 4)- it consists of the root
and has every vertex in the graph as a leaf.

In contrast, the homogeneous decomposition starts by identifying a, a’, b, b’, c, c
as a separable p-component B of the graph and the vertex d as belonging to P(B).
Furthermore, the graph induced by a, a, b, b, c, c is a split graph, and thus we de-
compose it again as discussed above. The net result is demonstrated in Fig. 5.

a a’ b b’ c c’ d

FIG. 4. The modular decomposition of G.

{a,a’} {b,b’} {c,c’}

FIG. 5. The homogeneous decomposition of G.
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7. Conclusions and open problems. In this paper, we have introduced and
investigated the notion of p-connectedness of a graph. As it turns out, this concept
leads naturally to a unique tree representation for arbitrary graphs: the leaves of this
tree are the p-connected components along with weak vertices, that is, vertices of the
graph that belong to no p-connected component.

We then showed how to refine this first decomposition to obtain a graph decompo-
sition that constitutes a natural extension of the well-known modular decomposition.
We argued that both of decompositions can be obtained in polynomial time in the
size of the graph. Given the efficient algorithm to obtain the modular decomposition
[11], it is natural to ask for a similar algorithm for the homogeneous decomposition.
We pose this as an open problem.
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Abstract. The Hajds calculus is a simple, nondeterministic procedure that generates the class
of non-3-colorable graphs. Mansfield and Welsch posed the question of whether there exist graphs
that require exponential-sized Hajbs constructions. Unless NP coNP, there must exist graphs that
require exponential-sized constructions, but to date, little progress has been made on this question,
despite considerable effort. In this paper, we prove that the Hajbs calculus generates polynomial-sized
constructions for all non-3-colorable graphs if and only if extended Frege systems are polynomially
bounded. Extended Frege systems are a very powerful family of proof systems for proving tautologies,
and proving superpolynomial lower bounds for these systems is a long-standing, important problem
in logic and complexity theory. We also establish a .relationship between a complete subsystem of the
Hajbs calculus and bounded-depth Frege systems; this enables us to prove exponential lower bounds
on this subsystem of the Hajbs calculus.

Key words, graph constructions, complexity of propositional proof systems, 3-colorability
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1. Introduction. The Hajbs calculus (or Hajbs construction) is a simple, non-
deterministic procedure for generating the class of graphs that are not k-colorable
[Haj]. Mansfield and Welsh [MW] posed the problem of determining the complexity
of this procedure; in particular, it is an open problem whether or not there exists a
polynomial-sized Hajbs construction for every non-3-colorable graph. Because graph
3-colorability is NP-complete, if there were polynomial-sized Hajbs constructions of
all non-3-colorable graphs, then NP- coNP, so we expect that the Hajbs calculus
is not polynomially bounded. However, there has been very little progress toward a
proof of this conjecture, despite considerable effort.

The main result of this paper is a proof that the Hajbs calculus is polynomi-
ally bounded if and only if extended Frege proof systems are polynomially bounded.
This result links an open problem in graph theory to an important open problem
in the complexity of propositional proof systems. It also shows that the complexity
problem for the Hajbs calculus is very difficult, since extended Frege systems are a
very powerful class of proof systems for the propositional calculus and no techniques
that appear adequate to prove superpolynomial lower bounds for them currently ex-
ist. In addition, we study a subsystem of the Hajbs calculus, which is still powerful
enough to generate all non-3-colorable graphs. Our results, together with recent lower
bounds for bounded-depth Frege proofs [Ajtl], [PBI], [KPW], enable us to prove an
exponential lower bound for this subsystem of the Hajds calculus.

In 2, we introduce graph calculus terminology and prove some facts about the
Hajbs calculus. In 3, we introduce propositional proof system terminology and prove
some lemmas about extended Frege proof systems. In 4, we show how to transform
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This procedure was originally formulated due to its connection to the four-color conjecture. In
particular, when k 4, proving that all graphs generated by the Haj6s calculus are not planar is
equivalent to proving the four-color theorem.
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the rules of the HajSs calculus to obtain a propositional proof system and, analogously,
how to transform the extended Frege system into a graph calculus. We then show
that there are efficient simulations between these two systems. In 5, we prove the
main theorems, and finally in 6, we discuss the implications of these results for the
graph-theoretical complexity problem.

2. Graph calculi and the HajSs calculus.

2.1. Graph calculi. The graphs in this paper are finite simple undirected graphs,
that is, they contain no loops or multiple edges. The descriptions of the HajSs con-
struction in the graph-theoretic literature assume that the construction operates on
graphs where isonorphic copies of a graph are considered to be the same graph. How-
ever, it is more natural to think of operating on standard graphs, where each vertex
is labeled with a particular positive integer, and therefore we view isomorphic graphs
with different labels as different graphs. Accordingly, we define a graph G to be a pair
(V, E), where V is a finite set of positive integers and E is a set of unordered pairs
of elements of V; we write e(G) for E and v(G) for V. Two graphs will be said to be
disjoint if their vertex sets are disjoint. A k-coloring of a graph is an assignment of
one of k distinct colors to each of the vertices of the graph; the coloring is proper if
no two adjacent vertices receive the same color, otherwise improper.

A graph calculus is a collection of initial graphs, together with a finite collection
of rules that allow us to derive new graphs. We shall restrict our attention to calculi
for the class of non-3-colorable graphs. Let C be a particular graph calculus. A
construction of a graph G in C is a sequence of graphs, ending with G, such that every
graph in the sequence is either an initial graph or follows from previous graphs by one
of the rules of C. C is sound if every graph constructed by C is non-3-colorable. C is
complete if every non-3-colorable graph can be constructed in C. The HajSs calculus
is an example of a sound and complete graph calculus. Let F {G1, G2,..., Gk} be
a set of graphs, and let G be another graph, all with underlying vertex set V. Then F
implies G, written F = G, if for all 3-colorings of V, if c is an improper 3-coloring of
every graph in F, then c is also an improper 3-coloring of G. A graph calculus C, is said
to be implicationally sound if for all F {G1, G2,..., Gk}, G, if G can be constructed
in 2 from F, then F = G. A graph calculus C, is said to be implicationally complete if
for all F {G, G,..., Gk}, G if F = G, then there is a construction in C of G from
the graphs in F. We will see in the subsequent section that the HajSs calculus is not
implicationally sound but is implicationMly complete. We will also define a complete
subsystem of the HajSs calculus, ?-/C-, which is implicationally sound.

The size of a graph G is the number of its edges, that is,
graph calculus construction is the sum of the sizes of all graphs in the construction.
The length of a graph calculus construction is the number of applications of rules in
it. A graph calculus C is polynomially bounded if there exists a polynomial p such that
every non-3-colorable graph G can be constructed in C with a construction of size at
most

Let C and 2 be two graph calculus systems. Then C p-simulates C2 if there
is a polynomial-time computable function f so that for all graphs G, if s is a graph
construction of G in C2, then f(s) is a graph construction of G in C1. C1 and C2 are
p-equivalent if C p-simulates C2 and if C2 p-simulates

2.2. The Hajds calculus. In this section, we will describe the Hajds calculus
for k 3; to obtain the Hajds calculus for a different value of k, simply substitute the
complete graph,/(k+l, for the initial graph, K4. The set of initial graphs in the Hajds
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calculus contains all graphs isomorphic to Kd. There are three rules for generating
new graphs:

(1) (Vertex/edge introduction) Add (any number of) vertices and edges.
(2) (Join rule) Let G1 and G2 be disjoint graphs, al and bl adjacent vertices in

G1, and a2 and b2 adjacent vertices in G2. Construct the graph G3 from
Gi U G2 as follows. First, remove edges lax, bl] and [a2, b2]; then add an edge
[bl, b2]; last, contract vertices al and a2 into a single vertex, named a.

(3) (Contraction rule) Contract two nonadjacent vertices into a single vertex, and
remove any resulting duplicated edges; the single vertex can be either of the
two original vertices.

Since we are using labeled rather than unlabeled graphs, it might seem necessary
to include a duplication rule that allows the generation of any graph isomorphic to
an already constructed graph. However, the duplication rule applied to a graph G
can be simulated by repeated applications of the contraction rule, applied to G and
a collection of isolated vertices. The simulating construction that results has size
O([v(G)12), so the systems with and without the duplication rule are p-equivalent.

It is not too hard to see that any graph constructed by means of the above HajSs
calculus procedure is not 3-colorable. Moreover HajSs showed [Haj] that the Hajds
calculus is complete. The proof of this completeness theorem yields an algorithm
that generates a HajSs construction for any non-3-colorable graph. The length of the
construction, in the worst case, is exponential in the size of the graph. Mansfield
and Welsh [MW] show that for a graph with less than n2/3 edges, there is a HajSs
construction of the graph with length at most 2n/3-1e(G)l+ 1.

In earlier papers on the complexity of the HajSs calculus [MW], [HRT], a different
definition of HajSs calculus is given. There, a HajSs construction of a graph G is
defined to be a construction of a subgraph of G using only the rules (2) and (3).
However, this alternative definition results in essentially the same complexity measure.
(The unwritten proof of this result is due to Jason Brown.) Additionally, in earlier
formulations, the size is taken to be the length rather than the size. However, the two
measures are polynomially related for the formulation of the HajSs calculus employed
here.

It will be convenient for our purposes to reformulate the HajSs calculus. The
system 7-/(: has the same set of initial graphs as well as rules (1) and (3) of the HajSs
calculus, but now rule (2) of the HajSs calculus is replaced by the following rule:

(2p) (Edge elimination rule) Let G and G2 be two graphs with common vertex
set {vi,..., Vn} that are identical except that GI contains edges Ivy, v2] and
Iv2, v3] and not Iv1, v3], whereas G2 contains edges [vi, v2] and [vi, v3] and
not Iv2, v3]. Then from G1 and G2, we can construct the graph G3, which is
graph G1 with edge Iv2, v3] removed.

CLAIM 1. -C i8 p-equivalent to the HajSs calculus.

Proof. Because the only rule that differs is rule (2), it suffices to show that the
join rule of the HajSs calculus can be simulated by a construction in T/C, that the edge
elimination rule (2p) of 7-/C can be simulated by a construction in the HajSs calculus,
and that in each case the series of simulating steps can be constructed in polynomial
time.

Let GI (V1,EI) and G2 (V2, E2) be two disjoint graphs, where G1 has a
distinguished edge [al, bl], G2 has a distinguished edge [a2, b2], and G is the graph
obtained from G and G2 by applying the join rule. To derive G in C, we first apply
rules (1) and (3) to obtain an isomorphic copy, G, of G2 in which a2 is replaced by
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al. Then we apply rule (1) to G1 to obtain a new graph, G with underlying vertex
set (V1 t2 V2) {a2 }; the edges of G are the edges of G1 except for [al, b2], the edges
of G, and the edge [bl,b2]. Similarly, we apply (1) to G to obtain the new graph
G where G has the same vertex set as G, and the edge set is the same except that
edge [al, bl] is replaced by edge [a,b2]. We can now apply rule (2) of T/C to G and
G to obtain the desired graph, G.

Conversely, let G1 and G2 be two graphs that are identical except that G contains
edges Ivy, v2] and Ivy, v3] whereas G2 contains edges Iv1, v2] and Iv2, v3]. Let G be the
graph obtained by applying the edge elimination rule (2t). To derive G in the Haj6s
calculus, first apply rules (1) and (3) to generate an isomorphic copy, G, of G2
disjoint from G1; if v is a vertex of G2, then v* is the corresponding vertex of G.
Second, apply the join rule to G1 and G to obtain a new graph, Gt, where vertices

v3 and v: are contracted to a single vertex, v3, and that contains the edge Ivy, v]
but does not contain edges IvY, vii or Ivy, v3]. G’ contains two copies of each vertex
other than vertex v3; by contracting vertices v and v* (using rule (3)), we obtain the
desired graph, G.

DEFINITION. Let the graph system TlC- be the system TlC without the contraction

In [Be, pp. 352-353], it is shown that -/C is complete. The proof actually shows
the stronger result that T/C- is complete. The following theorem is a new and stronger
form of completeness for -/C than in the earlier proof by HajSs. The proof of this
theorem follows from our more general Theorem 3 by setting V equal to V.

THEOREM 2. C- i8 implicationally complete.
DEFINITION. Let F {G, Gq}, and let G, Gq and G be graphs over

vertices V, IVI n. For V C_ V, let GV’ denote the subgraph of G over the vertices
in V. The implication F G is V-local if there exists a subset V C_ V such that
(1) for all <_ q, the set of edges in Gi that do not lie inside V equals the set of edges
of G that do not lie inside V, and (2) if c is a 3-coloring to V’ and c is a proper

V3-coloring of G then c is also a proper 3-coloring of Gy’, for some j <_ q. The
implication will be called V-local when the underlying vertex set is V.

THEOREM 3. Let F {G,...,G}, and let GI,...,G and G be graphs over
vertices V, IVI n. If there exists V’ C_ V, IV’I >_ 4, such that F G is V’-local,
then there is a TlC- construction of G from F with size at most O(21V’ln2).

Proof. Let G, G2,..., G and G be graphs over vertex set V, and let G,..., G
G. A triplet is a subgraph consisting of three vertices and a single edge between two
of the three vertices. For a fixed V, V C_ V, IVI >_ 4, G,..., Gq, we will show that
if G is a graph over V such that G,..., G = G and the implication is V-local, then
there exists a construction (in IVI) of G from G,..., G of size

The proof is by downward induction on the number of edges in GV’. If all edges
are present in GV’, then GV’ and, hence, G must contain a K4 subgraph and thus, can
be constructed from K4 by application of rule (1). For the inductive step, assume that
we have proven the theorem for all graphs, H, with underlying vertices V, such that
(1) G, G H, and the implication is V’-local, and (2) the number of edges
in HV’ is greater than m. Now fix G such that G,..., G = G, the implication is

V-local, and GV’ has rn edges. There are two cases to consider: either GV’ contains
a triplet, or there are no triplets in GV’. If GV’ does not contain any triplets, then
GV’ is a complete k-partite graph, for some k. (This follows because if there are
no triplets, then the relation "is not adjacent" is an equivalence relation.) If k > 3,
then GV’, and hence also G, contain a K4 subgraph and can therefore be constructed
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from/(4 by rule (1). Otherwise k <_ 3. In this case, we will show that G contains
some Gi as a subgraph. Label the maximal independent sets of Gy’ by X, Y, and
Z. Assume for the sake of contradiction that G does not contain any of G1,..., Gq as
subgraphs. Then each Gi must contain some edge that is contained in either X, Y,
or Z. Now consider the 3-coloring of Gy’ that assigns to all vertices of X the color
red, to all vertices of Y the color blue, and to all vertices of Z the color green. Then
this coloring properly colors Gy’ but does not properly color any of Gv’,..., Gqy’.
But this contradicts our assumption that G1,..., Gq G is W-local. Thus, some

Gi must be contained within G, and it follows that G can be constructed from Gi by
adding edges.

The second case is when Gy’ contains at least one triplet. Consider a triplet,
T, of Gy’, with vertices v, v2, v3 and edge (Vl, v2). Let Ga be the graph G plus the
additional edge (v2, v3), and let Gb be the graph G plus the additional edge (v, v3).
Because G,..., Gq = G and G =v Ga, it follows that G1,..., Gq =v Ga. By this
fact, and because Ga has more than m edges, we can apply the inductive hypothesis
to obtain a construction of G from G1,..., Gq. Similarly, we can construct Gb from
G,..., Gq. Now, by the edge elimination rule (2P), we can construct G from Ga and
Gb

The number of intermediate graphs constructed is O(2tY’l), and each is of size at
most O(IVI2). Thus, the total size of the construction is O(21V’ln2).

It is interesting to note that ?-/C is not implicationally sound because rule (3) is
not sound. However, 7-/C- is implicationally sound.

3. Propositional proof systems. A propositional proof system is a collection
of initial propositional formulas (axioms), together with a set of rules that allow us
to derive new propositional formulas. The propositional proof systems we consider
are systems for showing formulas to be tautologies. A propositional proof system is
a Frege system if its axioms consist of all instances of a finite number of tautologies,
and it has a finite number of inference rules of a certain form that are sound (i.e.,
preserve truth). We shall also consider extended Frege systems, in which it is possible
to introduce new sentence letters as abbreviations for complex formulas. For a more
in depth treatment of propositional proof systems and their relative efficiency, see

Let 7) be a fixed propositional proof system. We say that P is sound if all of
its axioms are tautologies and its rules of inference preserve truth (for each truth
assignment). If :P is sound and A1,..., An and B are formulas of P, then a proof of
B from A1,..., An in P is a sequence of formulas, each of which is either an axiom of
7), one of the formulas A1,..., An, or derived from earlier formulas in the sequence by
one of the rules of P and in which the last formula is B. We write A,..., An p B
if there is a proof of B from A,..., An in P. The size of a proof is defined to be the
number of occurrences of symbols in it. If F U (A} is a set of formulas, then we write
F A if A is a logical consequence of the set of formulas F. A proof system P is
complete if every tautology has a proof in P; :P is implicationally complete if F -7 B
whenever F B.

Let :P and :P be two propositional proof systems that share a common language.
The system P p-simulates/)2 if there is a polynomial-time computable function f so
that for all formulas A, if P is a proof in/)2 of A, then f(P) is a proof of A in Pl.
If 7)1 p-simulates P2, then there is a polynomial p so that if there is a proof of A in
7)2 of size m, then there is also a proof of A in :Pl of size at most p(m). Two proof
systems are p-equivalent if they p-simulate each other.
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Several of the proof systems we consider in this paper operate with formulas in
disjunctive normal form. A DNF formula is a finite disjunction of a set of terms,
each of which is a conjunction of a set of literals (variables or their negations). The
complement of a literal is written as . A term will be written in the form / X
where X is a set of literals, or by juxtaposing literals, as in lll2.., lk. Disjunctions
are written as V X, or in the form 11 V... V lk. If X is a set of terms and a literal,
then X1 will stand for the set of all terms A1, where A is a term in X.

If A is a formula in conjunctive normal form, then A is defined to. be the
formula in disjunctive normal form equivalent to the negation of A, that is, the formula
resulting from A by replacing V by A, A by V, and literals by their complements. If
l, m,n are literals, then the notation (m V n) will be used as an abbreviation
for ( V rn V n) A ( V l) A ( V l) and (At,..., Ak) D B as an abbreviation for
AV...VAkVB.

If A, B are formulas, then A[B/p] is defined to be the formula that results from A
by substituting B for every occurrence of the variable p in A. If F is a set of formulas,
then FIB/p] is the set of all formulas A[B/p] for A in F.

Let f be a DNF formula. Then the formula f[1/p] denotes the formula obtained
from f by removing all terms that contain p and then removing all occurrences of
p. If the resulting formula is the empty disjunction, then f[1/p] is defined to be
(p A p); if the resulting formula contains an empty conjunction, then f[1/p] is defined
to be (p V ). Similarly, the formula f[O/p] denotes the formula obtained from f by
removing all terms that contain p and then removing all occurrences of p. If the
resulting formula is the empty disjunction, then f[O/p] is defined to be (p A p); if the
resulting formula contains an empty conjunction, then f[O/p] is (p Vp). If f is a CNF
formula, then f[1/p] and f[O/p] are defined similarly. Last, if F is a set of formulas,
then F[0/p] (F[1/p]) is the set of all formulas A[O/p] (A[1/p]), for A F.

3.1. A depth-2 Frege system. The system ’2 is a proof system for DNF
formulas, where a term in a DNF formula will be viewed as an AND of an ordered set
of literals. The proof system ’2 has a single axiom schema, p V p, and the following
five rules. In applying the rules of $’2 and the other systems that we consider the
associative and commutative laws for disjunction will be applied tacitly. We will also
assume the following generalized commutativity rule for conjunction: (l A 12/k.../k
lq) V B =: (r(/1) A 7r(/2) A... A 7r(lq)) V B, where r is a bijection from {l,..., lq} to
{, ,lq}.

(R0) AVAVB=AVBandAVA=A,
(R1) A=AVB,
(R2) AB V C A V C,
(R3) (A V C), (B V C) AB V C,
(R4) AV1,BV AVB.
THEOREM 4..T’2 is implicationally complete for DNF formulas.
Proof. We prove that if F A, then F -=2 A by induction on the number of

variables in F U {A}. We will need the following claim, which is proven by induction
on the length of the derivation of B from F U {A}.

CLAIM 4A. If F, A -:. B, then F, A V C -=. B V C.
If there is exactly one variable in F U {A} and if F A, then there are two cases

to consider. (1) If A is equivalent to 0, p, or -p, then it can be checked that in all
cases, we can derive A from F. (2) Otherwise, A is equivalent to 1, in which case it
is of the form (pp...p) V (--...) V B and therefore follows from the axiom plus rules
(al) and (a3).
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Assume that the theorem holds for n variables, that F U {A} contains n + 1
variables, and F A. Let p be a variable occurring in A. Then without loss of
generality, A can be written in the form V Xpp...p v V YPP...P v V z, where p and p
do not occur in X, Y, or Z. By assumption,

Vx v V z; V v V z.

By applying the rules (R2) and (R4), the set of formulas F[1/p] can be deduced from
F U {p}; similarly, F[0/p] can be deduced from F U {p}. Thus, by (al) and (R3),

Hence, by the preceding claim,

r,;v Vx;v Vzv ;
Since pVp is an axiom, F F.,. V xpvV YpvV z by (R4) and (R0). Then by repeated
application of (a0), (a2), and (a3), we have F k-= A. []

3.2. A depth-d Frege system. By adding a few more rules to the depth-2
Frege system, 92, we can define a more general Frege system, $’, over the basis AND,
OR and NOT. We define the rules of this system to be the rules (R0)-(R4) of $2,
plus the following rules (Rh)-(R9). The symbol indicates that the rule may be
applied either from left to right (=) or from right to left (=). In all rules (R0)-(R9),
the formulas A, B, and C are arbitrary formulas over the basis V, A, and -, where
AND and OR are unbounded-fanin boolean functions and NOT is defined as usual.

(Rh) A A (B1 V... V Bk) ::> (A A B1) V V (A A Bk),
(a6) A V (B A-.. A Bk) (A V B) A... A (A V B),
(R7) -(A1 V... V Ak) -A1 A... A -Ak,
(R8) -(A1 A... A Ak) -A1 V... V -Ak,
(R9) -A v A.
The depth of a formula is the depth of the boolean tree that represents the formula.

We define a depth-d proof of a formula, A, to be a proof in the above Frege system,
where each formula occurring in the proof has depth at most d. Alternatively, the
depth-d Frege system, d, is the system 9v, where each formula is restricted to have
depth at most d.

3.3. Proof systems with extension. Given a proof system, a natural and pow-
erful way to extend it is to add a rule by which a complex formula can be abbreviated
by a single variable.

Let S be any standard Frege system where no restrictions are placed on the depth
of formulas (i.e., the system $’). The extended version of S, or ’S, is the system that
results from by allowing as steps in derivations lines of the form p A, where
p is a variable that does not appear in A, nor does p appear in earlier lines, in the
assumptions, or the conclusion of the derivation. Such a system is an extended Frege
system. Cook and Reckhow [CR] show that any two extended Frege systems are
p-equivalent, so the results of this paper do not depend on the formal details of a
particular system.

In the case of the system 9v2, it is more convenient to introduce a form of the
extension rule similar to that originally used by Tseitin [Tse] in the context of res-
olution systems. Let V be a set of variables and pl,...,pk a set of new variables



THE COMPLEXITY OF THE HAJS CALCULUS 471

disjoint from those in V. Then D1,..., Da is an extension sequence for V if for each
i, Di is pi - (/1 V 12 V... V lq), where/1,..., lq are literls that involve variables from
V t2 {pl,..., pi_ 1}. We define an $$’2 proof of a DNF formula A to be a proof in
of the formula (D,..., Dk) D A, where D,...,D is an extension sequence for the
variables occurring in A.

Although g’2 only allows proofs of formulas in DNF, g’92 can be considered
as a general proof system for propositional formulas by using the idea of extension.
Let A be a propositional formula; for definiteness, let us take A to contain only the
connectives and V. Associate a literal 1B with each subformula B of A so that (1)
the variables in A are associated with themselves; (2) if B has the associated literal B,

then -B has lB as its associated literal; and (3) distinct subformulas are associated
with distinct literals. Then the definitional set for A, Def(A), is the set of all formulas
of the form 1Bye (1B /1C), where B V C is a subformula of A. Then we define an
g’$’2 proof of the formula A to be a proof in ."2 of (/ Def(A) D 1A).

LEMMA 5. The system g’gv2 p-simulates any extended Frege system.
Proof. Let 8 be a fixed extended Frege system, d a derivation of A in g’S, and

Def(d) the union of all the definitional sets Def(B), where B is a line of d. It can be
shown by induction on the length of d that for every line B in d, there is a derivation
in 92 of Def(d) D 1B; hence there is a derivation d in $’2 of A. The new derivation
d can be constructed in polynomial time from the old derivation d, so that $’2 p-
simulates $. This proof is essentially the same as the proof by Cook and Reckhow
[CR] of the corresponding result for extended resolution.

3.4. Systems with substitution rules. Another natural and powerful rule
used in many propositional proof systems is the rule of substitution: Given A derive
A[B/p], where p is a variable, B any formula. This rule is unsound (except if A
is required to be a tautology), so systems including this rule no longer qualify as
Frege systems. If G is a Frege system, then we write S for the system which results
from G by adding the rule of substitution. Such systems are called Frege systems
with substitution by Cook and Reckhow [CR], who prove that any such system can
p-simulate any extended Frege system.2

A weak form of the substitution rule is the rule that allows the substitution of
the constants 0 and 1 for all occurrences of a propositional variable. This form of the
rule we shall call the {0, 1}-substitution rule. If G is a Frege system, we write ’0,1
for the system that results by adding the rules- A A[0/p] and A All/p] to . If
we do not have the constants 0 and 1 in our system, then A[O/p] and A[1/p] denote
the formulas obtained from A as defined earlier. The following lemma, due to Buss
[Bu], states that in the context of a Frege system this weak form of the rule is (up
to a polynomial) as strong as the unrestricted form of the rule. For completeness, we
provide a proof of this lemma.

LEMMA 6. The system 80,192 p-simulates
Proof. By definition, an $9v2 proof of a formula A is a proof in 9v2 of (D1,..., Dk)

A, where D1,..., Dk is an extension sequence for the set of variables in A. Thus it
is sufficient to prove that if we are given a proof in $-2 of (D1,... ,Dk) D A, we can
eliminate the antecedent of the conditional efficiently, using the {0,1}-substitution
rule.

Let D be p (l V 12 V... V lq). Then from (D1,..., Dk) D A by substituting

2 Somewhat surprisingly, the converse simulation also holds, a fact first proved by Dowd [Do] and
later in [KP].
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1 for Pk we can derive the formula (D,... ,Dk-, (l V... V lq)) D A; similarly, by
substituting 0 for Pk we obtain the formul (D,..., Dk-, (l A A lq)) D A. By
repeated application of (R2), (R0), and (R4), we can then derive (D,... ,Dk-) D A.
The elimination of the hypothesis Dk takes steps of total size O(r), where r is the
length of the formula (D,...,D) D A, so that the formula A can be derived in
0,1’2 by adding extra steps of total size O(kr).

Another restricted form of the substitution rule is the renaming rule: given A
derive A[p/q], where p, q are propositional variables. If is a Frege system, the
system that results from G by adding the renaming rule will be denoted by 7E. It is
a surprising result of Buss [Bu4] that in the context of Frege systems the renaming
rule is as powerful as the {0, 1}-substitution rule (up to a polynomial).

LEMMA 7. The system T.T2 p-simulates S0,’2.
Proof. The proof presented here is due to Steve Cook. We show how, given a

proof of A in ’2 and p a variable in A, we can derive A[O/p] in 7.T in a relatively
efficient way. Let p,... ,Pk be the variables in A, and let pi be the variable to be
eliminated. Let the length of A be r. Then from A we can derive pi V A[O/pi] by
(a0), (R1), and (R2); hence by k-1 applications of renaming we obtain the formulas
pl V A[O/pi], p2 V A[O/p], Pk V A[O/p]. Since A is a tautology, we can derive the
formula -’Pl V -’P2 V... V ’Pk V A[O/p] by a subsidiary derivation of length O(kr).
Now by k applications of rule (a4), we obtain A[O/pi], as desired. The derivation of
A[O/pi] from A has size O(r2). An exactly similar process allows the derivation of the
formula A[1/pi], so the proof of simulation is complete.

Note. In this section, we have defined all of our proof systems to be depth-2
systems for proving DNF tautologies. However, in the following sections it is more
convenient to think in terms of unsatisfiable formulas in CNF. It is easy to interpret
our systems as refutation systems for CNF formulas by simply replacing each AND
by an OR and each OR by an AND in each rule and axiom of the system. In what
follows, we will view $9v2, ’2, ’, and 2 as refutation systems for CNF formulas. In
particular, the depth-2 refutation system, 2, for deriving unsatisfiable CNF formulas
consists of one axiom, p A , and the following rules:

(R0’) AAAAB AAB;
(RI’) AAAB;
(a2’) (A V B) A C = A A C;
(R3’) (A A C), (B A C) =v (A V B) A C;
(R4’) AA1, B A1 AAB.

In addition, we have the associativity and commutativity rules for AND as well as
the following generalized rule of commutativity for OR: (/1 V... V lq) A A (r(l) V

V r(lq))A A, where r is a bijection from {/1,... ,lq} to {l,... ,lq}.
4. Simulation results. Using the well-known reductions between CNF unsat-

isfiabilit and graph non-3-colorability, we can translate the rules and axioms of the
Hajhs calculus to obtain a propositional refutation system, and similarly, we can
translate the rules and axioms of g’’2 to obtain a graph calculus. We will first review
the translations between propositional formulas and graphs. Then we show that the
Haj6s calculus can p-simulate vc’2, translated into a graph calculus, and conversely,
that g’gv2 can p-simulate the Haj6s calculus, translated into a propositional refutation
system.

4.1. Translation from propositional formulas to graphs. We use a reduc-
tion from the theory of NP-completeness to show the similarity between graph calcu-
lus systems and propositional refutation systems. Garey, Johnson, and Stockmeyer
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FIG. 1. The subgraph Gc corresponding to Ci.

[GJS] showed that 3SAT is reducible to 3-colorability, by obtaining a polynomial-
time, many-one transformation from 3CNF formulas to graphs. Here, we slightly
modify their construction so that it is a transformation from arbitrary CNF formulas
to graphs. Let f be a CNF formula, f C1 A C2 A... A Cp, with underlying variables
XI,... ,Xn. For notational convenience, let C (11 V 12 V-.. V lq). Then Graph(f)
consists of the following nodes, N:

N {vl, v2, v3} U {xi,- 1 <_ <_ n}
U{a},bj,c) 1 <_ i <_p, 1 <_j <_ q- 1}.

The set E of edges for Graph(f) is given by

E {[vl,v2], [v2, v3l, [vl,v3]} U {[xi,)]][1 <_i <_ ’n}
W { [v3, xi], [v3, ][1 < < n}
U {Gc l <_i <_ q},

where for a particular clause, Ci (11 V 12 V... V lq) in f, the subgraph Gc is shown
in Fig. 1. The superscript has been omitted for simplicity. When Ci is just a single
literal, l, then the construction for Gc simply puts in place of Cq_l.

A key property of the graph G is: for each Ci (/1 V 12 V... V lq), a proper 3-
coloring to 1,..., lq can be extended to a proper 3-coloring to the underlying vertices
of Gc if and only if at least one of l,..., lq has the same color as vl. The observation
leads to the following lemma, which was proven in [GJS].

THEOPEM 8. f is satisfiable if and only if Graph(f) is 3-colorable.

4.2. Translation from graphs to propositional formulas. Conversely, if
G is any graph, then there exists a propositional CNF formula, Form(G) with the
property that G is 3-colorable if and only if Form(G) is satisfiable. Let G (V, E)
be a graph. We define a propositional statement, Form(G), with underlying variables
{Rx, Bx, Gx Ix E V}, which expresses "G is 3-colorable" as follows:

A ( vx v). (R v B v
xEV

(R vN v). ( vN v a). ( v B v)

A v v v,,). v
[,]

LEMMA 9. G is 3-colorable if and only if Form(G) is satisfiable.
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4.3. The simulation lemmas. By using the translations between propositional
formulas and graphs described above, we can translate the HajSs calculus to obtain
a new propositional refutation system. Define Form(C) to be the propositional
refutation system obtained by translating the rules and axioms of T/C. Specifically,
Form(T/C) has one axiom, Form(K4), and three rules, obtained by translating the
three rules of T/C. Similarly, define Form(C-) to be the propositional refutation sys-
tem obtained by translating the rules and axioms of C-. Analogously, let Graph(2)
and Graph($gv2) be the graph calculus system obtained by translating the rules and
axioms of 92 and $92, respectively. Then we have the following simulation lemmas.

LEMMA 10. 9c’2 p-simulates Form(T/C-).
Proof. Form(C-) has one axiom, Form(K4), and two rules. Because all rules

and axioms of Form(?-/(:-) are sound, by the implicational completeness of $’2 (The-
orem 4), there exist 9v2 proofs of Form(Ka) as well as the two rules of Form(C-).
Furthermore, because each axiom and rule of Form(T/C-) involves only a constant
number of symbols, the size of the proofs in $-2 are polynomiM in the size of the
original axiom or rule instance in Form(-).

LEMMA 11. $92 p-simulates Form(T/t:).
Proof. We will show that T92 p-simulates Form(C). Then because $9v2 p-

simulates $9 and $9 p-simulates T’2, it follows that $$’2 p-simulates Form(?-/C).
Because Form(7-/(:-) is a subsystem of Form(T/C) and $’2 is a subsystem of 92, we
only need to show how the one additional rule of ?-/C, the contraction rule, can be
simulated by 92. Since the contraction rule is just the renaming of the variables, it
can be simulated by the renaming rule.

LEMMA 12. 7-lC p-simulates Graph(g’gr2).
Proof. We will show that "HC p-simulates Graph(TCgr2). By Lemmas 6 and 7,

p-simulates 2; therefore Graph(72) p-simulates Graph(g’$’2), and it follows that
C p-simulates Graph($’2). Let P be a construction of some non-3-colorable graph,
G, in Graph(gr2). We will prove that there exists a polynomial-sized construction
of G, by induction on the number of graphs in P. If P contains just one graph, then
P G, and G must be the graph Graph(p A p). In this case, it is easy to see that
this graph contains a K4 subgraph on the vertices p, , v2, and v3 and, hence, can be
constructed easily in C. Otherwise, assume that we can simulate the first k lines of
P, by a polynomial-sized construction in T/C. The next graph, Graph(f), is either
an axiom, or it follows from previous graphs by a rule. If Graph(f) is an axiom, then
it can be constructed in 7-/C as in the base case.

Otherwise, Graph(f) follows from previous graphs by a rule. We will show that
in all cases, Graph(f) can be constructed efficiently in 7-/C. If f follows from f
by renaming, then Graph(f’) can be constructed from Graph(f) by rules (1) and
(3). Iff AAB follows from f AAAAB by (R0’), then Graph(/’) can be
constructed from Graph(f) by repeated application of the contraction rule. (When A
is a single literal l, then Graph(f’) is equal to Graph(f), so there is nothing to do.)
If f’ follows from a previous formula, f by (RI’), then Graph(f’) can be constructed
from Graph(f) by adding additional vertices and edges. Also, the associativity and
commutativity laws for AND hold because Graph((AB)C) Graph(A(BC)), and
also Graph(AB) Graph(BA), up to renaming of vertices. The remaining cases

(R2’), (R3’), (R4), and the commutativity laws for OR are more complicated. The
following definition and lemmas facilitate the proof of these cases.

DEFINITION. Let G be a graph with underlying vertices V {ll,12,...,lk}
{vl, v2, v3}. Then we define the graph G[l 1] to be the graph G plus the additional
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edges Ill, v2] and [li, v3]. Any proper 3-coloring of Gill 1] must color li the same
color as vl. Similarly, the graph G[li= 2] equals G plus the edges [/, vl] and [/, v3];
and G[li 3] is G plus the edges [li, vl] and [li, v2]. More generally, the graph
Gill cl, 12 c2,..., lk ca] is equal to the graph G’[la ca], where G’ Gill
Cl,..., lk-1 ca-l]. In what follows, setting li 2 codes setting li to false and setting
li 1 codes setting li to true.

LEMMA 13. Let f AC be a CNF formula, where A (11 V 12 V... V lq), and
let G Graph(f). Then Gill 2,/2 2,...,lq 2] has a polynomial-sized 7-lC
construction.

Proof. The lemma is obvious when q 1. For q _> 2, recall that the graph
G Graph(f) contains a subgraph, Gc, for each clause C in G. In particular,
the underlying subgraph corresponding to clause A, GA contains a "rail" of triangle
graphs, with underlying vertices {/1,..., lq} [.J {vl, v2, v3} t2 {ai, bi, ci 1 <_ <_ q 1}.
(See Fig. 1.)

Let G Gill 2, le 2,..., lq 2]. First, we will generate the set of graphs
{G’[cl 2, c2 2,..., ca-1 2, ca 1], G’[Cl 2, c2 2,...,
k _< q-1}, and also the graph G’[cl 2, c2 2,...,Cq_1 2]. Because each of
these graphs is non-3-colorable, we have ( = H), for all graphs H described above.
Further, the implication is V-local, where IVI <_ 8. Therefore, by Theorem 3, there
exist polynomial-sized constructions for each of these graphs.

Second, we will construct the desired graph, G, from the above graphs. We
will show by downward induction on k (1 _< k <_ q- 1) that we can construct the
graph G[Cl 2, c2 2,..., ca 2] from the previous graphs. The base case holds
because the graph G[cl 2,...,Cq_1 2] is in our initial set of graphs. Now fix
k < q- 1; then we want to construct the graph H G[cl 2,..., ca 2]. By
the inductive hypothesis, assume that we have constructed the graph H[ck+l 2].
Additionally, we have the graphs H[ca+l 1] and H[ck+l 3] in our initial set of
graphs. Applying the edge elimination rule three times, we can construct H from
H[ck+l 1], H[Ck+l 2], and H[ck+l 3]. []

LEMMA 14. Let f AC, f’ A’C, A (11 V V lq), and A’ (r(ll) V
V r(lq)), where r is a permutation of {/1,...,lq}. Then for each k, 1 <_ k <_ q,

there exists a polynomial-sized construction of G[ll 2,..., la-1 2, Ik 1] from G,
where G Graph(f), and G’= Graph(f’).

Proof. Again, the lemma is obvious when q 1. For q >_ 2, we first construct the
graph Gill 2,..., la-1 2, la = 1] from G by adding edges. Because there exists a
proper 3-coloring of GA consistent with c(ll) c(v2), c(/2) c(v2),..., c(la) c(vl),
and with bi colored c(v3) for >_ k, we can apply the contraction rule to rename the
vertices labeled ai, bi,ci, 1 <_ <_ q- 1, to either vl, v2, or v3 to obtain the graph
G"[ll 2,... ,lk-1 2,1k 1], where G" G \ e(GA). (By contracting b to v3 for
all >_ k, we are assured that we introduce no new edges from li for > k to vl or
v2.) Now by adding edges and vertices to G"[ll 2,...,la_l 2,1k 1], we can
construct the desired graph G[ll 2,..., la-1 2, la 1].

LEMMA 15. Let f AC, where A (/1 V 12 V... V lq), and let G Graph(f).
Then there exists a polynomial-sized 7-lC construction of G from the set of graphs

{G[/1 1],Gill 2,12 1],...,Gill 2,...,lq_l 2,1q ll,G[ll 2,...,lq

Proof. We will prove by downward induction on k, 0 _< k _< q, that we can
construct the graph G[ll 2,...,la 2]. The base case (k q) holds because
Gill 2,..., lq 2] is an initial graph. Now fix k < q. By the inductive hypothesis,
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assume that we have constructed the graph Gill 2,..., Ik 2, lk+ 2]; also, G[l
2,... ,lk 2,/k+ 1] is an initial graph. Therefore, by the edge elimination rule,
the graph G[l 2,..., lk 2] can be constructed from the graphs G[l 2,..., lk
2,/k+1 2] and G[l 2,... ,lk 2,/k+ 1]. The number of intermediate graphs
generated is O(q); therefore the construction of G is polynomial sized. []

The following four claims complete the proof of Lemma 12.
CLAIM 16 (commutativity). Let f AC, A (11 k/12k/...k/lq), and let f’ A’C,

A’ (Tr(l) V 7r(/2) V... V 7r(lq)), where 7r is a permutation of {ll,. lq}. Then there
exists a polynomial-sized 7-lC construction of G’ Graph(f’) from G Graph(f).

Proof. By Lemma 13, there exists a polynomial-sized construction of GP[ll
2,12 2,..., lq 2]. By Lemma 14, there exists a polynomial-sized construction of
G’[ll 2,...,lk_i 2,1k 1] for all 1 < k _< q. Therefore, by Lemma 15, there
exists a polynomial-sized construction of G.

CLAIM 17 (rule (a2’)). Let f (A V B)C, and let f’ AC. Then there exists a
polynomial-sized ?-lC construction of G’ Graph(f’) from G Graph(f).

Proof. Let A (l V 12 V... V lq). Then by Lemma 13, there exists a polynomial-
sized 7-/C construction of G’[ll 2,/2 2,...,lq 2]. By the same argument
as in the proof of Lemma 14, there exists a polynomial-sized 7-/C construction of
G"[l 2,...,lk- 2,1k 1] for all 1 < k < q, where G"= G \ e(GAvB) from
G. Now by adding edges and vertices to G’[ll 2,... ,Ik-1 2,1k 1], we can
construct the graphs G’[ll 2,... ,la_ 2,/k 1], for all 1 < k < q. Therefore, by
Lemma 15, there exists a polynomial-sized ?-/C construction of G.

CLAIM 18 (rule (a3’)). Let fi AC, f2 PC, f’ (A V B)C. Then there
exists a polynomial-sized TIC construction of G’ Graph(f’) from G Graph(f)
and G2 Graph(f2).

Proof. Let A (/1Vl2V’"Vlm), and let B-- (lm+ V’"Vlq). ByLemma
13, there exists a polynomial-sized 7-/C construction of G’[li 2,..., lq 2]. By the
argument in the proof of Lemma 14, for all k, 1 < k < rn, there exists a polynomial-
sized 7-/C construction of GP[li 2,...,l_q 2,1k 1] from G1. Also, from G2,
we can easily construct G2[li 2,..., lm 2] by adding edges; and then again by
the proof of Lemma 14, for all k, m + 1 < k < q, there exists a polynomial-sized
construction of G’[ll 2,..., 1-1 2, lk 1] from G2[/1 2,..., lm 2]. Thus, by
Lemma 15, there exists a polynomial-sized 7-/(: construction of G.

CLAIM 19 (rule (a4’)). Let fl A1, f2 B1, f’ AB. Then there exists
a polynomial-sized TlC construction of G’ Graph(f’) from G Graph(f) and
G2 Graph(f2).

Proof. Given G1 Graph(A), we can construct the graph G Graph(ABe)
by adding vertices and edges. Similarly, from G2 Graph(B/), we can construct
the graph G Graph(AB1) by adding vertices and edges. Because {G, G} =v G’
and the implication is VP-local where IVI is constant, by Theorem 3, there exists a
polynomial-sized construction of G from G and G.

5. The main theorem. In this section, we will prove that g’gv2 is polynomially
bounded if and only if 7-/(: is polynomially bounded. We will first state and prove
that if 7-/(: is polynomially bounded, then so is 2-2 (Theorem 20). In order to prove
this theorem, we begin with an unsatisfiable CNF formula f and, using the fact that
7-/(: is polynomially bounded, obtain a short refutation of Form(Graph(f)). Since this
doubly translated formula is not the same as the original formula f, we still need
to show (Lemma 21) how to derive f efficiently from Form(Graph(f)). Similarly,
to prove the other direction of the equivalence, we need to show how to derive G
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efficiently from Graph(Form(G)); this is accomplished by Lemma 26.
THEOREM 20. If ,C i8 polynomially bounded, then so is $Jz2.
Proof. Let f be an unsatisfiable CNF formula, and assume that ?-/C is polyno-

mially-bounded. Then Graph(f) is a non-3-colorable graph, and therefore, Graph(f)
has a polynomial-sizedC construction. Thus, there is also a short refutation of Form
(Graph(f)) in Form(?-/(:). By Lemma 11, this implies that there are polynomial-sized
g$’2 refutations of Form(Graph(f)). Because $2 p-simulates $" (by Lemma 5), it
follows by the lemma below that we can derive a polynomial-sized refutation of f in

LEMMA 21. Let f be a CNF formula. Then from Form(Graph(f)), we can
derive a depth-5 refutation of f in :7z, of size polynomial in the length of f.

Proof. First we will obtain a polynomiM-sized extended Frege proof of f; then we
will see how to remove the extensions. Let f C A C2 A... A C be a CNF formula,
with underlying variables {x,..., Xn}. The proof follows the basic idea behind the
[GJS] proof that if Graph(f) is non-3-colorable, then f is unsatisfiable. We will define
a particular coloring for Graph(f), based on the propositional variables {x,... ,x}.

Let C (l V 12 V V lq) be a clause in f, where each lk is a literal over
{x,..., x}. We define the following extensions for all 1 _< j <_ q 1 and 1 _< k <_ q:

Now consider each clause in Form(Graph(f)) after applying the above extensions.
It can be checked that all clauses with the exception of clauses of the form (Bc_l VBv2
can be simplified to "true." For each i, 1 _< i _< q, the only clause remaining is

(Bc_l V By2), which becomes Bc Ci after applying the substitution. Combining
q--1

all of the Ci’s, we can then derive f. Furthermore, it is not too hard to see that this
derivation has depth 5 and is polynomial sized.

The following lemma shows that we can remove all extensions in the above proof,
without increasing the size or depth by more than a constant factor. The main
idea behind the lemma is that any logarithmic-depth, polynomial-sized circuit can be
converted into a polynomial-sized formula.

DEFINITION. Let P be an extended Frege proof. Let the variables introduced by
extension axioms be A1,...,Am, and assume that they are introduced in P in this
order. Each extension variable has an associated recursion depth, defined as follows.
The recursion depth of A1 is depth(A ). Suppose that Ak is defined based on extension
variables A,..., Ak_. Let max be the maximum recursion depth of A,..., Ak_.
Then the recursion depth of Ak is max +depth(Ak).
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LEMMA 22. Let P be a depth-d extended Frege proof of f such that each extension
variable has recursion depth that is no greater than [log(IPI) Then there exists a
Frege proof P’ of f such that IP’I <_ p(IPI), where p is a fixed polynomial, independent
of f, P, and P’.

Because the recursion depth of the extension sequence defined above is 3, the
above lemma implies that from Form(Graph(f)) there exists a constant-depth, poly-
nomial-sized refutation in 9 of f. This completes the proof of Lemma 21.

COROLLARY 23. If 7-lC- is polynomially bounded, then so is 5.
Proof. The proof of this corollary is almost identical to the proof of Theorem 20,

with $2 replaced by $’5,7-/C replaced by ?-/C-, and Lemma 11 replaced by Lemma
10. []

Recently, it has been shown in [PBI], [KPW] that any depth-d proof in 9 of

the propositional pigeonhole principle, PHPn, must have size at least 2t(n6-d). This
lower bound together with the above results give us the following corollary.

COROLLARY 24. There exists a family of non-3-colorable graphs {Gn n E N}
such that for n sufficiently large, any TlC- construction of Gn has size at least 2n,
for some e, 0 < < 1

The converse to Theorem 20 is much more surprising, because ?-/C is quite simple
compared to the formulation of an extended Frege proof system.

THEOREM 25. If2 i8 polynomially bounded, then so is 7-lC
Proof. Let G be a non-3-colorable graph, and assume that $Y’2 is polynomi-

ally bounded. Then Form(G) is an unsatisfiable formula, and therefore Form(G) has
a polynomial-sized $2 refutation. Thus there is also a polynomial-sized construc-
tion of Graph(Form(G)) in Graph(’Y’2). By Lemma 12, this implies that there are
polynomial-sized constructions of Graph(Form(G)) in 7-/C. Now by the lemma below,
there is a polynomial-sized 7-/C construction of G from Graph(Form(G)).

LEMMA 26. If G is not 3-colorable, then there exists a polynomial-sized
construction of G from the graph Graph(Form(G)).

Proof. Let Graph(Form(G)) be denoted by H (VH, EH). For a particular
vertex x in G, let the corresponding set of nodes in H, {Rx, Bx, Gx, Rx, B, Gx},
be called N(x). For each vertex x in G, there is a set of five clauses in Form(G)
that express that x is assigned to exactly one color. (Namely, they say that exactly
one of the variables Rx, Bx, Gx is true.) Let Sl(x) denote the induced subgraph
of Graph(Form(G)) corresponding to these five clauses associated with x. For any
edge [x, y] in G, there is a set of three clauses in Form(G) that expresses that x
and y must be assigned different colors. Let N(x, y) denote the induced subgraph of
Graph(Form(G)) corresponding to these three clauses associated with the edge Ix, y].
(The vertices in the subgraph N(x, y) are the vertices in N(x) and g(y) as well as the
triangle graph with underlying vertices vl, v2, and v3.) Note that N(x, y) is the same
as N(y,x) because our graphs are undirected. Figure 2 identifies N(x, y) for edge
Ix, y]. Special edges that will be referred to later are labeled. For brevity, a vertex
labeled by "1" indicates that this vertex is connected to vertex vl, and similarly for
labels "2" and "3."

The graph G (VG, EG) will be constructed from H in four steps.
(1) Starting with the graph Graph(Form(G)), we obtain an enlarged graph, H,

by adding additional vertices and edges.
(2) Using H, we construct the subgraph of H where for each edge Ix, y] in G,

the edges exyR, exyB, ey are removed. Call this graph H2.
(3) Using H2, we construct the graph G U T, where T is the triangle graph, G is
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N(x) N(y)

o

Rx Gv

v3 v2

vl

FIG. 2. The subgraph N(x, y).

the graph that we would like to construct, and there are no edges between G
and T.

(4) Using G J T, we construct the graph G.
Step (1). We construct the graph H1 by adding the following subgraphs to H.
(a) Add the disjoint graph G.
(b) For each vertex x E G, we add a subgraph called S’(x). S’(x) connects x

to N(x) such that if c is a proper 3-coloring of Hi such that c(Rz) c(vl),
c(Bx) c(v2), c(Gz) c(v2), then c(x) c(vl); if c(Rx) c(v2), c(B)
c(vl), c(G) c(v2), then c(x) c(v2); and if c(Rx) c(v2), c(Bx)
c(v2), c(Gx) c(vl), then c(x) c(v3). For node x, S’(x) is shown in
Fig. 3. Let S(x) denote the induced subgraph containing all edges and vertices
of SI(X) plus all edges and vertices of S’(x).

(c) For each edge [x, y] in G, we add a few extra vertices and edges to N(x, y); let
N’(x, y) denote the subgraph with vertex set N(x, y) plus these new vertices.
For edge Ix, y], the extra edges and vertices are shown in Fig. 4. (The new
edges are indicted by dotted lines.) For each [x, y], the subgraph N’(x, y) has
the property that if c is a 3-coloring of the vertices of N’(x, y) such that the
only monochromatic edge is ezuR, then both Rz and Ru have the color c(vl).

Step (2). We will show how to remove the edges exyR, exyB, and eGzy, for all
[x, y] E E, one at a time. Let us begin with the graph H1 (V, E) constructed above;
we will show how to construct efficiently the graph H1 \ eR where Ix, y] G. Let
W(x, y) be the subgraph of H consisting of {S(x), S(y), Y’(x, y), x, y}. Note that
the size of W(x, y) is constant, independent of

CLAIM 27. If c is a 3-coloring to the vertices of W(x, y) such that edge envy is
monochromatic, then so is some other edge in W(x, y)

Proof. If e is monochromatic, then either some edge in N’(x, y) is also monochro-xy
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N(x)

FIG. 3. The subgraph S(x).

N(x) N(y)

o2

Vy

v3 v2

vl

FIG. 4. The subgraph N’(x, y).

matic, or vertices Rx and Ry are both colored c(vl). When both vertices Rx and Ry
are both colored c(v2) and N’(x, y) is properly colored, then either some edge in S(x)

Ror S(y) is monochromatic or edge Ix, y] E G is monochromatic. Thus, when edge ey
is monochromatic, some edge in W(x, y) is also monochromatic.

The only difference between H1 and the desired graph, H1 \ eR is the edgexy

Therefore, the above claim shows that Hi = Hi \ eR Therefore, by Theorem 2 therexy"
R from Hi. Furthermore, becauseexists a construction of the desired graph, H1 \ exy,

the implication is VP-locM, where ]VPl is constant, by Theorem 3, the construction
R Bhas polynomial size. Applying this argument repeatedly to remove all edges ey, exy,
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and ey, we will eventually obtain the desired graph H2. After removal of eyR, exyB,
ev from H1 N’(x, y) is replaced by two subgraphs, N’(x y) which is the empty

R B andsubgraph, and N(x, y), which consists of N’(x, y) minus the edges ey, ey,
Step (3). We will now construct the graph GtT from H2. For each vertex x E G,

let Q(x) denote the induced subgraph of G containing S(x) and (N(x, y) Ix, y] e
Note that for every pair x, y G, the intersection of Q(x) and Q(y) is the common
triangle on vertices vl, v2, and v3. Also note that for every x e G, and for every
possible coloring to x G, there exists a consistent 3-coloring to the subgraph Q(x).

We will show how to eliminate the edges in Q(x) from H2, for each x G, until we
eventually oblain the desired graph GUT. Let G’= GuTuQ(xl)uQ(x2)u...UQ(xk).
We will show how to construct the graph G"= G U T U Q(x)u... u Q(xk-) from
G’. First, we construct the graph G’[xk 1]. When xk is colored the same color
as vl, there exists a proper 3-coloring of Q(xk). Therefore, there exists a way to
rename each of the vertices in q(xk) \ {vl, v2, v3, x} to either vl, v2, or v3. Applying
this renaming to the graph G, we obtain the desired graph G[xk 1]. Similarly,
we can construct the graphs G"[x 2] and G"[x 3] from G’. By applying the
edge elimination rule, the graph G can then be constructed from the three graphs
G’([x 1], G"[xk 2], and G"[xk 3].

In the same manner, we can remove all Q(x) and eventually obtain the graph
G U T, as desired.

Step (4). The graph G is not 3-colorable, thus G contains an odd cycle. This fact,
combined with the odd-cycle lemma below prove that from G U T, we can construct
G in size linear in GI.

LEMMA 28 (odd-cycle lemma). Let G be a graph that contains an odd cycle, and
let T be a disjoint triangle graph. Then there exists a linear-sized construction of G
from GUT.

Proof. Label the vertices of the smallest odd cycle in G by 0, 1, 2,..., n, where
n is even. First, we embed T into vertices 0, 1, 2 of G (by the contraction rule) to
obtain the graph G plus the edge [0, 2] call this graph G1. Second, we embed T into
vertices 2, 3, 4 of G to obtain the graph G plus the edge [2, 4]. We can then apply edge
elimination to these two graphs to obtain a new graph with the edge [0, 4J--call this
graph (2. Third, we embed T into vertices 4, 5, 6 of G to obtain the graph G plus the
edge [4, 6]. Again, we can apply edge elimination to this new graph plus graph G2 to
obtain (3, which consists of G plus the extra edge [0, 6]. We continue to generate Gi,
< n/2, until eventually we obtain the graph Gn/2, which consists of G plus the edge

[0, n- 2]. We then embed T in G once again, this time to the vertices 0, n, n- 1 to
obtain G plus the extra edge [0, n- 1]. We can then apply the edge elimination rule
one last time to obtain the graph G.

6. Graph-theoretical consequences. In this section, we explain a connection
between our work relating the complexity of the Hajds calculus to the complexity of
extended Frege systems and results of Stephen Cook connecting such systems with
feasibly constructive arithmetic. This connection supports the belief that proving
superpolynomial lower bounds for 7-/C will be very difficult. More importantly, it
should guide the search for hard examples for

Intuitively, a proof of a mathematical theorem is feasibly constructive if it involves
only feasible predicates nd ifthe logical reasoning in the proof involves only feasibly
computable functions. (Here we re using the common identification of "feasible"
with "polynomiM-time computable.") In a seminal paper [C], Cook introduced a

free-variable system of arithmetic, PV, that contains a primitive symbol for every
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polynomial-time function and predicate, together with a rule of induction on notation.
Boolean connectives are included, but not quantifiers. Cook proposed to make the
notion of "feasibly constructive proof" precise (at least in the case of free-variable
formulas) by identifying it with provability in PV.

Cook also demonstrated a close connection between PV nd $$’2. If F is
formula of PV, then there is a family Fn of formulas in DNF, in which the nth
formula F, expresses the ssertion: "The formula F is true for all numerical inputs
of length n or less." The formula Fn is polynomial-time computable from n and F;
secondly, F is valid if and only if till of the formulas Fn are tautologies. If in addition
F is provable in PV, then even stronger consequences follow. The following basic
simulation result was proved by Cook [C].

THEOREM 29. If F is provable in PV, then every Fn has a proof in 2 of
polynomial size.

In later work, Buss considered more general systems of feasibly constructive math-
ematics [Bu2]. In particular, he investigated a system of bounded arithmetic, $21,
based on classical predicate logic, and containing an induction scheme restricted to
NP predicates. If a primitive function symbol is added to $2 for each polynomial-
time function and predicate, together with appropriate defining equations for each
such function and predicate, then the resulting system is a conservative extension of
Cook’s PV [Bu2]. This result shows that the notion of "feasibly constructive proof"
is robust.

The above theorern has important consequences for proving lower bounds for 7-/C.
Let us suppose that we have chosen a fixed method of encoding graphs as binary num-
bers. Then we can express the predicate "n encodes a graph" as a predicate Graph(n)
of PV. Furthermore, colorings can be encoded as numbers, and the predicate "c en-
codes a proper coloring of the graph coded by n" is polynomial-time computable and,
hence, can be expressed as a primitive predicate Proper(c, n) of PV. We then have
the following general result relating PV to

THEOREM 30. Let G be a primitive function symbol ofPV for which the formulas
Graph(G(n)) and-Proper(c, G(n)) are theorems of PV. Then there are polynomial-
sized TIC constructions for the family of graphs Gn, which are encoded by the numbers
G(n).

Proo:[. By the above theorem, there is a family of tautologies Fk in which the
tautology Fk formalizes the assertion that the above two theorems of PV are true when
restricted to inputs of length k or less. Furthermore, this family has polynomial-sized
proofs in ’’. By choosing k large enough, we can find a tautology Fk that formalizes
the assertion "G is not 3-colorable." Furthermore, this formula is polynomial-time
computable from Gn. Using this formula we can derive the formula -Form(G) in

oct’2 by a derivation that is polynomial in the size of Gn. The results of the previous
section now imply that there is an ?-/C construction of Gn whose size is polynomial in
the size of the 85"2 derivttion of Form(G,).

This connection gives a very easy way to check whether or not a family of graphs
is a potential candidate for proving a superpolynomial lower bound for ?-/C. As an
example, consider the family of non-3-colorable graphs constructed by Toft that are
discussed in [MW] as possible candidates for graphs that show the Haj6s calculus
is not polynomially bounded. In fact, these graphs have short proofs by the Haj6s
construction, although this is not immediately obvious. However, the proof that shows
all the graphs in Toft’s family to be non-3-colorable is feasibly constructive, so we can
infer immediately by the above result that they can be ruled out as possible hard
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examples. The same remark applies to other families of examples in which non-3-
colorability is demonstrated by elementary constructive reasoning.
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ON-LINE AND FIRST-FIT COLORING OF GRAPHS
THAT DO NOT INDUCE P5 *
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Abstract. For a graph H, let Forb(H) be the class of graphs that do not induce H, and let
P5 be the path on five vertices. In this article, we answer two questions of Gyrfs and Lehel. First,
we show that there exists a function f(w) such that for any graph G E Forb(Ph), the on-line coloring
algorithm First-Fit uses at most f(w(G)) colors on G, where w(G) is the clique size of G. Second, we
show that there exists an on-line algorithm A that will color any graph G E Forb(P5 with a number
of colors exponential in w(G). Finally, we extend some of our results to larger classes of graphs defined
in terms of a list of forbidden subgraphs.
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Introduction. An on-line graph is a structure G< (V, E, <), where G (V, E)
is a graph and < is a linear ordering of V. We allow V to be finite or countably
infinite. We call G< an on-line presentation of the graph G. The on-line subgraph
of G< induced by a subset S c Y is the on-line graph G<[S] (S,E’, <’), where
E is the set of edges in E both of whose end points are in S, and < is < restricted
to S. We shall always assume that V {xl,x2,...}, where xi < xj iff < j. Let
t {xj’j <_ i} and G G<[]. An algorithm for coloring the vertices of G< is
said to be on-line if the color of a vertex vi is determined solely by G. Intuitively,
the algorithm colors the vertices of G< one at a time in some externally determined
order x1,..., Xn, and at the time a color is irrevocably assigned to the vertex xi, the
algorithm can only see G< A simple but important example of an on-line algorithm is
the algorithm First-Fit, denoted by FF, which colors the vertices of G with an initial
sequence of the colors {1, 2,...} by assigning to the vertex xi the least possible color,:

not already assigned to any vertex of

_
1, adjacent to x.

The clique size and chromatic number of a graph G are denoted by w(G) and
respectively. Let A be an on-line graph-coloring algorithm. Then XA(G<) denotes
the number of colors A uses to color the on-line graph G< and XA(G) denotes the
maximum of XA (G<) over all on-line presentations G< of G. A class of graphs F is said
to be x-bounded if there exists a function f such that for all G E F, X(G) _< f(w(G)).
The function f is called a x-binding function for F. Easy examples of x-bounded classes
include the class of perfect graphs, the class of line graphs, and, more generally, the
class of claw-free graphs. Similarly, for an on-line algorithm A, the class F is XA-
bounded if there exists a function f such that for all G E F, XA(G) <_ f(w(G)). In this
case we say that A is a x-binding algorithm for F and f is an on-line x-binding function
for F. The class F is on-line x-bounded if F is XA-bounded for some on-line algorithm
A. In this article, we are interested in classes of graphs that are on-line x-bounded.
The class of perfect graphs is not on-line x-bounded. In fact, the subclass of trees is
not on-line x-bounded (see, for example, Bean [1]). However, the class of claw-free
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Dk Ps, I
FIG. 1. FIG. 2. FIG. 3.

graphs is on-line x-bounded. Here we shall be interested in other classes defined by
forbidding certain induced subgraphs.

For a graph H, let Forb(H) be the class of graphs that do not induce H. Similarly,
let Forb(H1,... ,HE) be the class of graphs that do not induce any of the graphs
HI,..., HE. Gyrfs [3] and Sumner [15] independently conjectured that if T is a tree,
then Forb(T) is x-bounded. Gyrfs [4] has shown this to be the case when T is a
path. Gyrfs, Szemer6di, and Tuza [8] verified the conjecture for triangle-free graphs
in Forb(T) when T is a radius-two tree, and Kierstead and eenrice [11] extended this
result by showing that Forb(T) is x-bounded whenever T has radius two.

Gyrf and Lehel [7], [6] opened up an exciting and unexpected new area for
study when they proved that Forb(P5) is on-line x-bounded, where Pn is a path on n
vertices. They also showed that Forb(P6) is not on-line x-bounded. These results led
to many interesting questions. The Gyrf-Lehel algorithm was quite complicated
and gave a superexponential on-line x-binding function. They asked whether Forb(P5)
had an exponential on-line x-binding function and whether the simple algorithm First-
Fit was an x-binding algorithm for Forb(P5). In this article we prove the following
theorems.

THEOREM 1.1. There exists an on-line algorithm A and an exponential function
f(w) (4 1)/3 such that XA(G)

_
f(w(G)), for any graph G E Forb(P5).

THEOREM 2.1. Forb(P5) is XFF-bounded.
The smallest function known to be an (off-line) x-binding function for Forb(P5)

is 2n. Our on-line x-binding function for Forb(P5) is within a power of two of this
function. In light of the Gyrfs-Sumner conjecture, one is led to ask for which trees
T, Forb(T) is on-line x-bounded. Since Forb(P6) is not on-line x-bounded, neither is

Forb(T) if T has radius greater than two. The authors [13] have recently proved that
Forb(T) is on-line x-bounded if T has radius at most two.

Theorem 2.1, together with some observations of Gyrfs and Lehel [5], allow us
to characterize those trees T for which Forb(T) is XFF-bounded.

THEOREM 2.2. Let T be a tree. Forb(T) is XFF-bounded if and only if T does
not induce K2 + 2K1.

For other trees T, we shall try to determine reasons why Forb(T) is not XFF-
bounded, in [11] Kierstead and Penrice showed that for any tree T and integer t,
Forb(T, Kt,t) is XFF-bounded. This fact is used in [13] to prove that Forb(T) is on-
line x-bounded for any radius-two tree T. However, the fact that a graph contains
Kt,t does not explain why it might have a large First-Fit chromatic number. Let Bt
be the graph obtained from Kt,t by removing a perfect matching M. If Bt< is the
on-line presentation of Bt, where adjacent vertices of M appear consecutively, then
it is easy to see (and is explained in more detail in the proof of Theorem 2.2) that
XFF(Bt<) is t. Thus if a graph induces Bt, then we have a certificate that its First-Fit
chromatic number is at least t. We shall prove the following two theorems which are
quite satisfying from this point of view. The trees Dk and P5,1 are shown in Figs. 1
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and 2 (also see the definition at the end of this section).
THEOREM 2.3. For every positive integer k, Forb(Ph,l,Bt) is XFF-bounded.
THEOREM 2.4. For every positive integer k, Forb(Dk,Bt) is XFF-bounded.
It should be noted that B3 is just the six cycle C6.
Finally, we mention some related results on First-Fit. Woodall [16] showed that

the class of interval graphs is XFF-bounded. Gyrfs and Lehel [5] gave an improved
bound for this problem and introduced the notion of a wall, which we shall also use.
Recently Kierstead [10] showed that the binding function is linear. Interval graphs
are cocomparability graphs of interval orders. The class of comparability graphs con-
tains the class of trees and so is not on-line x-bounded. However, Kierstead [12] has
proved that the class of comparability graphs of interval orders is XFF-bounded. A
consequence of a theorem of Chvtal [2] is that First-Fit uses exactly w(G) colors to
color G E Forb(P4), where T is the path on four vertices.

Theorem 1.1 is proved in 1. Theorems 2.1-2.4 are proved in 2. In 3, we discuss
some problems for further research. In the remainder of this section we review our
terminology and notation.

Let G (V, E) be a graph. Adjacency between two vertices x and y is denoted
by x y and nonadjacency is denoted by x y. The neighborhood of a vertex
x is denoted by N(x) {y e Y y x}. The clique number, the independence
number, the chromatic number, and the number of vertices of G are denoted by
w(G), c(G), x(G), and (G), respectively. The following special notation is used to
denote certain graphs.

Pk path on k vertices.

Sk star with k leaves, i.e., a star on k + 1 vertices.

Dk tree obtained by adding k- 1 leaves to the second and third vertices of P4.
Lk tree obtained by adding k- 1 leaves to the second and fourth vertices of P5

(see Fig. 3).
Pn,k tree obtained by adding k leaves to the third vertex of Pn.
p2, broom obtained by adding k- 1 leaves to the second vertex of Pnk

LSk tree on 2k + 1 vertices consisting of k independent edges and a vertex which
is adjacent to exactly one vertex of each of these edges.

Ks clique on s vertices.
Kt,t complete bipartite graph with t vertices in each part.
Bt bipartite graph obtained by deleting a perfect matching from Kt,t.
For a set S, let [S] 2 {A c S: ISI 2}. We may write (a > Z) for the two

element set {a,Z} to denote that a > /. For a coloring p: IS]: -- {1,...,n}, we
say that H c S is homogeneous if p restricted to [HI 2 is constant. Let R(t) be the
Ramsey function such that for every coloring p: IS] 2 {1,...,i}, with IS _> Ri(t),
there exists a homogeneous subset H c S such that IHI t. Similarly, let R(tl,..., t)
be the aamsey function such that for every coloring p: IS] 2 - {1,..., i}, with ISI _>
R(tl,..., ti), there exists a homogeneous set H with IHI tj such that p(a > Z) J,
for all a, H with /. Note that if G is a graph such that -(G) >_ R(w, a), then
either w(G) >_ w or a(G) _> a.

1. An exponential on-line algorithm for Ps-free graphs. In this section
we prove Theorem 1. Before starting the proof, we establish two useful properties of
Forb(Ph).

LEMMA 1.2. Suppose G Forb(Ph). If MI and M2 are distinct maximal cliques
in the same connected component of G, then there exist vertices x M1 and y M:
such that x is adjacent to y.
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Proof. Suppose not. Then M1 and M2 are disjoint. Since M1 and M2 are in
the same connected component, there exists a path from M1 to M2, i.e., a path
P (Xl,... ,Xm) such that Xl E Ml,x, M2. Let P be a shortest such path. Then
P is an induced path and, by our initial assumption, rn >_ 3. Since M1 is a maximal
clique, there exists x0 M1 not adjacent to x.. Since P is a shortest path, y is not
adjacent to xi for _> 3. Similarly, there exists Xm+l M2 such that Xm+l is not
adjacent to xi for _< m- 1. Thus xo + P + Xm+ is an induced path of length at least
five, which is a contradiction.

COROLLARY 1.3. If x is a cut vertex of a connected graph G in Forb(Ph) and M1
and M2 are maximal cliques in distinct components of G- x, then either M1 A {x} or

M [J {x} is a clique.

Proof of Theorem 1.1. We first present an on-line algorithm A and then prove that
it properly colors any on-line presentation G< of a graph G Forb(Ph) with at most
f(w(G)) colors. An important point is that the algorithm must be independent of the
clique size of G. For this reason, the algorithm is defined recursively. Let A(x, G<)
denote the color A assigns to x, when x is considered as a vertex of the on-line graph
G<. When a new vertex xi is presented, the algorithm first assigns xi to one of the
sets Sj,k, where 1 _< j _< 4 and k is the clique size of the connected component of x
in G. This will be done so that for j < 4, each Sj,k has clique size less than k and
each S4,k is an independent set. Then A assigns xi a color derived from the color
A(x, G<[Sj,k]) obtained by a recursive call of itself. Vertices in distinct Sj,k receive
colors from disjoint sets of colors. Note that the exponential function f(w) (4w-1)/3
is defined recursively by f(1) 1 and f(k) 4f(k 1) + 1.

At each stage of the algorithm, each connected component C of G will have a
special maximum clique K, called the active clique. Once a clique becomes active, it
remains active until a larger clique is formed in its component. The choice of which
Sj,k in which to put x is completely determined by w(C) and the adjacencies between
xi and elements of K, where C denotes the connected component of xi in G< and K
denotes the active clique of C.

Suppose A has colored Gi-1. We specify how A assigns a color to the next ver-
tex xi.

ALGORITHM A(x, G<).
Find C, the connected component of xi in G, and set k w(C).
Case 1: k > w(C- {xi}). Put xi in $4,. [Claim 1: S4,k is independent.] Set

A(xi, G<) f(k). Let g be a k-clique in C. Deactivate any active cliques of C- {xi}
and designate K as the active clique of C.

Case 2: k w(C-{xi}). Let g be the active clique of C. [Claim 2: K is unique.]
Case 2a: For some v K, both xi v and u v, for all u E C N Sl,k. Put xi

in Sl,k. [Claim 3: W(Sl,k) < k.] Set A(xi, G<) f(k- 1)+ A(xi, G<[SI,]).
Case 2b: Not Case 2a and for some v K, both xi v and u v, for all

u C N S2,a. Put xi in S2,k. [Claim 4: w(S2,k) < k.] Set A(xi, G<) 2f(k- 1)+
A(xi, G< [S.,k]).

Case 2c: Not Case 2a or Case 2b. Put x in S3,k. [Claim 5: w(S3,k) < k.] Set
A(xi, G<) 3f(k- 1)+ A(xi, G<[S3,k]).

Next we show that the algorithm produces a proper f(w(G))-coloring of G<,
assuming the five claims above. Then we shall verify the claims. We argue by induction
on w(G). If w(G) 1, then every point is isolated. Thus each x is assigned to the
independent set $4,1 and colored f(1) 1.
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S3,k
S2’k

FIG. 4

S2,k

FIG. 5

Now suppose ca(G) k > 1. By Claims 3-5, for each j < 3 and m < k,w(Sj,,) <
k- 1. By the induction hypothesis, Sj,m is properly colored with colors from the
set {jf(m 1) + 1,..., (j + 1)f(m 1)}, since A(xi, G<[Sj,m]) < f(m 1) for each
xi E Sj,k. By Claim 1, for each m _< k, the set Sa,m is independent and colored with

f(m) 4f(m- 1) + 1. Since these sets of colors are easily seen to be pairwise dis-
joint, we are done.

Claim 3 is easy because all vertices in the same connected component of Sl,k have
a common neighbor in their active k-clique. Claim 4 is similar. We shall prove Claims
1 and 2 by induction on i. When 1, both claims are trivial. Suppose i > 1. If
Claim 1 fails, then by induction xi is adjacent to some xj Sa,, where j < i. Clearly
the component C’ of xj in G is contained in C since xj S4,k,w(C’) k, which
contradicts w(C- {x}) < k. By the induction hypothesis, the only way that Claim
2 could fail is if xi is a cut vertex of C and two distinct components of C- {xi}
contain k-cliques. Then by Corollary 1.3, xi is in a (k + 1)-clique of C, contradicting

k.
It remains to prove Claim 5. Suppose it is false. Let M be a k-clique in S3,k. Let

vii,..., vik be the vertices of M with il < i2 < ik. If K is the active clique of vii
in G, it is easy to show by induction that K is the active clique of the component
of vi in G.< whenever 1 < j < k, since K could only be deactivated by the addition
of a vertex which raised the clique size of the component. But in that case, vik would
have been assigned to Sj,k, for some j < 4, k > k. We consider two cases.

Case 1. There exist s S2,k andm Msuchthat s m. Sincew(C) k,
there exists m’ $2, such that m’ s. (See Fig. 4.) Since m and m’ are not in S2,k,
there exists k E K such that k s, k m, and k 7 m. Also since m, m, and s are
not in $1,, there exists k K such that k m, k m, and k 7 s. But this is a

contradiction, since (k’, k, s, m, m’) is an induced Ph.
Case 2. For all s S2,k and m M, s 7 m. (See Fig. 5.) By Lemma 1.2 there

exist m M and k E K such that m k. Also there exists m M such that k m.
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Since m

_
S2,k, there exists s E S2,k such that s k. Since neither m nor m is in

S2,k, there exists k E K such that s k, m k’, and m k’. By the hypothesis
of this case, s m and s m’. Thus (s, k’, k, m, m’) is an induced Ph, which is a
contradiction.

2. First-Fit. We begin this section with the proof of Theorem 2.2 assuming
Theorem 2.1. We then state and prove a series of lemmas which lead eventually to
the proofs of Theorems 2.3 and 2.4. Along the way we pause to prove Theorem 2.1.

Proof of Theorem 2.2. The reader may check that if T does not induce K2 + 2K1,
then T is either a star or a path on 5 or fewer vertices. Thus it suffices to show that
Forb(K2 + 2K1)is not XFF-bounded, whereas Forb(Sk) and Forb(Ph) are.

Gyrfs and Lehel [5] noted that Forb(K2 + 2K1) is not XFF-bounded as follows.
Recall that Bt is the graph formed by deleting a perfect matching from a complete
bipartite graph with t vertices in each part. Let {al,...,at} and {51,...,bt} be
the independent sets of the bipartition of Bt, and assume that the pairs {hi, bi} are
independent. It is easy to check that, for all positive integers t, Bt does not induce
K2 + 2K1 and that First-Fit will use t colors on Bt if the vertices are presented in the
order al, bl, a2, b2,..., at, bt.

Now note that Forb(St) is XFF-bounded. If G Forb(St) and w(G) k, First-Fit
will use no more than R(k, t) colors on G. If a vertex x receives color R(k, t) + 1, it
must have R(k, t) neighbors. Because w(G) k,x must in fact have t independent
neighbors, which, together with x, form an induced St.

Forb(Ph) is XFF-bounded by Theorem 2.1, and thus we are done. [:]

For the arguments to follow, it is useful to be able to analyze the performance of
First-Fit in terms of static substructures rather than on-line presentations of graphs.
To this end, we introduce the notion of a wall, which is due originally to Gyrfs
and Lehel [5]. A colored graph is a pair W (G(W), f(W)), where G(W) (V(W),
E(W)) is a graph and f(W) is a proper coloring of G(W). Let C(W) be the range of
f(W). For I C C(W), let [I]w denote the set of vertices in G which are colored with
some color in I. If I {c}, we may write [a]w for [{a}]w. The colored graph W is
called a wall if, for all a > in C(W) and for every vertex x [a]w, there exists a
vertex y []w such that x is adjacent to y. The color classes of the wall, [a]w, are
called levels, and we say that [a]w is a higher level than []w, if a >/. The height
h(W) of a wall W is IC(W)I, or, equivalently, the number of levels. A wall W is said
to support a vertex x if x is adjacent to some vertex at every level of W. We say that
a wall W is in a graph G if G(W) is an induced subgraph of G. We say that a colored
graph W’ is an induced subwall of a wall W if W’ is a wall in G(W) and f(W’) is
the restriction of f(W) to W’. Note that if W is a wall, then [I]w induces a subwall
of W for any I c C(W). We call [I]w a level induced subwall. The following easy
observation allows us to discuss walls rather than on-line graphs when considering
First-Fit.

LEMMA 2.5. Let G be a graph. Then XFF(G) max h(W), where the maximum
is taken over all walls in G.

Proof. Suppose G< is an on-line presentation of G with XFF(G<) t. Then (G, f)
is a wall of height t, where f is the coloring produced by First-Fit when applied to
G<. Alternatively, suppose that W is a wall in G with h(W) t. Then XFF(G<)

_
t

if G< is any on-line presentation in which the vertices of the lowest level of W precede
the vertices of the second-lowest level, which precede those of the third level, and so
on through W, and all vertices of W precede all vertices of G- W.

Let W be a wall in G, which supports a vertex x. Define a coloring p pw,x on
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the two element subsets of C(W) by p( >/) c, where

c 1 iff (a) 2y e ([c]w fq N(x)) Vz e ([]w f3 N(x))(y z) and

(b) 2y’ e ([c]w- g(x)) Vz’ e ([/]w- N(x))(y’75 z’);
c 2 iff not (a); and

c 3 iff both (a) and not (b).

If (a) holds for y, we call y a left witness point for the pair (a, ). Note that since
W is a wall, in this case y must be adjacent to some vertex z’ E []w N(x). If (b)
holds for y we call y’ a right witness point for the pair (a, ). Note that y is adjacent
to some vertex z E [f]w fq N(x). W is said to have the cross property if for some
x, pw,x(a >/?) 1, for every pair of colors a, C(W). The following observation is
crucial to our arguments. If p(a > Z) 2 for every pair c,/ e C(W), then W fq N(x)
is a wall, and if p(a > Z) 3 for every pair a, C(W), then W N(x) is a wall.

The path number 7rc(W) r(W) of a wall W in G is the length of the longest
induced path P (xl,... ,Xn) in G such that xl [a]w, where a is the largest color
in C(W), and no vertex of (x2,... ,Xn) is adjacent to any vertex of W {x }.

LEMMA 2.6. There exists a function g(h) such that for any graph G (V, E), if
W is a wall in G such that h(W) > g(h), then there exists an induced subwall W’ of
W such that h(W) > h and

(i) W is a level induced subwall and has the cross property; or

(ii) w(W’) < w(W); or
(iii) both w(W’) w(W) and 7r(W’) > 7r(W).
Proof First note that for any induced subwall W’ of W,w(W’) < w(W). Let

g g(h) R3(2h) + 1. Suppose W is a wall in G with h(W) > g. Let P (x
x,... ,x) be a path that witnesses the value of 7r(W). Let 1 be the set of the g 1
smallest colors of C(W) and W0 [I]w. Let p PWo, be the coloring of 2-subsets of
I defined above. By Ramsey’s theorem there exists a homogeneous 2h-subset H c 1.
Let p(a > fl) c, for any

Case 1. c 1. Then H’ [H]w is a level induced subwall of W with the cross
property and h(W’) > h.

Case 2. c 2. Then W’= [H]wnN(z) is a wall with h(W’) > h. Since V(W’) c
g(x) and x e V(W),w(W’) < w(W).

Case 3. c 3. Then [H]w-N(x) is
be the two largest colors in H and let y be a left witness point for the pair (a, fl).
Let J {7 e g’y z’, for some z’ e [7]w -g(x)}. If IJI _> h- 1, let W’
{y} t.J [J]w-N(x). Then y + P witnesses that 7r(W’) > 7r(W). See Fig. 6. Otherwise
let W’ [(H J)
[]- N(x), witnesses that 7r(W’) > 7r(W). In either case, h(W’) >_ h and w(W’) <
w(W). See Fig. 7.

We now use Lemma 2.6 to give an inductive proof of Theorem 2.1.
Proof of Theorem 2.1. Consider a graph G E Forb(Ph). First note (1) if W is a

wall in G with the cross property, then h(W) 1 Otherwise, let y and y be left and
right witness points for the pair (c,), where {c, fl} C C(W). Thus by our remark
above, there exist z’ e []w- N(x) and z e []w fq g(x) such that y z’ and y’ z.
Since y and y are witness points, y z and y’ 7 z’. Thus {z, y,x, z, y’} induces Ph,
which is a contradiction. See Fig. 8.

Next note (2) if W is a wall in G with r(W) >_ 3, then W contains an induced
subwall W0 such that h(Wo) h(W)-I and w(Wo) < w(W). Suppose P (Xl,X2,X3)
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P P

N(x) W-N(x) N(x) W-N(x)

FIG. 6. FIG.

is a path that witnesses that r(W) _> 3. If Wo W N N(x) is an induced wall, we
are clearly done; otherwise there exist ( > E C(Wo) and yl E [a]Wo such that yl

is not supported in []Wo. Thus Yi is supported by some y2 [/]w N(x). But then
Xl yl,yl y2,xl ? y2, and {x3,x2,xl,y2,y3} induces P5, which is a contradiction.

Let g be the function defined in Lemma 2.6. We claim that the function f, defined
recursively by f(1) 1 and f(w + 1) g o g(1 + f(w)), is a XFF-binding function for
Forb(P5). We show by induction on w that if G Forb(P5) and w(G) <_ w, then
XFF(G) _< f(w). The base step is trivial. For the inductive step, suppose w(G) <_ w
and XFF(G) > f(w). By Lemma 2.5, G contains a wall W of height XFF(G). Thus by
Lemma 2.6, G has a wall W1 of height g(l+f(w)) such that either (i) W1 has the cross
property, (ii) w(W1) < w, or (iii) r(W1) w and r(W1) _> 2. But (i) is impossible
by (1) above and (ii) is impossible by the induction hypothesis and Lemma 2.5. Thus
(iii) holds. Applying Lemma 2.6 to W1, and using the same reasoning, we obtain a
wall W2 such that h(W2) >_ 1 + f(w) and r(W2) _> 3. Thus by (2) above, W2 contains
an induced subwall W3 such that w(W3) < w and h(W3) _> f(w) > f(w(W3)), which,
using Lemma 2.5, contradicts the induction hypothesis.

Let W be a wall, which has the cross property with respect to x. Then for every
a > 3 in C(W), there exists a right witness point Y3 in [c]w V)N(x) for the pair
(c, ). However, for different values of/, the right witness points y3 may be distinct.
We say that y [a]w g N(x) is a left *-witness point for a if y is a left witness point
for every pair (, ), with 3 C(W) and > 3-Similarly, y’ []w -N(x) is a
right *-witness point for a if y is a right witness point for every pair (a, 3), with

C(W) and a > . We say that W has *-witnesses for a if there exist left and
’ight *-witnesses for c. We say that W has the strong cross property if for every color
a C(W), W has *-witnesses for a. In order to establish the existence of a relatively
high wall with the strong cross property, we need the following lemma.

LEMMA 2.7. There exists a function j(h) such that, if W is a wall in a graph
G, W has height j j(h), and W supports a vertex x, then there exists an induced
subwall W’ of W such that W’ supports x, h(W’) >_ h, and (*) for every vertex y in
W’ and for all a > in C(W’), y is a left or right witness for (a, 3) iff y is a left or
right *-witness for (.

Proof Let j(h) 22. We construct W one level at a time starting at the top.
At each new level, we must add points to support all the points from higher levels
already added to W. In order to ensure that regardless of how we later add points
at lower levels, these new points will satisfy (*), we remove certain lower levels from
consideration. This idea is formalized as follows.
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x W

N(x) W-N(x)

FIG. 8.

Stage O. Let Io C(W), I , and v0 x.
Stage s + 1. Suppose we have constructed V (v0,..., Vn}, In, and g such that:
(1) n<2,[I[_>j2-n,and Ig[=s;
(2)
(3) [P]wny is a wall which supports x and satisfies (*);
(4) Vy (g(x)n V) Va, fl Ig,

[Sz e ([aJw N(x))(y z)] , [2z ([]w N(x)(y z)];

and

(5) Vy (V N(x)) , I,

[Sz e ([a]w N(x))(y z)] , [2z e ([/]w N(x))(y- z)].

Let c be the largest color in In. Set I8+1 I t2 {a}. For each vi E Vs, choose
v,+i E [a]w such that vi Vn+i. Set V+I {V0,...,V2n}. Define Ii, for i n +
1,..., 2n by induction on i as follows. Suppose Ii has been defined. Let J {-y
I" 3z [/]W[Vn+i+i z and (Vn+i+i X Z X)]}. If Igl _> Ilil/2, set Ii+ J;
otherwise set Ii+1 Ii (g t_J {a}). It is easy to check that conditions (1)-(5) are
maintained. This completes the proof. [:]

Lemma 2.7 allows us to strengthen Lemma 2.6 as follows.
LEMMA 2.8. There exists a function g*(h) such that for any graph G (V, E),

if W is a wall in G and h(W) >_ g*(h), then there exists an induced subwall W’ ofW
with h(W) > h and

(i) W has the strong cross property; or
(ii) w(W’) < w(W); or

(iii) both w(W’) <_ w(W) and 7r(W’) > 7r(W).
Proof. Let g*(h) j o g(h). Suppose h(W) > g*(h). Then by Lemma 2.7 there

exists an induced subwall W1 c W such that h(W) >_ g(h) and W1 satisfies (*). By
Lemma 2.6, there exists an induced subwall W’ c W with h(W’) >_ h, and either W’
is a level induced subwall of W1 and has the cross property, w(W’) < w(W), or both
w(W’) <_ w(W) and 7r(W’) > 7r(W). In the latter two cases, we are immediately done.
In the first case we are also done, since W satisfies (*) and W’ is a level induced
subwall of W.

LEMMA 2.9. There exists a function e(h,w) such that if W is a wall in a graph
G with G Forb(Ph,1),h(W) >_ e(h), and w(G) <_ w, then there exists an induced
subwall W’ C W such that h(W’) >_ h and W’ has the strong cross property.

Proof. The proof is essentially the same as the proof of Theorem 2.1, with Lemma
2.6 replaced by Lemma 2.8 and observation (2) replaced by the following remark: (2’)
if W is a wall in a graph G with r(W) >_ 3, then W contains a subwall W0 such that
h(Wo) h(W)- 1 and w(Wo) < w(W). Let P-- (Xl,X2,X3) be a path that witnesses
that r(W) >_ 3. If Wo W;3N(x) is a wall, we are clearly done; otherwise, there exist
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yl E [O]W with Xl Yl and Y2, Y3 E [/]w, such that Yl y2,xl y2, and Xl Y3,
where a > /. But then {x3,x2,xl,yl,y2,y3} induces P5,1, which is a contradiction.
See Fig. 9.

We note that Lemma 2.9 holds with P5,1 replaced by Pn, or P2n,k. However, we
as yet have no application for such results. We need one more lemma for the proof of
Theorem 2.3.

LEMMA 2.10. Let G be a graph in Forb(P5,) with w(G) <_ w, let x be a vertex of
G, and let W be a wall in G such that both h(W) >_ R(w + 1, t) and W has the strong
cross property with respect to x. Then G induces Bt.

Proof. Let r R(w + 1, t), and for 1 _< a _< r, let y and y’ denote the left
and right *-witnesses for a. First observe that for 1 _</ < a _< r, y’ is adjacent to
yz. Otherwise, since y’ is a right *-witness point, there exists z N(x) N [/]w such
that z y. Since y is a left *-witness point, there exists z’ []w N(x) such
that y z’. But then {z,y,x,z,y’,yZ} induces P5,1, which is a contradiction. In
particular, if a >/, then the left *-witness for supports some vertex in [c]w- N(x).
See Fig. 10.

We call a vertex z’ [’]w N(x) special for -), if, for all a -, y z’. We
next show that for every color 7 C(W), there exists a vertex z that is special
for -),. For each a :/: 7, let N {z’ E [’]w-N(x)" y z’}. We must show
that NN g. Each N is nonempty. If a > 7, then this follows from the
definition of y, and if a < -, then it follows from the observation above. Thus it
suffices to show that for all a, f C(W) {’y}, N C NZ or NZ c N. Suppose not.
Then there exist z’, w’ [’)’]w N(x) such that y z’ yz and y w’ yz. But
then {z’, y, x, y, w, y.} induces P5,, which is a contradiction. See Fig. 11.

Finally, by the choice of r, there exists a subset H C C(W) such that III t and
{z’7 I} is independent. Then the set {Yr")’ I} U {z’7 E I} induces Bt.

Theorem 2.3 now follows easily from Lemmas 2.5, 2.9, and 2.10.
Proof of Theorem 2.3. Fix t. We claim that f(w) e(R(w + 1, t),w) is a

binding function for Forb(P5,,Bt). Suppose not. Then there exists a graph G in
Forb(P5,,Bt) such that XFF(G) _> f(w(G)). By Lemma 2.5, there is a wall W in G
such that h(W) >_ f(w(G)). Thus by Lemma 2.9, there exists a wall W in G such that
h(W) >_ R(w + 1, t) and W has the strong cross property. Thus by Lemma 2.10, G
induces Bt, which is a contradiction.

Proof of Theorem 2.4. Since we are not concerned with finding an optimal binding
function, we may assume that k t. Let f be defined recursively by f(1) 1 and
f(w + 1) j o R(1 + f(w), 1 + R16(max{2t, w + 1})), where j is the function from
Lemma 2.7. We shall show by induction on w that, if G Forb(Dt, St) and w(G) <_ w,
then XFF(G) _< f(w(G)). The base step is trivial, so suppose the result holds for w
and suppose both w(G) w + 1 and XFF(G) > f(w + 1). Then, by Lemma 2.5, there
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N(x) W- N(x) N(x) W- N(x)

FIG. 10 FIG. 11

exists a wall W in G of height f(w + 1) that supports a vertex x. We shall obtain
a contradiction in two steps. We first show (1) there exists a set of vertices X
{x,y, al,...,as,bl,...,bs} such that s R16(m3x{2t, cd + 1}),x y, {al,...,as} C

N(x)- N(y), {bl,..., bs} C N(y)- N(x), and ai bi for all i. We then show (2) there
exists a subset of X that induces either Dt or Bt.

By Lemma 2.7 there exists an induced subwall W0 c W such that W0 supports
x,h(Wo) >_ R(1 + f(w), 1 +R16(max{2t, k+ 1}), and (*) holds. Define a coloring q on
the two element subsets of C(Wo) by q(a > fi/) c, where

c 2 iff 3y E ([c]Wo N N(x)) z ([]Wo N N(x))(y z) and
c 1 otherwise.

By Ramsey’s theorem, there exists a homogeneous subset H C C(Wo) such that either
q(a>j3)= 1 for alla,H, and IHI l+f(w) orq(c>) =2foralla,U,
and ]HI 1 + R16(max{2t, w + 1}). In the first case, W1 [U]wo is a wall such that
w(W1) _< w and h(W1) >_ 1 + f(w), which by Lemma 2.5 contradicts the induction
hypothesis. In the second case, for each C(W1), there exists a left *-witness y
for ,. Let y ya, where a is the largest color in C(W), and let ai y, where % is
the ith smallest color of C(W1). Finally choose b []w1, so that y b. It is now
easy to check that X {x, y, a,..., as, bl,..., bs } has the desired properties for (1).

Define a coloring r on the two element subsets of Is] by r(/ > ) Y, where
Y is the image of the graph G, G[{az, bz, a, b}] under the graph isomorphism
that maps az, b, a, b to 1, 2, 3, 4, respectively. There are 16 possibilities for such
graphs depending on which of four possible edges are present. Thus, by Ramsey’s
theorem, there exists a homogeneous subset U such that IHtl _> max{2t, w + 1} and
r(/ > ) Y, for all/, E St. Let A {hi: Ut} and B {b: Ht}. Since

IHI >_ w + 1 and A c N(y), 1 3 in Y, i.e., A is an independent set. Similarly 2 4
in Y and B is an independent set. This leaves four possibilities, which are illustrated
in Figs. 12-15, for Y. If Y has no edges, then G[X] contains an induced D2; if Y
has one edge, then G[X] contains an induced D; and if Y has two edges, then G[X]
contains an induced B2. Each possibility is a contradiction, so we are done. [3

3. Open problems. The problem of determining whether Forb(Ph) has a poly-
nomial on-line x-binding function remains open. In fact, this problem is open even in
the off-line case; all that is known is that if f is a x-binding function for Forb(Ph),
then f satisfies c(w/logw)2

_
f(w) _< 2. The lower bound follows from an obser-

vation of Gyrf [4]: if a(G) < 3, then G Forb(Ph) and x(G) >_ (G)/2, and
thus (R(w, 3)- 1)/2 <: f(w). The result then follows from a well-known lower bound
on R(3, w). The upper bound is only a small improvement on the on-line x-binding
function presented here.

For trees T for which Forb(T) is not XFF-bounded, it may be possible to determine
the reason why. We have previously noted that Forb(T, Kt,t) is XFF-bounded for any
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FIG. 13

tree. However, this does not tell us why Forb(T) is not x-bounded. Our result that
Forb(T, Bt) is x-bounded for T Dk or Pk,1 is more informative, since XFF(Bt) t.
It would be interesting to prove similar results for other trees. However, the following
two negative examples show that some caution is in order.

GyrfAs and Lehel’s proof [7] that Forb(P6) is not on-line x-bounded actually
shows more. Since the graphs they constructed do not induce B3, their arguments
show that Forb(P6, B3) is not on-line x-bounded. Thus if T is a tree with radius
greater than two, then Forb(T, Bt) is not on-line x-bounded. In particular, it is not
XFF-bounded.

We next present an example which provides a general construction for graphs
which force the First-Fit algorithm to use a large number of colors. This example
includes Bt as a special case.

Example 3.1. Let t _> 2 and let H (V, E) be a graph such that
1. V A1UA2U...LAt;
2. Aj {alj,a2j,... ,ajj} is a set of j independent vertices for j 1,2,... ,t;
3. Ay N A+I O for j 1,2,...,t- 1;
4. aij 7 aij+l whenever 1 _< _< j <_ t- 1; and
5. aij akj+l whenever 1 <_ < k _< j + 1 <_ t.



ON-LINE AND FIRST-FIT COLORING 497

V-..

x y

a b
G(X)

a b

a b

a b

FIG. 14

Y-

x y

a b

G(X)
a b

a b

a b

FIG. 15

Note that we do not require that Aj fq Aj, when IJ’-Jl -> 2. Now let

IVI n and let Vl < v2 < < vn be a linear order on V so that a </ whenever
Va aij, v/3 Vkj+l, and 1 < < k < j + 1 < t. Then an easy inductive argument
shows that the First-Fit algorithm will color H with t colors when the vertices are
presented in this order; in fact, FF will color a vertex v aij with color i.

The graph Bt (actually Bt with a single vertex removed) is obtained if aij aij+2
whenever 1 < < j < t- 2. More generally, suppose there is some k _> 2 so that
aij aij+k whenever 1 < < j < t- k, and the only adjacencies in G are those
required by property 5 above. Then the chromatic number of the graph is three if k
is odd and two if k is even.

On the other hand, if the sets A1, A2,..., At are pairwise disjoint and independent
whenever IJ il > 2, then we obtain a bipartite graph H which is the complement of
a comparability graph (a cocomparability graph). In [9], Kierstead used this example
to show that First-Fit can be forced to use arbitrarily many cliques to cover a com-
parability graph with independence number two. Of course this implies that First-Fit
can be forced to use arbitrarily many chains to cover a width-two ordered set.
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Since covering a comparability graph with cliques is equivalent to coloring a co-
comparability graph, and cocomparability graphs induce neither LS nor B3, it follows
that Forb(LS3, B3) is not XFF-bounded.

Motivated by the results presented previously nd the examples discussed above,
we suggest the following problems.

Problem 1. Given a tree T, do there exist a function g(w, X) and an integer r such
that if G Forb(T) and XFF(() > g(w(G), X), then there exists an induced subgraph
H of G with x(H) <_ r and XFF(H)

_
X.7

Problem 2. Given a tree T, does there exist a function h(w, X) such that if G
Forb(T) nd XFF(G) > g(w(G), (), then G contains n induced subgraph H of the
type constructed in Example 3.1 with XFF(H)

_
X.7

Problem 3. Is Forb(Lk, Bt) XFF-bounded?
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ON THE A-NUMBER OF Qn AND RELATED GRAPHS *

MARSHALL A. WHITTLESEY, JOHN P. GEORGES AND DAVID W. MAURO

Abstract. An L(2, 1)-labeling of graph G is an integer labeling of V(G) such that adjacent
vertices have labels that differ by at least 2 and such that vertices distance 2 apart have labels that
differ by at least 1. The A-number of G, A(G), is the minimum range over all L(2, 1)-labelings. We
examine the properties of A-labelings of the n-cube Qn. Griggs and Yeh have determined A(Qn) for
n _< 5 and have established n + 3 _< A(Qn) _< 2n + 1 for n _> 6. We modify a technique used in coding
theory to improve the upper bound. We also examine the A-labelings of related graphs, such as the
subdivision of the n-cube and the Cartesian products of paths.

Key words. A-labeling, n-cube, vertex labeling

AMS subject classification. Primary, 05C

1. Introduction. An L(2, 1)-labeling of a graph G is an integer assignment f
to the vertices of G such that

(i) If(v) f(w)l >_ 2 if v and w are adjacent, and
(ii) If(v) f(w)l _> 1 if the shortest path from v to w is of length 2.
The problem of finding an L(2, 1)-labeling of G, which is a variation of the well-

known channel assignment problem (see [3], [5], [6]), was first introduced in 1988 by
Roberts in private communication with Griggs.

Let (G) be the collection of all 5(2, 1)-labelings of G. For any f E :(G), we define
the span of f, s(f) to be the absolute difference between a maximum and minimum
vertex assignment of f. We define the A-number of G, A(G) to be minle:(a s(f). If
s(f) A(G), then we say that f is a A-labeling of G. With no loss of generality, we
will assume that the smallest label of a labeling is 0.

Griggs and Yeh [2] have investigated the relationship between A(G) and other
graph invariants, such as chromatic number x(G) and maximum vertex degree A(G).
Sakai [7] has obtained bounds on the A-number of unit interval graphs and chordal
graphs in general. Georges, Mauro, and Whittlesey [1] have established a relationship
between A(G) and the path-covering number of Gc.

In this paper, we focus our attention on L(2, 1)-labelings of the n-cube Qn and
related graphs. Griggs and Yeh [2] have shown )(Qn) <_ 2n/1, and Jonas [2] has shown
that n + 3 _< ,(Qn). By constructive methods, we find the A-number of the product
of sufficiently long paths and reproduce the upper bound of 2n + 1 in a more general
setting. Next, we apply a coding theory approach to the algebraic structure of Qn in
order to improve the upper bound of 2n+ 1. This bound ranges from In+ 1 + log2 nJ to
2n, depending on the value of n. Finally, we investigate the A-number of the subdivision
of G (denoted Gs) and obtain A(QnS).

2. The products of paths and Qn. We will begin our discussion by investi-
gating the A-number of the product P 1-Iil Pi of nontrivial paths Pi, where Pi is
a path of pi vertices. For certain values of pi, we obtain the exact value of A(P). Since
Qn (the product of n copies of P2) is a subgraph of P, we obtain an upper bound for
,(Qn).

* Received by the editors September 30, 1992; accepted for publication (in revised form) July
25, 1994.

Department of Mathematics, Trinity College, Hartford, Connecticut 06106.
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It is convenient to represent a vertex v of P by the n-tuple (Vl,V2,V3,...,Vn)
of integers, where 1 _< vi _< pi. It follows that a shortest path between the vertices
it (Ul it2 Un) and w (wl w2, wn) has length i=1 TM wl" Vertices u
and w are therefore adjacent if and only if, for some j,

Iwj-uyl--1 and Iw-ui I--0, ij.

Similarly, vertices u and w are distance two apart if and only if one of the following
two cases holds:

(1) there exists j, 1 _< j _< n, such that

Iwj uj[ 2 and Iwi uil O, j;

(2) there exist j, k, 1 <_ j < k <_ n, such that

]Wj--UjI=IWk--UkI=I and Iwi-uil=o, i#j,k.

LEMMA 2.1 [2]. Let G be a graph with maximum degree A k 2. Then the following
statements hold.

(i) A(G) _> A / 1.
(ii) If A(G) A + 1, then each vertex of degree A is assigned 0 or A + 1 under

all A-labelings.
(iii) If G has three vertices of degree A such that one such vertex is adjacent to

the other two, then ;k(G) k A + 2.
LEMMA 2.2. Let pi k 3 for 1 <_ <_ n. If there exists integer j such that pj >_ 5,

or if there exist distinct integers j and k such that pj pk 4, then A(P) k 2n + 2.

Proof. Let x be the vertex in P each of whose coordinates is 2. If pj _> 5, then
let y be the vertex adjacent to x whose jth coordinate is 3, and let z be the vertex
adjacent to y whose jth coordinate is 4. Since each of these vertices has degree A 2n,
Lemma 2.1 implies A(P) >_ 2n + 2. If pj pk 4, then let y and z be the vertices
adjacent to x whose jth and kth coordinates are 3, respectively. Since each of these
vertices has degree 2n, the result again follows from Lemma 2.1.

LEMMA 2.3. Let Pn 2 and pi >_ 3, 1 _< _< n- 1. In addition, let pj k 4 for
some j. Then )(P) k 2n + 1.

Proof. Let x be the vertex each of whose coordinates is 2. Let y and z be the
vertices adjacent to x whose nth coordinate is 1 and whose jth coordinate is 3, re-
spectively. Since each of these vertices has degree A 2n- 1, the result follows from
Lemma 2.1. [:]

In the proof of the next lemma, which establishes corresponding upper bounds
for the A-number of products of paths, we make use of the following fact: If a, b, and
m are positive integers such that la- b < m, then

lamodm-bmodmI--la-b or m-la-bI.
Our general method of proof is similar to that used by Griggs and Yeh [2] when

they obtained an upper bound of 2n + 1 for A(Qn).
LEMMA 2.4. Ifpi k 2 for all i, then A(P) <_ 2n + 1 + r, where r 0 when pn 2

and r 1 otherwise.
Proof. Let vertex (Vl, v2,..., Vn) be assigned the integer [Y=l(i+1)vi]mod(2n +

2 + r). Then for some k, 1 _< k _< n, adjacent vertices have labels whose absolute
difference is k + 1 or 2n + 2 + r (k + 1), each of which is greater than or equal to 2.
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If w and u are at distance 2, then the n-tuple representations of w and u differ
by precisely 1 in two positions or precisely 2 in one position.

If the latter condition holds, then -n=l(i / 1)w and -1(i + 1)ui differ by
2(k + 1) for some k, 1 < k < n- 1 + r. Since 2(k + 1) is less than the modulus, we
have that

(i+l)w mod(2n+2+r)- (i+l)u mod(2n+2+r)
i-----1

equals either 2k + 2 or 2n + 2 + r (2k + 2). Since neither of these terms is 0, the
distance-2 condition is satisfied in this case.

If the former condition holds, then -1(i / 1)w and 1(i + 1)u differ by
I(kl + 1) (k2 + 1)1 or I(kl + 1) + (k2 + 1)1 for some distinct kl, k2. Since each of these
is less than the modulus, we have that

(i+l)w/ mod(2n+2+r)- (i+l)ui mod(2n+2+r)
i=1

equals I(kl + 1) (k2 + 1)i or 2n + 2 + r -I(kl + 1) (k2 + 1)1 or (kl + 1) + (k2 + 1) or
2n + 2 + r ((kl + 1) + (k2 + 1)). Since none of these four terms is 0, the distance-2
condition is again satisfied. Hence, vertices at distance 2 have distinct labels. [:]

Combining Lemmas 2.2, 2.3, and 2.4, we obtain the following theorem.
THEOREM 2.5.
(i) Suppose p >_ 3 for 1 < < n. If there exists an integer j such that pj > 5, or

if there exist distinct integers j and k such that pj p 4, then A(P) 2n + 2.
(ii) Suppose Pn 2 and p >_ 3, 1 < <_ n- 1. If there exists an integer j such

that pj >_ 4, then )(P) 2n + 1.

3. A coding theory approach to A(Qn). In this section, we use coding theory
methods (see [4]) to improve the bounds on A(Qn). With vertices of Qn represented
as binary n-tuples, we find a linear mapping M" V(Qn) ---, v(Q) and an injection
f V(Qk) -- N such that M o f is an L(2, 1)-labeling. The mapping M shall be
represented by an n k binary matrix (also denoted M), and the k-tuple (v)M shall
be the matrix product v, M whose calculation is in binary arithmetic. Similarly,
the injection f shall be represented by a k 1 matrix (also denoted f) such that
(w)f wf. Hence, (v)(M o f) (v M)f v Mf.

In the following discussion, e shall denote the ith row of the n n identity matrix.
Thus M is the ith row of M. Our arithmetic for the most part will be binary, and
the operation of binary subtraction (addition) will be denoted by

We now derive some conditions on M necessary for Mof to be an L(2, 1)-labeling.
LEMMA 3.1. Adjacent vertices of (n have different labels under Mo f if and only

if no row of M is the zero vector.
Proof. () Suppose adjacent vertices v and w have the same labels under M o f,

and suppose that v G w e. Then v,Mf w,Mf, which implies that v,M w,M,
by the injectivity of f. This in turn implies that (v G w) M e M 6.

(=) Suppose that the ith row of M is t. Then e M 6, M , which implies
that e Mf , Mr. Adjacent vertices and e thus have identical labels.

LEMMA 3.2. Vertices of Qn that are at distance 2 have distinct labels if and only
if the rows of M are distinct.

Proof. (=) Suppose that rows and j in M are identical. Then e M ej M,
which implies that e Mf ej Mr. Hence, e and ej have the same label. However,
e and ej are at distance 2.
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(=) Suppose that vertices v and w are at distance two and have identical labels.
Thenv,Mf w,Mf, which implies that v,M w,M, or (v(w),M 6.
However, v w can be expressed as ei ( ej for some i, j due to the distance constraint.
Hence, ei M ( ej M (, which implies ei M ej M. Consequently, rows and
j of M are not distinct. [:]

Next, suppose that f is the column vector (al, a2,..., ak)T of positive integers.
We define

and

B(f) { (bl, b2,..., ba)lbi 0, 1, or 1 and

B’(f) { (bl, b,..., b)lb bi mod 2 and (bl, b2,..., bk) e B(f) }.
We note that B’(f) is a set of binary k-tuples and hence contains elements of V(Q).

LEMMA 3.3. Let M Qn - Q. If the rows of matrix M are nonzero and distinct,
and if n >_ 2k-l, then the mapping M is onto.

Proof. If the rank of M is less than or equal to k- 1, then there are at most
2-1 1 nonzero, distinct rows in M. However, n _> 2k-1; hence the rank of M
is k. Since the dimension of the image of M is the rank of M, then M maps Q
onto Q. [3

LEMMA 3.4. Let M Qn ---, Qk. If the rows of matrix M are nonzero and distinct,
and if n >_ 2k-1 then adjacent vertices have labels that differ by at least 2 under M o f
if and only if no row of M is an element of B’(f).

Proof. We prove that at least one row of M is in B’ (f) if and only if there exist
adjacent vertices whose labels differ by 1 or 0 under M o f.

(=) Let v and w be adjacent vertices of Qn which differ in the rth coordinate.
mDenote v M and w M by (v, v, v, vk and (w, w,w, wk ), respec-

tively. We have Iv Mf w Mf < 2,
v, Mf- w, Mfl 1 (by Lemma 3.1),

Vm m= (v?,v, 3,’",vk)f-(w?,w,w,’",wc)fl-1,

E a,(vF wF)l 1,
)eB(I)(vF wF vF wF v-w
) e B’(I)(vF wF vF wF v w

(. Me. M) e ’(),
(v w) M B’(f),
e M B’(I).

() Suppose there exists a row b’ e.M in B’(f). Let b (bl, b2,... ,bk) be an

element of B(f) such that b bi mod 2 and bf] Ei aibi] 1. For 1 i k,
let xi 0 if bi 0 or -1; 1 otherwise.

Since M is onto, there is a vertex v of Q such that v. M (xl, x2,..., xk). The
adjacent vertices v and v e then have labels that differ by

I, Mf (v 0 e,.) Mfl Ixf (x b’)fl I(x (x b’))fl.

However, xi (xi ( b) bi. Thus I( (x b,))fl Ibfl 1, which implies that
adjacent vertices v and v ( e have labels that differ by 1. [:]

We combine Lemmas 3.1, 3.2, and 3.4 to obtain the following theorem.
THEOREM 3.5. Suppose f is an injective linear mapping from V(Qa) into the

nonnegative integers such that (xi x2, xk f (Xl, X2, x)(ai, a2, ak T
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2ik=1 aixi, where ai is a positive integer. Suppose also that M is a linear mapping
(represented by an n x k matrix) from V(Qn) to the binary k-tuples such that n >_ 2k-

and (Vl, V2,..., vn)M (Vl, V2,..., Vn) * M. Then M o f V(Q) N is an L(2, 1)-
labeling of Qn if and only if the rows of M are nonzero, distinct, and not in B’(f).

We next find an injection f (al, a2,..., ak)T, from which B’(f) and, hence,
ka suitable M follow. An upper bound on/(Qn) is then -i=l ai. Since the rows of

M must be selected from the complement of B(f), it is important to note that the
complement must have at least n elements in order for M to be comformable wih
(v, v,..., v). This, however, can be guaranteed by characterizing the complement
and choosing k sufficiently large.

LEMMA 3.6. Let ri 2i-1, 1,2, 3,..., k, and let ej denote the jth row of the
k x k identity matrix. For fixed q, 1 <_ q <_ k + 1, let

si =0 if 1, 2, , q 1; si 2i-q if i q, q + 1, q+ 2,...,k.

Set f (al,a2,...,ak), where ai ri + si. Then f is injective, and B’(f)
{E?=I eJlm- 1, 2, 3,..., q- 1}, where this set is understood to be empty if q 1.

Proof. To establish the injectivity of f, we need only note that ki=1 rizi and

i= sixi are, respectively, strictly increasing and increasing functions of the binary
integer (x, _

1, ).
mTo prove that B’(f) .{-j=l elm 1,2,...,q- 1}, let b (bl,b2,...,bk) e

B’(f) and b (b,b2,...,bk) e B(f), where b bi mod 2. Let c denote max{ill _<
_< k and bi 0}. Without loss of generality, we may assume that b 1 since

-k 2i_ lbil 1 if and only if }-k 2i_l(_bi)l 1 By repeated application of thei--1 i--1
triangle inequality, we have

2c-1 + Sc rc - Sc

I(r / s)bl

+ + +
i=1 i=1

c c-1

_< + + +
i=1 i=1

(3.1) 1 + E(r + si)(-bi)
i=1

c--1

_< 1 + E(ri + s)l(-b)l
i=1

_< 1 + E(ri + si)
i=1

c-1 c-1

i=1 i=1

c-1 c-1

i=1 i=1

2c-1 -t- E Si.

i=1
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c-1 c-1If c _> q, then -i=l si ’i=q 2i-q 2c-q 1 < 2c-q s. By the first and last
c-1 2c_lines of (3.1), we have the contradiction that 2c-1 + 8c

_
2c-1 + Ei--1 8i < + 8c.

Hence c _< q- 1. However, if c _< q- 1, then =1 s s 0. Thus all of the
inequalities in (3.1) are, in fact, equalities, implying

c-1

2c-1 1 + 2-1[(-b)].
i--1

This equality, constrained by the conditions b 1 and b 0 for > c, is solved only
by b -1 for 1 _< _< c- 1. Thus b-- (-1,-1,...,-1, 1,0,...,0). This implies that
(11... 110,... 0)=Ej=lJ E B(f). Since c ranges between landq-1, the
theorem is proved. D

We are now able to improve the bound on the A-number of Qn. Let n >_ 2k-1 1 <_
q _< k + 1, and f (rl -- 81, r2 -- 82,..., rk -- 8k) as above. Then by Lemma 3.6, f is
injective and B(f) contains q- 1 k-tuples. Thus there are 2k -q nonzero k-tuples in
the complement of B (f) from which we may form rows of M so that, by Theorem 3.5,
M o f is an L(2, 1)-labeling. Since M is onto, there exists a vertex v in Qn such that
v,M (1, 1,..., 1). Consequently, the span of Mof is Eik__l(ri--si) 2kT2k-q+l--2.
Furthermore, 2a -q must be greater than or equal to n in order that the product v,M
be conformable. Thus we have the following theorem.

THEOREM 3.7. Let 2k- <_ n <_ 2 -q, where 1 <_ q <_ k + 1. Then )(Q)

_
2k -+- 2k-q+1 2. In particular, /(Q2k_q)

_
2k + 2k-q+1 2.

Examples. Setting k 4 and q 5,4,3,2,1, we have (Qll) _< 15,(Q12)

_
16, (Q13) _< i8, A(Q14)

_
22, and A(Q5) _< 30, respectively. Suppose n 80. Then,

subject to the constraints 2k-1

_
n _< 2k -q and 1

_
q _< k + 1, the upper bound on

A(Qs0) is minimized at k 7 and q 8. Hence, A(Qs0) _< A(Q120)

_
127.

COROLLARY 3.7.1. liminf A(Qn)/n- 1.

Proof. If q k + 1, it follows immediately from Theorem 3.7 that liminf/(Qn)/
n _< 1. Because A(Qn) _> n + 3 for all n _> 3, we conclude that liminfA(Qn)/
n--1. [

THEOREM 3.8. For all n,/(Qn)

_
2n.

Proof. Suppose that n is of the form 2k q, 1 _< q _< k + 1. If q k + 1, then, by
Theorem 3.7, A(Qn) A(Q2k-k-1) _< 2k 1, which is less than 2n if k _> 3 (n _> 4).
If q < k + 1, then, by Theorem 3.7, (Qn) (Q2-q)

_
2k + 2k-q+1 2, which can

be shown to be less than or equal to 2n.
If n is not of the form 2a -q, 1 _< q

_
k + 1, let r be the smallest integer such

that 2r-1 _< n _< 2 (r + 1). Then A(Qn) <_ (Q2-(+1))
_

2 1 < 2 _< 2n. [:]

We note that/(Qn) is strictly less than 2n for all n > 2 that are not of the form
2k- 1.

These methods can be extended to L(a, b) labelings.

4. The subdivision of a graph and QnS. In this section, we obtain bounds on
the A-number of the subdivision of a graph G. These bounds are expressed in terms of
the maximum vertex degree A(G), the vertex chromatic number x(G), and the edge
chromatic number x’(G).

The subdivision of G, denoted by GS, is the graph obtained by inserting one
vertex along each edge of G. A vertex of GS that is also a vertex of G is called an old
vertex; otherwise, it is called a new vertex. We observe that old vertices are adjacent
to new vertices in GS only, and vice versa. If G has n vertices and m edges, then GS

has m + n vertices and 2m edges.
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THEOREM 4.1. For k >_ 1, if G is k-regular, then A(GS) >_ k + 2.

Proof. If k 1, then Gs is the sum of paths of length 3, and hence A(Gs) 3.
If k _> 2, then A(G) k and, by Lemma 2.1, A(G) _> k -t- 1. Suppose A(G)

k -}- 1. Then each new vertex is adjacent to an old vertex labeled 0 and an old vertex
labeled k-i- 1, and so each new vertex must have a label in (2, 3, 4,..., k- 1}. However,
for any old vertex v, the k new vertices adjacent to v must receive distinct labels, an
impossibility. Therefore, (Gs) _> k / 2. [:]

THEOREM 4.2. (GS) _< (G) + ’(G).
Proof. This is a proof by construction. Let C" V(G) -. (0, 1,2,..., x(G)- 1 be

a vertex coloring of V(G), and let C’" E(G) --be an edge coloring of E(G). These colorings induce an 5(2, 1)-labeling of V(GS) as
follows: L(v) C(v) or C(e) if, respectively, v is an old vertex or v is a new vertex
inserted along edge e in G.

THEOREM 4.3. If G is a k-regular, bipartite graph, k >_ 1, then A(GS) k -}- 2.

Proof. If G is bipartite, then x(G) 2 and x’(G) A(G). Thus k+ 2 _< (GS) <_
2/k.

COROLLARY 4.3.1. A(QnS) n -}- 2.
We next obtain an upper bound for A(GS) in terms of A(G). To this end, .we

recall that Vizing’s theorem establishes the edge-chromatic number of a simple graph
to be A or A / 1 and that Brooks’s theorem places an upper bound of A on the vertex-
chromatic number of a connected graph that is neither an odd cycle nor a complete
graph.

THEOREM 4.4. For any graph G, (GS) <_ 2A + 1.

Proof. It suffices to show that if G is connected, then (G) _< 2A + 1.
Let G be a connected graph. We consider separately the cases where G is an odd

cycle, G is a complete graph, and G is neither an odd cycle nor a complete graph.
Case 1. G is an odd cycle. Griggs and YeA [2] have shown that the A-number of

any cycle is 4. Since G is an even cycle, )(G) 4 < 2A + 1.
Case 2. G is a complete graph. We observe that x(G) A(G) / 1. If G has

an even number of vertices, then x(G) A(G), and, by Theorem 4.2, it follows
that A(G) _< 2A(G) + 1. If G has an odd number of vertices, let G8 have vertices
vi,j(1 _< i,j <_ n), where vi,i corresponds to the ith vertex in G and vi,j to the vertex
for the edge joining the ith and jth vertices in G, i : j. Define f(v,y) 2(i +j rood n)
for all vertices vi,j E V(GS). Note that two vertices vi,i, and vj,j, are of distance at
most 2 in GS if and only if i’ j j’ or I{i, i’} (J,J’}l 1. In any case,
If(v#,)-f(vj,,)l- 21(i-}-i’ mod n-(j+j) mod n _> 2, since i+i j-}-j’(mod n).

Case 3. G is neither an odd cycle nor a complete graph. By Brooks’s theorem and
Vizing’s theorem, respectively, x(G) <_ A(G) and x’(G) _< A(G)/ 1. Consequently,
by Theorem 4.2, it follows that A(G)
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THE MEDIAN PROCEDURE IN A FORMAL THEORY
OF CONSENSUS *

F. R. MCMORRIS AND R. C. POWERS

Abstract. A consensus rule on a finite set X is a function c from the set of k-tuples for all
k 0 into the set of nonempty subsets of X. Elements in the image of c represent a consensus, or

agreement, of the input. Axioms for consensus rules are presented, and when X is partially ordered,
some consequences of these axioms are determined. A generalization of the median consensus rule is

given when X is a distributive semilattice and is based on a weighting of the least move metric on

the covering graph of X. It is characterized under the assumption that every join irreducible of X is

an atom.

Key words, consensus, median, semilattice

AMS subject classifications. 06A12, 90A08

1. Introduction. The notion of consensus appears in many different fields such
as biology, economics, and sociology when the aggregation of processed data is desired.
To encompass such a wide range of applications, Barthlemy and Janowitz [6] propose
a broad formal model for consensus based in the theory of ordered sets. Within their
model they achieve axiomatic characterizations of several types of consensus rules. We
refer the reader to [6] and [7] for extensive examples and motivation for this approach.

One natural way to produce a consensus of a k-tuple (xl,..., xk) in a finite metric
space (X, d) is to find all those elements x in X that are "closest" to (xi,... ,xk). That
is, find all x such that -l<i<k d(x, xi) is minimized. This is referred to as the median
procedure and the resulting function is called the median consensus rule. This rule
has been well studied (cf., Bandelt and Barthelemy [1], Barthlemy and McMorris
[8], Leclerc [10]-[12], Monjardet [14]). The present paper improves two of the main
results in [6] dealing with the median procedure, namely Theorems 19 and 28, by
removing two out of the five axioms and, at the same time, weakening a third axiom.
In doing this, we will give a generalization of the median procedure for nonsymmetric
distance functions. An example of this situation is provided by weighting the standard
minimum-moves metric on the covering graph of a distributive semilattice X. We are
able to characterize this generalized median procedure under the assumption that
every join irreducible of X is an atom.

Our paper closely follows the terminology and notation of Barthlemy and Jano-
witz [6] and is organized in five sections, with the first section being this introduction.
In order to keep this exposition relatively self-contained, we include some prelimi-
naries in 2. In 3, we consider consensus rules on finite partially ordered sets as
well as a generalization of the t-condorcet axiom from [6]. In 4, we consider consen-
sus rules on finite semilattices, with 5 covering finite distributive semilattices. The
characterization theorems mentioned above are contained in this last section.

2. Some preliminaries and the axioms. We start with some definitions in
the most general setting and assume here that X is just a finite set. A consensus
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10, 1994.
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rule on X is a map c: X* -- P(X) \ {}, where P(X) is the power set of X, and
X* [-J>0 X with Xk as the k-fold product of X. An element x* (Xl,... ,xk) of
X* is called a profile, and we let (x)a denote the constant profile (x) (Xl,... ,x),
with Xl ..... x x. Set V {1,...,k}.

Now consider an arbitrary function d X x X --, [0, ). For x* E X*, set
D(x*,x) El<i<kd(xi,x) and .D(x,x*) El<i<kd(x, xi). Define the consensus
rules rnL and mR on X as follows:

mR(x*) {X e X D(x*,x) is minimum}

rnL x* {x e X" D x, x* is minimum}.

We call mL the left median consensus rule and mR the right median consensus
rule. In the case where d is a metric, we have mL mR, and we get the ordinary
median consensus rule [6], [8]. We can think of mL (x*) as those x whose "distance" to
the profile is as small as possible, whereas mR(x*) contains those x whose "distance"

from the profile is as small as possible. Clearly mL(x*) need not equal mR(x*), but
there is the obvious left-right duality, so that general results for mL will also hold for
mR. For this reason, we will focus on the left median rule in 5.

A consensus rule c on X is consistent [15] if an only if for all profiles x* and y*,
the condition c(x* C c(y* # implies that c(x*y* c(x* N c(y* ), where x’y*
denotes the concatenation of the two profiles x* and y*. c satisfies unanimity if
c((x)) {x} for all constant profiles (x) in X*. Clearly, if d satisfies d(x, y) 0 if
and only if x y for all x, y X, then mL and mR satisfy unanimity. The proof of
the next result is the same as that given for Lemma 7 in [6].

LEMMA 1. The left and right median consensus rules are consistent.

3. Posets. We now start to add some structure to the set X by letting X be a
finite partially ordered set (poset), i.e., X is equipped with a reflexive, antisymmetric,
transitive relation <. Recall that the supremum, or join, of a subset A of X is denoted
by sup(A) when it exists. Dually, the infimum, or meet, of A is denoted by inf(A).
The poset X is a lattice if and only if sup{x, y} and inf{x, y} exist for all x, y in X.
As is standard practice, set x A y inf{x, y} and x V y sup{x, y} [9], [15].

An element s in X is join irreducible if s x V y implies that either s x or

s y. Dually, an element rn is meet irreducible if rn x A y implies that either rn x
or rn y. We say that two elements x and y in X are join compatible if x V y exists
and meet compatible if x A y exists.

3.1. Condorcet axioms for posets. A condorcet axiom (named after the Mar-
quis de Condorcet, an 18th century Frenchman who is considered one of the founding
fathers of modern voting theory) for hierarchical classifications was first introduced by
Barth61emy and McMorris in [8] and then generalized to semilattices by Barth61emy
and Janowitz in [6]. We now further extend this axiom to arbitrary posets. To ac-

complish this, we need the notions of index and dual index.
The index of the element s X in the profile x* Xk is

e <_

whereas the dual index of s is

r’(s,x*) I{i e y s >_ x}l/k.



THE MEDIAN PROCEDURE IN A FORMAL THEORY OF CONSENSUS 509

Let S be a nonempty subset of X, t E [0, 1] be rational, and c be a consensus rule
on X.

(1) c is upward t-condorcet with respect to (S, sup) if and only if, for each s E S
and x* X* such that /(s,x*) t, s join compatible with x c(x*) implies that
v e (*).

(2) c is upward t-condorcet with respect to (S, inf) if and only if, for each s e S
and x* e X* such that -’(s, x*) t,x A s e c(x*) implies that x e c(x*).

(3) c is downward t-condorcet with respect to (S, sup) if and only if, for each s e S
and x* e X* such that /(s, x*) t, x V s e c(x*) implies that x e c(x*).

(4) c is downward t-condorcet with respect to (S, inf) if and only if, for each s e S
and x* e X* such that /’(s,x*) t,s meet compatible with x c(x*) implies that
x/s e c(x*).

(5) To agree with the definition in [6], we say that c is t-condorcet if c is both
upward and downward t-condorcet with respect to (S, sup), where S is the set of all
join irreducibles of X.

3.2. Consequences of the axioms. Since consistency, unanimity, and con-
dorcet are reasonable conditions on a consensus rule, we now see how these affect the
output in the most general poset case.

THEOREM 1. Let t (0, 1) be rational and let c be a consensus rule on X that
satisfies unanimity and consistency and is upward t-condorcet with respect to (S, sup).
For any profile x* X* and s S, if "(s,x*) > t and x c(x*) is join compatible
with s, then s

_
x.

Proof. Let x* Xk. If k 1, then the result follows from the unanimity condi-
tion, so assume that k _> 2 and let t m/n. Suppose that there exist x c(x*) and
s E S such that /(s, x*) > t, x V s exists, and s is not less than or equal to x.

First assume (s,x*) 1, so that s _< xi for all 1,...,k. Let y*
(x*)m(x)k(n-m) e Xkn. It follows from consistency that x e c((x*)m) and from con-
sistency and unanimity that c((x)k(n-m))- (x}. Hence by consistency c(y*)-
Note that (s, y*) km/kn m/n t, and so by upward t-condorcet x V s c(y*),
contrary to c(y*) (x}.

Now assume /(s, x*) u/k > m/n where 0 < u < k. Let y* (x*)’(x)n-ma
Xn. As before, we can show that c(y*) (x}. Note that "(s, y*) um/nu
t, and so by upward t-condorcet, x V s e c(y*), contrary to c(y*) (x}.

THEOREM 2. Let t (0, 1) be rational and c be a consensus rule on X that satis-

fies unanimity and consistency and is downward t-condorcet with respect to (S, sup).
For any profile x* X* and s S, if x y V s c(x*) for some y x, then
7(, x*) > t.

Proof. Let x* E X. If k 1, then the result follows from the unanimity condi-
tion, so assume that k > 2 and let t m/n. Assume that there exists x c(x*) and
s S such that x y V s, with y x and 7(s, x*) < t.

First, suppose 7(s, x*) 0 and let y* (X*)(n-m)(x)km Xkn. Then, as in the
proof of Theorem 1, c(y*) {x}. Note that 7(s,y*) km/kn m/n t. Since
x y V s, with y x, it follows from downward t-condorcet that y c(y*), which
contradicts c(y*) {x}.

Now assume (s,x*) u/k < m/n, where 0 < u < k. Letting y*
(X*)(n-m)(x)(km-nu) e X(kn-nu), we get, as above, c(y*) (x}. Note that (s, y*)
[(n m)u -t- mk nu]/(nk nu) [m(k u)]/n(k u) m/n t. Since x S, and
x y V s, with y x, it follows from downward t-condorcet that y c(y*) contrary
to c(y*)= {x}. [:]
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a

FIG. 1.

We note that the preceding two theorems, as well as Theorem 3 in 5, can be
proved using weaker hypotheses. For example, the unanimity axiom can be replaced
by an axiom that requires a consensus rule c on X to satisfy c((x)) {x} for all
profiles (x) E X1, while the consistency axiom can be replaced by the following two
axioms:

(i) c((x*)) c(x*) for all profiles x* in X* and positive integers r. (This is called
weak consistency in Barth61emy and Janowitz [6].)

(ii) For all profiles x*, * where either z* or * is a constant profile, if c(x*) Cl
c(y* rg, then c(x*y* c(x* C c(y* ).

We finish this section by giving an example illustrating some of the above con-
cepts. First, let X be a poset and let x, y E X. Then y covers x if x _< y and x _< z < y
implies that x z. The covering graph of X is a graph G with vertex set X such that
xy is an edge if and only if either y covers x or x covers y. The lattice metric 0 on X
is the minimum-moves metric on G (see Barthlemy, Leclerc and Monjardet [7]).

Now let X be the poset depicted in Fig. 1. The set of join irreducibles of X is
S {a, b, d, e}. It is straightforward to verify that the median consensus rule on X
(with respect to the lattice metric) satisfies unanimity and consistency and is upward
1/2-condorcet with respect to (S, sup).

In the next section, however, we will show that there are posets (namely, finite
join semilattices that are not upper semimodular) where the median consensus rule is
not upward 1/2-condorcet. In fact, with enough structure on the poset X, we will be
able to characterize when the median consensus rule is upward 1/2-condorcet.

4. Semilattices. We now impose additional structure on the poset X. Recall
that X is a join (meet) semilattice if x V y (x A y) exists for all x, y X. Let sup()
inf(X) and inf() sup(X). Note that if X is a join semilattice but not a lattice,
then inf() exists but sup() does not exist. The reverse situation occurs when X
is a meet semilattice but not a lattice. The semilattice X is graded if there exists an
integer-valued function g on X such that y covers x implies that g(y) g(x) + 1. If
X has a least element 0 and g(0) 0, then g is called the height function of X.

4.1. Join semilattices. Let X be a finite join semilattice and S the set of all
join irreducibles of X. For any real number a, let [a]* denote the least integer strictly
greater than a. Define m* by m*(x*) sup(s S: k’(s,x*) >_ [k/2]*} sup(s S:
3’(s, x*) > 1/2}.

If X is not a lattice, then sup() does not exist, and thus m*(x*) does not exist
for all those profiles x* such that {s e S: k’(s,x*) >_ [k/2]*} . However, if X
is a lattice, then m* is a function from X* to X. In this case, there is an equivalent
expression for m* from Proposition 4.1 of [10]:

m*(x*) sup{ inf xi" W is a subset of {1 k} such that IW > [k/2]*}.
iEW

This consensus rule on X is called the majority consensus rule.
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COROLLARY 1. Let c be a consensus rule on a finite join semilattice X that sat-
isfies unanimity and consistency and is upward 1/2-condorcet with respect to (S, sup).
Then, .for any profile x* E X* such that m*(x*) exists, we have m* (x*) <_ y for all
e

Proof. This result follows immediately from Theorem 1.
Recall that X is upper semimodular if, for every x, y E X such that x A y exists,

if x covers x A y and y covers x A y, then x /y covers x and x /y covers y. For the
next result, we assume that X is a graded join semilattice and that rn is the median
consensus rule on X with respect to the lattice metric 0.

COROLLARY 2. The median consensus rule m on a finite join semilattice X is
upward 1/2-condorcet with respect to (S, sup) if and only if X is upper semimodular.

Proof. Suppose rn is upward 1/2-condorcet with respect to (S, sup). Then, since
m satisfies both consistency and unanimity, it follows from Corollary 1 that, for any
profile x* e X* such that m*(x*) exists, we have m*(x*) <_ y for all y e m(x*).
It follows from Theorem 4.4 in Leclerc [11] that the height function g is an upper
valuation, which in turn is equivalent to X being upper semimodular (see statements
(6) and (7)in Leclerc [11]).

Now suppose X is upper semimodular. Then, as mentioned above, the height
function g is an upper valuation. To show that m is upward 1/2-condorcet with
respect to (S, sup), let x* X*, x m(x*), and s E S be such that (s, x*) 1/2 and
x /s > x. Now apply Proposition 4.1 in [11] to observe that x /s m(x*). Hence, m
is upward 1/2-condorcet with respect to (S, sup).

We note that in [11], the domain of a consensus rule is Xk and not X*. Since
these two notions agree when a consensus rule is restricted to profiles of fixed length,
there is no problem in applying the results found in [11] to prove Corollary 2.

The problem of characterizing the median consensus rule for finite semimodular
lattices was also posed in Leclerc [10]. It follows from Corollary 2 that the median
consensus rule on a finite (upper) semimodular lattice satisfies unanimity and con-
sistency and is upward 1/2-condorcet. However, the converse is not true, as can be
seen by letting X be a finite lattice and c: X* -- P(X) \ {o} be the dual unanimity
function defined by c(x*) c(xl,..., xk) {sup{x1,..., xk }}. The complete solution
to this problem is still an interesting open problem.

4.2. Meet semilattices. The previous section can be easily dualized. For ex-
ample, the dual majority consensus rule (m*) on a finite lattice X is given by

(m*)’(x*)- inf(sup xi: W is a subset of (1,... ,k} such that IWI _> [k/2]*}.

If S is the set of all meet-irreducible elements of X, then

(m*)’(x*) inf(m e S’:k/’(m,x*) >_ [k/2]*}.

For the case when X is a meet semilattice but not a lattice, so that inf(O) does not
exist, (m*)’(x*) need not always exist.

For Corollary 3, we assume that X is a finite meet semilattice and S is the set of
all meet irreducible elements of X. For Corollary 4, we also assume that X is graded
and that m is the median consensus rule on X with respect to the lattice metric.

COROLLARY 3. Let c be a consensus rule on X that satisfies unanimity and con-
sistency and is downward 1/2-condorcet with respect to (S’,inf). Then, for any profile
x* e X* such that (m*)’(x*) exists, we have (m*)’(x*) >_ y for all y e c(x*).
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COROLLARY 4. The median consensus rule m is downward 1/2-condorcet with
respect to (S’, inf) if and only if X is lower semimodular.

A finite lattice X is modular if it is both upper and lower semimodular. For the
next result, we assume that X is a finite lattice.

COROLLARY 5. The median consensus rule rn is upward 1/2-condorcet with re-

spect to (S, sup) and is downward 1/2-condorcet with respect to (S’, inf) if and only if
X is modular.

4.3. Quota numbers and the mt consensus rule. Let t E [0, 1] and sup-
pose that X is a meet semilattice and S is the set of all join irreducibles having the
property that for each x* X*,at(x*) sup{s S’’(s,x*) > t} exists. Define
the consensus rule mt on X by mr(x*) {at(x*)} t2 {at(x*) V y y Sl V... V Sm,
with "(s,x*) t and y join compatible with at(x*)}. We can now contrast Corollary
5 with Proposition 20 in [6], which states that for a lattice X, ml/2 is consistent if and
only if X is distributive.

The quota number q(X) of the semilattice X is the infimum of the real numbers
t [0,1] such that at(x*) exists in X for each x* X*. It is clear that the quota
number always exists and that at(x*) exists in X for each x* X* if and only if
q(X) <_ t <_ 1.

In [6], it is shown that for a semilattice X, either q(X) 0 and X is a lattice
or else q(X) >_ 1/2. For further information on quota numbers, we refer the reader to
Bandelt and Meletiou [5] and Bandelt, Janowitz, and Meletiou [4]. The notion of the
quota number is crucial to the characterization of mr, but first we must add still more
structure on the poset X.

5. Distributive meet semilattices. A distributive meet semilattice X is a
meet semilattice such that every principal ideal is a distributive lattice. Bandelt,
Janowitz, and Meletiou [4] show that if X is a distributive meet semilattice, then
q(X) is rational. In the following, S is, as usual, the set of all join irreducibles of
the finite distributive meet semilattice X. Thus, since X is finite, we also have that
q(X) < .

5.1. A characterization of the mt consensus rule. We now give an example
to show that a characterization of the ms rule in terms of the axioms of unanimity
and t-condorcet must be restricted to values of t in (0, 1).

Example 1. Let X {0, a, b, 1} be the four-element Boolean algebra: a and b
are the noncomparable join irreducibles, 0 is the least element, and 1 is the greatest
element. Let c be a consensus rule on X. We assert that if c satisfies the unanimity
condition, then c is neither 0-condorcet nor 1-condorcet.

Proof. Assume that c is 0-condorcet. Since -(b, (a)) O, a e c((a)) if and only if
a V b- 1 c((a)), so that c does not satisfy unanimity. Now assume c is 1-condorcet.
Since -(a, (a)) 1, 0 e c((a)) if and only if 0 V a a e c((a)), and thus c does not
satisfy unanimity. D

The next result is an improvement of Theorem 26 in Barthlemy and Janowitz
[6]. We note that in their theorem, t is implicitly assumed to be rational and, given
Example 1 above, t needs to be in the open interval (0, 1).

THEOREM 3. Let X be a distributive meet semilattice, t [q(X), 1) be rational,
with t 0, and c be a consensus rule on X. Then c m if and only ifc satisfies
unanimity and consistency and is t-condorcet.

Proof. If c ms, then c satisfies the three conditions from Lemma 25 and Theo-
rem 26 in Barthlemy and Janowitz [6].
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Because of t-condorcet and the fact that every element is the join of join irre-
ducibles, we need only to show that for each s E S, x* E X*, and x c(x*):

(1) If (s, x*) > t, then s _< x.

(2) If -(s, x*) < t, then s _< x is not true.
Condition (1) follows directly from Theorem 1. For condition 2, assume s _< x and let
x sup{ti ti is a join irreducible and ti <_ tj if and only if j}. If x tj 0 /tj,
then, since tj 0, it follows from Theorem 2 that 7(ty, x*) _> t. Since s _< ty, we have
that -(s, x*) _> t. If x is not join irreducible, then by distributivity s _< ti for some i.
Now note that x y /ti for some y x, so by Theorem 2 it follows that 7(ti, x*) _> t,
and again (s, x*) _> t.

A distributive meet semilattice X whose quota number is either 0 or 1/2 is a
median semilattice. If X is a median semilattice, then the median consensus rule rn
on X is equal to ml/2. We will now apply Theorem 3 to this special case to obtain
one of our main results.

THEOREM 4. Let c be a consensus rule on the median semilattice X. Then c is the
median consensus rule with respect to the lattice metric if and only if c is consistent
and 1/2-condorcet and satisfies unanimity.

Theorem 4 improves Theorem 19 in [6]. Indeed, we have shown that the ax-
ioms of symmetry and stability are not necessary and that axioms of unanimity and
consistency can also be weakened (see the end of 3).

One of the interests in median semilattices lies in the fact that many posets arising
in applications in classification theory are so structured. For example, the set of all
n-trees of a finite set (a type of hierarchical classification) forms a median semilattice
under set inclusion. (An n-tree on S is a subset T of P(S) such that {x} T for all
x S, CT, S T, andANB E {,A,B} for allA, B T.) We state the next
result as an improvement to the main theorem in Barthlemy and McMorris [8].

COROLLARY 6. The median procedure for n-trees with respect to the symmetric
difference metric is the unique consensus rule that satisfies unanimity and consistency
and is 1/2-condorcet.

The axioms of unanimity, consistency, and 1/2-condorcet do not characterize
the median procedure with respect to the lattice metric for a nonmedian distributive
meet semilattice, as. Example 2 in the following section will show. The problem in this
general setting is that rn and rnl/2 are not equal. In fact, rn mt for any t [0, 1]. It
is possible, however, to view the mt consensus rule as a median procedure in its own
right with respect to a weighted lattice metric.

5.2. The mt consensus rule as a left median. Let X be a distributive meet
semilattice, so that the lattice metric on the covering graph of X is given by

O(x, y) h(x) + h(y) 2h(x A y),

where h is the height function. Now suppose t rn/n (0, 1) and weight the above
metric as follows:

Or(x, y) mh(x) + (n- m)h(y) nh(x A y).

If rn 1 and n 2, so that t 1/2, we see that Ot 0. If t 1/2, then Ot is not
symmetric and is thus not a metric.

Recall that an element of X is an atom if it covers the least element 0. Let S be
the set of all join irreducibles.
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LEMMA 2. Let X be a distributive meet semilattice such that every join irreducible
of X is an atom. Let x* (Xl,...,x) E X*,x X, and s S be such that s
is not less than or equal to x. If x is join compatible with s, then D(x V s, x*)
D(x,x*) + k(m- nT(s,x*)), where D(x,x*) EI O,(x,x).

Proof. Since s is a join irreducible and is also an atom, it follows from distribu-
tivity that x V s covers x. Thus h(x V s) h(x) + 1. From distributivity we get
that (x V s) A xi (x A xi) V (s A xi) for 1,...,k. Since s is an atom, either
s A xi s or s A xi 0. The first case occurs if and only if s _< xi. If s _< xi, then
h((x V s) A xi) h(x A xi) + 1. Otherwise h((x V s) A xi) h(x A xi). Therefore,

Ot(x V s, xi) mh(x V s) + (n m)h(x) nh((x V s) A xi)
Ot(x,x)+(m-n) ifs_<xi, or

Or(x, xi) + m if s _< x fails.

Thus we have D(x V s, x* k k-i--10t ,Xi)-- ))O (x v (x
D(x,x*) + k(m- n/(s,x*)). D

THEOREM 5. Let X be a distributive meet semilattice such that every join irre-
ducible ofZ is an atom. If t e [q(X), 1) is rational and t O, thenthe consensus rule
m on X is the left median consensus rule with respect to the function Or.

Proof. Let mL denote the left median consensus rule with respect to 0. By
Lemma 1, mL is consistent. Since O(x, y) 0 if and only if x y, it follows that mL
satisfies unanimity. Finally, using Lemma 2, it is easy to verify that mL is t-condorcet.
Hence, by Theorem 3, we get mL mr, and we are done. [3

We now give an important example to show that the restriction t [q(X), 1) is
crucial in Theorem 5.

Example 2. Let Y be a finite set with n elements. A weak hierarchy (Bandelt and
Dress [2]) on Y is a subset U of P(Y) such that A1 A. q A3 {AI N A2,Ai ;q A3,
A2 A3} for all A1,A2, A3 H. In addition, we require {y} H for all y Y, H,
and Y H, so that weak hierarchies are generalizations of n-trees. If H1 and H2
are two weak hierarchies on Y, then their intersection is also a weak hierarchy on Y.
Clearly, if W denotes the set of all weak hierarchies on Y, then W is a meet semilattice
that is partially ordered under set inclusion. Notice that the join irreducibles of W
are those weak hierarchies H that contain one and only one nontrivial cluster A, i.e.,
1 < IA[ < IYI. Moreover, W is a distributive meet semilattice with q(W) 2/3
(Bandelt, Janowitz, and Meletiou [4]).

Define a consensus rule c on the distributive meet semilattice W as follows:

c(x*) (H e W: D’(H, x*) is maximum

where D" W W* --. R is given by

D’(H,x*) Z
AH,I<[A]<n

IAl(2k(A, x* k).

Here, k is the length of the profile x* and the nontrivial cluster A is identified with
the join irreducible in W that contains A.

For this example we let Y {yl,y2,y3,y4, yh,y6, yT, ys} and t 1/2. We will
show that c satisfies unanimity and consistency and is 1/2-condorcet but is not the
left median consensus rule.

CLAIM 1. c satisfies unanimity.
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Proof. Let x* (H,...,H) E Wk and note that for each A E H we have
7(A,x*) 1, so that D’(H,x*) AEH,I<IAI<nklAI. Observe that for any A
H,D’(H,x*) > D’(H-{A},x*). Moreover, if B H, then "(B,x*) 0. If HU{B}
W, then D’(H,x*) > D’(H U {B},x*). Therefore, c(x*)= {H}.

CLAIM 2. C i8 1/2-condorcet.
Proof. Let x* (H1,..., Hk) Wk and suppose H t2 {A} W, where H E W

and /(A, x*) 1/2. Now D’(H,x*) D’(HU{A},x*), so that H e c(x*) if and only
if H t_J {A} e c(x*).

CLAIM 3. c i8 consistent.

Proof. Let x* W1 y* Wk2, and A be a subset of Y. Suppose (A, x*) ul/kl
and ,(A, y*) u2/k2. Then (A, x’y*) (Ul -u2)/(kl Tk2), and so IAI(2klT(A, x*)-
kl) + IAI(2k:(A,y*)- k2) IAl[2(kl + k2)’(A,x*y*)- (kl + k2)]. It follows that
D’(H,x*) + D’(H,y*) D’(H,x*y*) for all H e W.

Now suppose c(x* c(y* . If H e c(x* N c(y* ), then D’(H, x*) and D’
(H, y*) are both maximal. Therefore, D’(H, x*)/D’(H, y*) is maximal and hence g
c(x*y*). Conversely, if H’ c(x*)Nc(y*), then D’(H’,x*)+D’(g’,y*) < D’(H,x*)+
D’(H, y*). Therefore, H’ c(x*y* ).

CLAIM 4. C i8 not the left median consensus rule.
Proof. Since t 1/2, it follows that mL mR m, so we need only show

that c m. Let x* (H1, H2, H3), where H1 has {yl, y2, y3, y4, yh, yc}, {yl, yT},
and {yl, yT, y8} as its nontrivial clusters, where H2 has {yl, y2, y3, ya, y5, yc}, {yc, yT},
and {yc, yT, y8} as its nontrivial clusters, and where H3 has {yl, yT}, {yl, yT, ys},
{yc, yT}, and {yc, yT, y8} as its nontrivial clusters. Then m(x*) {H3}, while c(x*)
{H1,H2}.

5.3. Conclusions. In this paper, we looked at the axioms of unanimity, consis-
tency, and t-condorcet for consensus rules defined on finite partially ordered sets. If
the poset has the structure of a median semilattice and t 1/2, then these axioms
characterize the median consensus rule. On a nonmedian, distributive meet semilattice
whose quota number is less than or equal to t (so t > 1/2), these axioms characterize
the mt consensus rule. If, in addition, each join irreducible is an atom, then mt is the
left median consensus rule with respect to the function Or. A natural example of this
situation is the rule m2/3 on the semilattice W [13]. If the quota number is greater
than t, then these axioms, in general, do not determine a unique consensus rule.

Note added in proof. Henry Martyn Mulder has found an example show-
ing that the t-condorcet condition needs to be modified for Theorems 19 and 26 of
Barthlemy and Janowitz [6] to be true. However, we can show that everything is
valid under the assumption that all join irreducibles are atoms. Thus this condition
should be imposed on the hypotheses of our Theorems 3 and 4. All other results stand
as stated.
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SYMMETRIC MATRICES REPRESENTABLE BY WEIGHTED
TREES OVER A CANCELLATIVE ABELIAN MONOID *

HANS-JORGEN BANDELT AND MICHAEL ANTHONY STEEL:

Abstract. The classical result that characterizes metrics induced by paths in a labeled tree
having positive real edge weights is generalized to allow the edge weights to take values in any
cancellative abelian monoid satisfying the additional requirement that x + x y + y implies x y.
This includes the case of arbitrary real-valued edge weights, which applies to distance-hereditary
graphs, thus yielding (unique) weighted tree representations for the latter.

Key words, trees, 4-point condition, abelian monoid, distance-hereditary graph
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Introduction. Given a tree, suppose that some of its vertices are labeled by sets
which form a partition of (1,..., n}, while its edges are weighted by some positive
real numbers. Then let dij denote the sum of the weights of all the edges on the path
connecting the vertices with i and j in their label sets. This results in a symmetric,
n x n matrix d [dij], with zero diagonal, satisfying the 4-point condition,

dij / dk <_ max(dik / dj, di / djk }
for all i, j, k, from (1,..., n}. The converse, that this condition guarantees tree re-
alizability, is also true (see, for example, Buneman [4]) and constitutes a well-known
result used widely in taxonomy; cf. [1], [3] for pertinent references.

Furthermore, the weighted-tree representation for d is necessarily unique--
provided that no redundant vertices are used, i.e., all vertices of degree less than
3 must be labeled. This mere uniqueness result of the representation also holds when
arbitrary nonzero real weights are attached to the edges. This has recently been
established by Hendy [6] using a novel technique based on Hadamard matrix trans-
formations that also allows the recovery of the weighted tree, though in exponential
time. Observe that a tree weighted with possibly negative reals still satisfies a relaxed
4-point condition, viz., at least two of the three distance sums are equal (and not
necessarily the two larger ones). Our main result below will show that this condition
characterizes tree realizability over R. Interestingly, the distance matrix d of a graph
G (unweighted, undirected) satisfies this relaxed 4-point condition exactly when G is
a distance-hereditary graph, see [2]. Thus, we get a canonical tree representation for
such graphs without extra effort.

The proof of the main theorem is inductive and can easily be adapted to con-
struct the unique tree realization for d in polynomial time. Furthermore, our proof
clarifies the respective roles played by the inequality and equality aspects of the clas-
sical 4-point condition (described above) in generating a tree representationmnamely,
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previous proofs have exploited the inequality part in the construction of the tree; in
fact, the equality part alone guarantees the existence and uniqueness of a tree repre-
sentation with real edge weights, whereas the inequality part merely constrains the
resulting edge weights to be positive. Also, in the classical situation, our proof can be
further simplified, because in that case a certain complication cannot arise.

In order to cover both the classical case of tree metrics as well as the preceding
one, we let the edge weights come from any submonoid of an abelian group without
elements of order 2. Specifically, let A be an abelian monoid satisfying the following
two conditions: for (, , , E A,

implies

implies
(cancellation),
(uniqueness of halves).

For + we also write 2a, and in case a + 0 is solvable, we write
Canonical choices for A are A R,A R+,A 1/2.Z, or A 1/2N, under addition.
The latter two choices are relevant when graphs are studied. One could, of course,
also let A Zm (integers modulo m), where m >_ 3 is odd.

For a tree whose vertices are labeled as before and whose edges are weighted
from A, the induced matrix d has the property that any four numbers, not necessarily
distinct, chosen from 1,..., n can be ordered as, say, i, j, k, l, so that

dij T dkl + 2 dik - djl dil + dkj for some E A.

We call this property the 4-point condition with respect to the monoid A. In case
A R+ j (0} (the nonnegative reals under addition), the 4-point condition with
respect to A is nothing but the classical 4-point condition, which says that two of the
three distance sums are equal and at least as large as the third. In case we choose
A R, the condition simply requires that two. of the distance sums are equal.

As in the classical case, we wish to realize a matrix over A satisfying the 4-
point condition by a unique edge-weighted, labeled tree. We then require that A is
cancellative and that half-elements are unique, and, in order to guarantee uniqueness,
we must also insist that the tree has no unlabeled vertices of degree less than 3 and
no zero edge weights.

THEOREM 1. Let d be a symmetric, zero-diagonal, n n matrix with entries
in a cancellative abelian monoid A that has uniqueness of halves. Then d satisfies
the 4-point condition with respect to A if and only if there exists a tree T that has
no unlabeled vertices of degree less than 3 and that possesses a unique weighting of its
edges by nonzero elements ofA that realizes d. In this case, such a tree T is necessarily
unique.

Notice that both the cancellation and uniqueness of halves properties are essential
hypotheses in Theorem 1. For instance, suppose that c / ( + holds in A for
some : . Then the two trees with three edges weighted , (, and c, , , respec-
tively, yield the same matrix (of size 3). Similarly if 2c 2f but c , then those two
trees, now having edge weights , , and , fl, , respectively, give a common matrix.
Even if we are willing to allow nonuniqueness of tree representations, the cancellation
property alone is not sufficient to guarantee the existence of a tree representation for
a matrix d satisfying the 4-point condition. The following proposition characterizes
the extra condition required to guarantee the existence of tree realizations. For the
sake of simplicity, we confine ourselves to abelian groups.
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PROPOSITION 1. Let A be an abelian group.
(1). A is Boolean (i. e., every nonzero element has order 2) if and only if every

symmetric, zero-diagonal matrix d over A that satisfies the 4-point condition with
respect to A can be realized on every tree .for which dij 0 whenever i, j are in the
same label set.

(2) A has no elements of order 4 if and only if every such matrix d has a realization
on at least one tree, with its edges weighted by elements of A.

Note that in any tree realizations we consider (such as in the proofs), there is no
loss of generality in assuming that all label sets are singletons, since we can restrict
the domain of d to ensure this, and extend the resulting tree realization to one for d.
Furthermore, with A as in Theorem 1, the extension is unique by the 4-point condition
with respect to A.

Proof of Theorem 1. The "if" direction is clear. For the converse directioa, we
proceed by induction on the size of the matrix d, that is, the number of labels n. In
the tree representations that follow, it is implicit that if an edge weight (described by
some condition) is zero, then one collapses this edge, and the (possibly empty) sets of
labels on the two ends of the edge are combined. For brevity, we sometimes speak of
"vertex i" whenever that vertex is labeled by i.

For n 2, there is nothing to show; if d12 0, one must simply assign the weight
d12 to an edge whose ends are labeled 1 and 2.

For n 3, consider the bush (i.e., a tree with no interior edges) having three
leaves, labeled 1, 2, 3, each adjacent to a fourth, central vertex. Assign weights, , E A to the edges of this tree incident with 1, 2, 3, respectively. Then

d23 T 2( dll / d23 - 2a d12 T d13
by virtue of the 4-point condition. Since A is cancellative and half-elements are unique
(whenever they exist), this equation has a unique solution for . Similarly, we describe
and - uniquely. Then, for instance,

d23 - 2 / 2 d12 T d13 T 2 2d12 T d23,
from which we get 2(+) 2c+2 2d12 (by cancellation) and hence /f d12,
as desired. This settles the case n 3.

As for n 4, consider the generic binary tree consisting of four leaves, labeled
1,..., 4, with their incident edges weighted ,..., (4, respectively, together with a
fifth edge, weighted , which connects the path between 1 and 2 with that between
3 and 4. Thus for this tree, d13 T d24 d4 / d23. We claim that the i and are
uniquely defined. Indeed, applying the 4-point condition to 3-subsets, we obtain (cf.,
the case n 3)

di-l#+l / 2(i di-l,i -t- di,i+l,
where indices are taken modulo 4. This defines ai uniquely. Moreover, the equation

d12 / d3a -t- 2 d13 / d2a
yields a unique for this labeled tree. Now,

d3 T d24 -2 + 2c2 d13 T d12 - dla + 2c2 2d12 T dla + d23,

from which we obtain c1 / 2 d12. Similarly, we obtain O3 "- O4 d34. In order to
recover the distance da, we compute

d13 / d2a / 2(1 / 2 / 2ca d2 / dla / d3 / 2a / 2
d2 + d3a + 2 / 2dla
d13 -{-d24 T 2dla,
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yielding 1 -{- / 4 d14. A similar result holds for d13, d23, d24. In case 0, we
obtain a bush. Notice that, by the cancellation and uniqueness of halves properties,
as long as 0, no other labeling of the tree is consistent with the given matrix d.
This proves the case n 4.

Henceforth, let n

_
5. Assume that every submatrix of d of size n- 1 has a unique

tree realization of the type claimed. Suppose first that for all distinct i, j, k, l, all three
distance sums are equal. Then the lengths ci and i of the edges incident with leaf
in the bushes connecting the triples i, j, k and i, j, l, respectively, satisfy

djt: + 2oi dij + dik and dij + dil djl + 2.

Applying the hypothesized equality of distance sums and the properties of A to the
sum of the preceding equations, we infer i i. This argument shows that the
subbushes for all triples fit together consistently into a bush, and uniqueness of the
weighted-tree representation follows as well.

So, assume that there exist two distinct sums; without loss of generality,

d14 - d23 d12 - d3a but d13 + d2a d12 T d3a.

Now consider the unique tree representations T, T2, and T,2 of d restricted to (2, 3,
n), (1, 3, 4,..., n}, and (3, 4,..., n}, respectively. Then T1,2 is obtained from ei-

ther tree T1 or T2 by deleting the labels 2 and 1, respectively, and "cleaning up" the
resulting label-deleted trees. For example if E (1, 2} labels a vertex v of degree at
least three, we simply unlabel v. Otherwise, we delete v, and if v had degree one, we
delete its incident edge, and if the other end of this edge v has degree 2, we delete
v’. In this last case or if v had degree 2, we then identify the two edges el and e2
incident with v’, respectively, v, to give a new edge e. This edge is weighted by the
sum of the weights of el and e2, unless this sum is zero, in which case e is contracted.
Note that this contraction cannot occur in the classical situation. In order to recover

T1 or T2 from T,2 we mark the edge or vertex of T,2 where the vertex labeled 1
or 2, respectively, is attached by a branch. A parent tree T for T1 and T is then
obtained from T12 by reversing both of the processes that transformed T1 and T2 into
T12. However, we must show that this process and the corresponding edge weighting
are well defined and unique when both marks (points of attachment of the 1-branch
and the 2-branch) are either

(i) distinct but located in the interior of one and the same edge of T1,2, or

(ii) coincident and located on a vertex.
In case (i), denote the end vertices of this edge by a and b. The vertices 3 and 4 belong
to different components of T,2 minus the edge connecting a and b. Otherwise, say, if
a is on paths from 3 and 4 to i in Ti for 1, 2, then either distance sum d13 + d24 or
d4 q- 423 would equal the sum of the edge weights along the paths from a to 3 and a
to 4 in T1,2, a to 2 in T, and a to 1 in T2. This, however, conflicts with the hypothesis
on the quartet 1, 2, 3, 4. Thus we may, without loss of generality, assume that either
a is 3 or a lies between 3 and 1. In either case, subdivide the edge between a and
b by two vertices c and c2, with Cl being between a and c2, so that ci becomes the
point of attachment of the/-branch (i 1, 2). We must distinguish the four possible
subcases:

(a3, b4), (a--3, b4), (a3, b--4), and (a-3, b--4).
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(a)

(b) =

FIG. 1. The first two subcases of case (i) in the proof of Theorem 1.

For instance, the first two subcases are depicted in Fig. 1 (a) and (b), respectively.
We will consider in detail only these two subcases--the treatment of the other two is
similar.

Let e be the unique element of A with

d13 -k d24 q- 2 d14 q- d23.

Furthermore, there exist vertices labeled by j (= 3 in subcase (b), and different from
3 in subcase (a)) and k 4 such that the paths from j to 3 and k to 4 hit the edge
between a and b only in a and b, respectively, and such that the following equalities
hold:

(+) di4 q- d3j q- 2i dia + d4j (i 1, 2)

and

(++) dia + d4k at- 2 di4 q- dak (i 1, 2).

Now, adding up (*) and (+) for i= 1 yields

d24 + daj + 2({ + e) d2a + d4j.

Compared to equality (+) for 2, this implies

by the properties of the monoid A. Similarly, (++) for 1 compares to the sum of
(*) and (++) for i= 2, thus yielding

Therefore,

is the weight of the edge between a and b (in T1,2).
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FIG. 2. Case (ii) giving rise to compatible splits.

(a) (b)
FIG. 3. Case (ii) giving rise to incompatible splits.

In case (ii) a problem may arise (though only in the nonclassical situation). Either
expanded edge defines a split (i.e., a partition with two blocks) of (1,..., n). If the
splits are compatible--that is, one is (I, g U K} and the other is (I tJ J, K}--then
we can still merge T1 and T2 uniquely into a single tree by the tree shown in Fig. 2,
with the necessary +, +/- E A. However, the question remains of how to proceed if
the splits were not compatible, that is, if for some i, j, k, in (3, 4,..., n}, T1 and T2
contained respectively the subtrees in Fig. 3 (a) and (b).

We claim that this situation cannot arise because it is in conflict with the rela-
tion between the distance sums for the quartets (1, 2, i, j), (1, 2, k, l}, (1, 2, i, 1), and
(1, 2, j, k}. The three distance sums for each of these quartets are, respectively,

d2 + a +
d12 -F ")’ + ,
d2 + c + ,
d2 +/3 +

Equality of the last two sums in row 1 or row 2 would give 2 0--that is, 0-
contrary to the hypothesis. Therefore, using cancellation, we infer that d2 + el +
2, with

Since 0 or (" 0 is impossible, we obtain either or -, whence

d12 1 + 2 in either case, and thus any equality in row 3 gives . From the
fourth row, we deduce, however, that -. This final contradiction completes the
argument.

We conclude that T1 and T. can indeed be combined to a unique tree T, in which
all distances except possibly d12 are correctly represented. As for d12, recall that
did q-d23 d12 q-d34. Since dl4, d23, and d34 have the correct values on T, so does d12
(by applying cancellation).

This completes the induction step and thus the proof.
Proof of Proposition 1. We may assume, without loss of generality, that the trees

in question have all their leaves labeled. First we verify assertion (1). Suppose is an
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element of A such that 2s 0. Then let n 4 and consider the matrix d for which
dij 0 if + j is even and dij s otherwise. This matrix has no realization on the
tree with four leaves, for which the path joining leaves 1 and 2 is disjoint from the
path joining leaves 3 and 4; cf. the case n 4 in the proof of Theorem 1.

Conversely, assume that A is Boolean. Consider the bush S with leaves labeled
1,..., n. Given any fixed k, assign weight dik to the edge incident with leaf i (i
1,..., n). Since 2 0 for all E A, we infer the equality dij dt + djk from
the 4-point condition, so d is realized by S with this weighting. Now every tree T
that contains vertices labeled 1,..., n can be obtained from a subdivision To of S by
successively applying the following "edge swap" operation: given the tree Tk, so far
constructed, realizing d, assume that some vertex x of Tk is connected to two vertices
y and z by edges weighted a and/, respectively. Then remove the edge between x and
z and create a new edge of weight a +/3 connecting y and z instead. The resulting
tree Tk+l induces d as well. Eventually, we arrive at a subdivision Tm of T. Finally,
contract all edges incident with unlabeled vertices of degree 2, which are not in T, and
thereby add up the weights; this yields T.

As to (2), suppose A is an abelian group that contains an element of order 4.
Define a 5 5 matrix d with entries in A by setting dij 2 precisely if {i, j}
{2, 4}, {2, 3}, or { 1, 4} and setting dij 0 otherwise. Then d satisfies the 4-point
condition with respect to A. However, d has no tree representation with an edge
weighting from A. This can be seen by restricting d to the sets { 1, 2, 3, 4}, { 1, 3, 4, 5},
and { 1, 2, 3, 5}. Specifically, for { 1, 2, 3, 4},

d13 + d24 d14 + d23 d2 + d34,

and so, for any tree representation of d restricted to {1, 2, 3, 4}, the path joining the
vertices labeled 1 and 3 must be disjoint from the path joining the vertices labeled 2
and 4. Similarly, by considering { 1, 3, 4, 5} and { 1, 2, 3, 5}, we require that the path
joining 3 and 5 is disjoint from the one joining 1 and 4 and that the path joining 1
and 5 is disjoint from the one joining 2 and 3, respectively. Clearly, however, these
three constraints cannot be realized on a single tree, as claimed.

Conversely, suppose A has no element of order 4. Let A0 denote the subgroup of
A generated by the entries in d, together with one solution for the subsets {i, j, k, l}
of size at least 3 of the equation required of d by the 4-point condition for i, j, k, l.
Since A0 is finitely generated and has no element of order 4, the structure theorem for
finitely generated abelian groups implies that there is an isomorphism : A0 - F A,
where F has no elements of order 2 and A is a Boolean group. Let dr and da denote
the projections of (d) onto F and A, respectively. Then dr satisfies the 4-point
condition according to F, and so, applying the previous theorem, there is a tree T and
a weighting of its edges by nonzero elements of F that realizes dr. We now "expand"
T to allow for a tree representation for dA. Specifically, for each vertex v of T that is
assigned a set S of s > 1 labels, make v adjacent to s new leaves and assign each such
leaf a unique label from S, thereby obtaining a tree T having only singleton labels.
Extend the previous edge weighting by F of T to T by assigning weight 0 E F to the
new edges. Since dA satisfies the 4-point condition with respect to A, part (1) shows
that there is a weighting of the edges of T by elements of A that realizes dA. Now,
for each edge e of T let

where -(e) F and 5(e) A are the weights that were previously assigned to e by
considering dr and dA, respectively. Then A(e) A0, and the weighting of the edges
of T described by A realizes d. This completes the proof.
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k>l k>l ; :

FIG. 4. Configurations excluded by the 4-point condition with respect to It.

Distance-hereditary graphs. Let G be an unweighted, undirected, connected
graph with vertices numbered 1 through n. The shortest-path metric d of G (which
counts the edges in the shortest path connecting pairs of vertices in G) then takes
values among 0, 1,..., n- 1. There are several options for the abelian monoid A with
respect to which the 4-point condition can be considered. If we take A N, then

1N thed satisfies this condition if and only if G is an unweighted tree. For A
corresponding 4-point condition characterizes block graphs (graphs in which every

zmaximal 2-connected subgraph (block) is complete); see Howorka [7]. The case h
is more interesting, since it leads to a netric description of distance-hereditary graphs;
see Bandelt and Mulder [2]. G is said to be distance-hereditary if every induced path
(or subgraph) is isometric, that is, constitutes a subspace with respect to the metric
d. Actually, we may compute distance modulo 2k + 1 for any k >_ 1 and arrive at the
same class of graphs.

PROPOSITION 2. A graph is distance-hereditary if and only if its shortest-path
metric d satisfies the 4-point condition with respect to an abelian monoid A, where A

R) or Zm for m >_ 3 odd. Furthermore, G is bipartitemay be chosen as A Z (or
and distance-hereditary if and only if its metric d satisfies the 4-point condition with
respect to A Z.

In view of Theorem 1, we can thus uniquely code a distance-hereditary graph
lZ, where the vertices of the tree with degree smallerG by a weighted tree over

than three are labeled by the vertices of G. An immediate consequence of this is
the following result (known to several people by now)" the isomorphism problem
for distance-hereditary graphs is easy. Indeed, two distance-hereditary graphs are
isomorphic if and only if their associated weighted trees are isomorphic. For general
graphs, by contrast, determining the complexity of the isomorphism question is a
difficult and still unsolved problem [5]. Furthermore, the automorphism group of a
distance-hereditary graph is isomorphic to that of a tree.

Proof of Proposition 2. According to [2, Thm. 2], G is distance-hereditary if and
only if d satisfies the 4-point condition with respect to R, so we only have to adjust for
the expression of the distances modulo m. Assume that G is not distance-hereditary.
Then there exists an isometric subgraph of the form shown in Fig. 4 possessing a cycle
of length 2k + 3 or 2k + 4 (k _> 1) with two (or one) possible chords as indicated
by the dotted lines. The four shaded vertices in either cycle yield distance sums
k + 1, k + 2, k + 3 and k + 1, k + 3, k + 5, respectively. In either case these are all
different provided m is not 2 or 4.

Evidently, G is bipartite if and only if each distance sum

dij - djk + dki
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is even. This is precisely the case when d satisfies the instances, for which #(i, j, k, l)
3, of the 4-point condition with respect to A Z. Thence the result.
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CORRELATION OF BOOLEAN FUNCTIONS AND
PATHOLOGY IN RECURSION TREES *

INGO ALTH(FER AND IMRE LEADERS

Abstract. A Boolean function f {0,1} {0,1} is called trivial if it depends on only one
coordinate. We show that nontrivial Boolean functions of positively correlated random variables are
strictly less correlated than the variables themselves. This improves on a correlation inequality of
Witsenhausen.

Over the last decade, several people in computer science and computer chess have investigated
the problem of quality and reliability in game-tree searching, where the heuristic evaluation function
is not free of errors. In random models with independent leaf values and independently occuring
errors, a phenomenon of pathology was observed: the deeper the search in the tree, the worse the
final estimate of the root value. The main result of this note implies that pathology is not only
a feature of game trees, but appears in any sequence of increasing bivalued recursion trees with
independent leaf values, independently occuring errors, and nontrivial recursion rules.

Key words, tree search, reliable computing, correlation inequalities, game trees

AMS subject classifications. 68M15, 68T20, 60E15, 90D35

1. Introduction. Let X (X1,..., Xn) and Y (Y1,..., Yn) be two sequences
of random variables, where each pair (Xi, 1) is independent of the others. Witsen-
hausen [Wit] derived a lower bound for the probability of disagreement among any
pair of two-valued functions f(X) and g(Y), depending on the maximum correlation
max1<i<n cor(Xi,) but not on the value of n itself.

Our aim in this note is to prove some strict correlation inequalities for such
Boolean functions of random variables. We start with some notation. Let X1,..., Xn
and YI,...,Yn be random variables with values in {0,1}, and assume that for all
i E {1,..., n} the following statements hold:

(i) for each i, the dependent pair (X, Y) is independent of {(Xj, Yj)IJ t i};
(ii) erob{X 1} Prob{Y 1} p;
(iii) Xi and Y are nonnegatively correlated, i.e., there is some i, 0 < i < 1, such

that
Prob{Xi 0, ] 1} Prob{Xi 1, 0} eipi(1 pi).

In information theory such a sequence of pairs of dependent random variables is called
a correlated source. See, for instance, [CK] as a reference.

Let p Prob{f(X1,...,Xn) 1} Prob{f(Y1,...,Y) 1} and put e
minl<<n e. Call a function f {0, 1} -, {0, 1} trivial if it depends on only one
coordinate. Our main result is as follows.

THEOREM 1. Let X1,..., Xn, Y1,..., Yn be as above and f {0, 1}n __. {0, 1}.
Then

(i) Prob{f(Zl,... ,Xn) 0, f(Y,..., Yn) 1} _> ep(1 p),
and
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(ii) if f is nontrivial, 0 < e < 1, and 0 < pi < 1 for all i E (1,..., n}, then strict
inequality holds above.
In particular, if all the ei are equal then part (ii) of Theorem 1 states that f(X) and
f(Y) are strictly less correlated than each pair (Xi, Y/).

We remark that Theorem l(i) follows from a result in [Wit]. Indeed, Theorems
l(i) and 2 in 2 and Theorem 7(i) in 4 follow from Theorems 1 and 2 and Corollary
(29) of [Wit]. However, for the application to recursion trees, part (ii) of our Theorem
1 is the crucial point, and this cannot be proved by the geometric technique of [Wit].

Section 2 contains the proof of Theorem 1 and is rather technical. In 3, we
apply Theorem 1 to random game trees and other recursion trees. A probabilistic
generalization of Theorem 1 is given in 4. Section 5 consists of concluding remarks.

2. The proof of Theorem 1. We start by reformulating the problem in terms
of set systems in (0,1}n. Let A f-l(O) {a e {O, 1}nlf(a) 0} and Ac

(0, 1}n -A f-l(1). We have

Prob{f(X1,... ,X,) O, f(Y, Yn) 1}
Prob{(Xl,..., Xn) a, (Y1,... Yn) b)

aEA bEA
n

YIPrb{X, b,},
aEA bA i=1

where a- (al,..., an) and b-- (bl,..., bn).
Thus, letting

n

gA’-- Z H ei(a’b)’
aA bA i=1

where

eipi(1
ei(a, b) Prob{Xi hi, Y bi) pi eipi(1

1 pi eipi(1 pi)

part (i) of Theorem 1 claims precisely that

if ai bi,
if ai bi 1,
if ai bi 0,

gA >_ ep(1 p).

It seems hard to prove this result directly. Instead, we shall generalize this state-
ment to a stronger statement in such a way that this stronger statement can be proved
by induction on n. We shall consider a function of a pair A, B of set systems, rather
than just one set system A.

For A, B c {0, 1}n, define

n

gA,B(El,...,n)’-- Z Hei(a’b)"
aA bEB i--1

Note that, for any set A c {0, 1}n, we have

(2.1) gA gA,A(I,... ,gn).
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For convenience, we write gA,B for gA,B(el,...,en) and xi for eipi(1- pi). For a

(al,..., an) e {0, 1}n, define the weight of a to be

w(a) H qi(a), where qi(a) pi if ai 1,
1 -pi if ai O,

i----1

and for A C (0, 1)n, set wA aeA w(a).
Our more general result is the following theorem.
THEOREM 2. Let A, B C (0, 1. Then

gn,B + gB,A >_ e[WA(1 WA) + WB(1 WB)] + (WA WB)2 where e
l<i(n

The quadratic term (WA -WB)2 will be necessary to control some ofthe terms arising
in the induction step. We remark that there seems to be no simple lower bound on
the function gA,B alone, rather than gA,B q- gB,A.

Proof of Theorem 1(i) from Theorem 2. Use Theorem 2 with A B f-l(0).
Then WA WB 1--p, (WA --WB)2 0, and by (2.1) we have Prob{f(X1,... ,Xn)
O, f(Y, Y) 1} >_ eWA(1 WA).

Proof of Theorem 2. We proceed by induction on n. We start with the case n 0.
Case n 0. The assertion of Theorem 2 is symmetric in A and B, and I{0, 1}

1. Thus, we have to check three different cases, namely IAI--IBI 0, IAI--IBI 1,
and IAI IBI. In all these cases, the assertion of Theorem 2 holds with equality for

0 (a, b) 1 for all a E A, b E Be.)all e e ]R. (Hi--1 ei

Induction step. Let

Ao {a (al,...,an-1) e {O, 1}n-ll(al,...,an-l,O e A},
AI {a= (al,...,an-l) {O, 1}n-ll(al,...,an-l,1 A},
B0 {b= (bl,...,bn-1) e {0, l}-ll(b,...,b-,0 e B},
S {b= (bl,...,b,_)e {0, 1}-ll(b,...,bn-1, 1 e B}.

Then A0, A, B0, B1 C {0, 1}n-1. Note that

(2.2) IOA (1 p,)WAo + P,WA1, WB (1 pn)WBo nt- pnWB1.

Moreover,

gA,B (1 --Pn Xn)gAo,Bo + (Pn Xn)gA1,B1 + Xn[gAo,B1 "37 gA1,Bo].

Thus

(2.3)
gA,B + gB,A (1 --p, X,)[gAo,Bo + gBo,Ao]

+ (Pn Xn)[gA1,B q- gB,AI] q- Xn[gAo,B "1 gA,Bo -t- gBo,A -b gBi,Ao].

The following transformations are lengthy, but not difficult.
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By the induction hypothesis

(2.3) _> (1 Pn Xn)[[WAo(1 WAo) q- WBo(1 WBo)] + (WAo WBo)2]
+ (p, Xn)[[Wnl (1 WA1) "]- WB1 (1 WB1)] q-- (WA1 WB1)2]

[ [WAo(I--WAo)ff-WBI(I--WB1)]q-(WAo--WBI)2 ]+ Xn
..j_ [WA (1 WA1 -J- WBo (1 WBo)] + (WA WB0 )2

(1 Pn)[o(1 o) + Wo(1 ’o)]
+ Pn[ (1 ) + (1 )]
+ (1 --Pn Xn)(o o)
+ (Pn Xn)(l )
+X(o )+X( o)"

On the other hand, by (2.2) we have

(2.6)

[WA(1 WA) + WB(1 WB)] + (WA wB)

[ [(l pn)WAo + pnWA] [i (1-- pn)WAo pnWnl] ]e + [(1 pn)Wgo q- pnWB1 [1 (1 pn)Wgo pnWB1]

+ [(1 P,)WAo + PtWn (1 P,)WBo pWB]2.

It is sufficient to prove (2.5) _> (2.6). Now, (2.5) is linear in x, and so it is sufficient to
prove this in the boundary cases e e and n 1. For clarity, we split the argument
up into a few cases.

Case. n --. Here we have

(.7)

(2.5)---(1--pn)[’’’]q-pn[’’’]
+ (1 Pn pn(1 Pn))(WAo WBo)2

"- (Pn pn(1 Pn))(WA1 WB1)2

q- pn(1 pn)[(WA0 WB1)2 - (WA WBo)2].

Again, (2.7) and (2.6) are linear in , so it is sufficient to prove (2.7) >_ (2.6) in the
boundary cases 0 and 1.

Subcase O.

(2.7) (1 Pn)(WAo WBo)2 -- pn(WA1 WB1)2,
(2.6) [(1 Pn)(WAo WBo) + pn(WA WB)]2.

Hence (2.7) >_ (2.6) by the convexity of the function x2.
Subcase 1. It is easy to check that in this case we have (2.7) (2.6).
Case 1. Here we have

(2.5)--(.1--pn)[’"]q-pn[’"]
+ (1 p)2(WAo WBo )2
+p(WA1 WB )2
+ pn(1 Pn)[(WAo WBI)2 t_ (WAI WBo)2].

Since (2.8) and (2.6) are both linear in , it is sufficient to prove (2.8) >_ (2.6) in the
boundary cases 0 and 1.
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Subcase O.

Thus it remains to show that

(WA0 WB1)2 "Jr- (WA WBo)2

_
2(WAo WBo)(Wn WB1),

However, this is equivalent to

(WAo WA )2 + (WBo WB )2 O.

Subcase e 1. This subcase is identical to the earlier case when s s and e 1.
This completes the proof of Theorem 2. 73

We now turn to a proof of the second part of Theorem 1. This is also proved by
induction on n.

For 1 _< _< n, let us write

Ao(i) for

{(al,...,ai-l,ai+l,...,an) e {O, 1}n-ll(al,...,ai-l,0, ai+l,...,an e A}

and analogously

A (i) for

{(al,...,ai-l,ai+l,...,an) e {O, 1}n-ll(al,...,ai-l,l, ai+l,...,an) e A}.

Thus in the proof of Theorem 2 our A0 and A1 were just Ao(n) and Al(n).
We start with a simple fact about nontrivial sets in {0, 1}, for n _> 3.
LEMMA 3. Let n >_ 3, and let A c {0, 1}n be nontrivial. Then there is some

i, 1 <_ i <_ n such that Ao(i) or A1 (i) is noutrivial.

Proof. The proof is straightforward. D
The next lemma proves Theorem l(ii) for the case n 2.
LEMMA 4. Let A C (0, 1, with A nontrivial, and suppose that 0 < pl < 1, 0 <

P2 ( 1, 0 < < 1, and <_ , 2. Then

gA,A > eWA(1 WA).

Proof. There are only two different types of nontrivial sets in {0, 1}2. For each,
the result is easy to check. D

Proof of Theorem l(ii). We proceed by induction on n. For n _< 1, all subsets of
{0, 1} are trivial. By Lemma 4, the result holds for n- 2.

Induction step. In the proof of Theorem 2, we divided .the sets A and B into
Ao, A1 and B0, B1 according to coordinate n. However, we could equally well have
chosen to split A and B according to another coordinate, say i. By Lemma 3, we can
choose such that at least one of the sets Ao(i) and Al(i) is nontrivial. Since both
1 -pi xi and pi xi are strictly positive, we have by the induction hypothesis

(1 pi xi)(gAo(i),Ao(i) + gAo(i),Ao(i)) + (Pi Xi)(gAl(i),Al(i) + gAl(i),Al(i))
> 2(1 pi xi)SWAo(i)(1 WAo(i)) + 2(pi Xi)eWAI(i)(1 WAi(i)).
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Hence the inequality between (2.3) and (2.4)in the proof of Theorem 2 (replacing
coordinate n with coordinate i) is strict if A B is nontrivial. This completes the
proof of Theorem 1. [:]

3. Applications to recursion trees. Theorem l(ii) may be applied to prove
that pathology occurs in game-tree models with independent leaf values and indepen-
dently occuring errors in the heuristic evaluation function. For a general background
on the phenomenon of pathology in game trees, see [Bea], [CN], [Nau], [Pea], and

We interpret n > 1 as the number of leaves in the finite game tree, the Xi as the
true leaf values, and the Y as the heuristic leaf values, and we let f: {0, 1} -- {0, 1}
be a concatenation of "negamax" functions fy {0, 1}deg(y) -+ (0, 1} for every inner

node y of the game tree: fy(ai,..., adeg(y)) max{(1 al),..., (1 adeg(y))}. Thus

f(xl,..., xn) represents the backed-up root value if the leaves have values X1,..., Xn.
First of all, let us assume that all i are equal and that 0 < pi < 1 for all i. Then,

according to Theorem l(ii), the true root value Vroot and the backed-up heuristic
estimate hroot satisfy the following corollary.

COROLLARY 5. erob{vroot 0, hroot 1} > Prob{vroot 0}erob{vroot 1}.
Hence true and backed-up heuristic root value are strictly less correlated than the leaf
values. This phenomenon of pathology, which contradicts observations from computer
game-playing practice, occurs independently of the size and the shape of the game
trees (in the model). In particular, searching deeper does not yield better estimates
of the true root value. We remark that, in real life games like chess or checkers, the
leaf values are not independent.

For the special case of a depth-regular and m-uniform game tree with an invariant
probability p(m) Prob{a node has true value 1} for all nodes of the tree, Pearl [Pea,
pp. 332-346] investigated the error probabilities

et Prob { a node at distance t from the leaves
has true value 1 and backed-up heuristic
value 0

In the interesting case 0 < e0 < p(m)[1 -p(m)] he proved

lim et p(m)[1 p(m)].

This also follows from an iterated application of Theorem l(ii). Hence in very high
game trees, true and heuristic root values are nearly independent of each other. For
this "tendency to independency" we use the term "strong pathology."

Whereas Pearl’s analytical approach is restricted to depth-regular and uniform
game trees with identically distributed leaf values, Theorem l(ii) allows us to prove
strong pathology in nonregular trees as well. For this, we first give a quantitative
formulation of Theorem l(ii).

THEOREM 1. For every triple (n, p*, *) with n E N, 0 < p* < 1, and 0 < * < 1,
there exists a constant 5(n, p*, *) > 0 such that statement (i) of Theorem 1 can

be substituted by the stronger statement

(i’) Prob{f(X1,... ,Xn) O, Y(Yl,..., Yn) 1} _> (1 + 5)p(1 p),

whenever f" {0, 1 }n {0, 1} is nontrivial, p* _< p _< 1 p*, and * <_ <_ 1 * for
1,...,n.
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Proof. As a first step, we prove Theorem 1 for a fixed nontrivial function f
(with a constant 5y di(f, p*, e*) instead of 5(n, p*, s*)). Indeed, we observe that the
three quantities 1-p= Prob{f(X1,...,Xn)= 0},p= Prob{f(Y1,... ,Yn)= 1}, and
Prob{f(X1,... ,Xn)= O, f(Y1,... ,Yn)= 1} are polynomial expressions in the pi and
the ei, and hence are continuous functions of the pi and the ei. e min ei is also
continuous.

Because

f
g*)-- ’(Pl Pn,lS(p*, n) p* <pi<I-P* ande* <i<1-*

for all i

is a compact set, and 0 < p < 1 by the nontriviality of f, the continuous function

h(pl pn, el, n) Prob{f(X1,... ,Xn) 0, f(Y1,... ,Y,) 1}
ep(1 p)

assumes its minimum (say 1 + diy) on S(p*,e*), and this minimum must be > 1 by
part (ii) of Theorem 1.

Since there are only finitely many functions f {0, 1}n -- {0, 1} for every fixed
n, we get

We now describe an interesting class of recursion trees which we can prove are

strongly pathological.
A bivalued recursion tree consists of a finite rooted tree T and recursion functions

fx" {0, 1 }deg(x) _..+ {0, 1 } for every inner node x in T. We write L for the set of leaves
of T. If values v(z) E {0, 1} for all z E L are given, the inner nodes of T get their
v-values recursively by v(x) fx(v(yl),...,v(yn)), where yl,..., yn are the direct
successors of x. If probabilities pz Prob{v(z) 1} for all z e L are given, and
if different leaves assume their values independently of each other, we can compute
px Prob{v(x) 1} for all nodes x of T. Given {pzlz e L}, an inner node x
with successors yl,..., y is called p*- central, for a p* _> 0, if fx is nontrivial (which
implies n > 2) and p* < Pu < 1- p* for i 1,..., n. The bivalued recursion tree
(T, {flx e T}, {pzlz e L}) is called k-rich with respect to p* if every root-leaf path in
T contains at least k p*-central nodes. For instance, m-uniform game trees of regular
depth t with invariant probability p(m) are t-rich with respect to min{p(m), 1 p(m)}.

If we denote true and heuristic leaf values by Xz and Y,, respectively, and the
backed-up values for an inner node x by X and Y (so that X fx(Xyl,... Xyn)
and Yx fx(Yy,..., Yyn)), then our task is to estimate Prob{Xroot 0, Yroot 1}.
We say the recursion tree has leaf errors >_ * if

e*pz(1 p) < Prob{Xz 0, Y 1} < pz(1 p)

for all z E L.
Formally, the pathology in k-rich recursion trees may be stated as follows.
THEOREM 6. For every triple (n, p*, *) with n _> 2, 0 < p* < 1, and 0 < * < 1,

there is a monotone increasing sequence (ck)k=o of positive real numbers, with co *
and limk_ ck 1, such that

Prob{Xroot 0, Yroot 1 } _> CkProot (1 Proot)

in every bivalued recursion tree which has maximum degree <_ n, leaf errors >_ *, and
is k-rich with respect to p*.
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Proof This follows from the k-rich property by an iterated application of Theorem
1(i) (for the nodes that are not p*-central) and Theorem 1 (for the nodes that are
p*-central). [:]

A more general discussion of pathology in game trees and other recursion trees
appears in [Alt].

4. A probabilistic generalization of Theorem 1. Interpreting the Y/ as
heuristic estimates of the true data Xi, it is quite natural to ask for other (deterministic
or probabilistic) estimation functions ]" (0, 1}n

__
(0, 1 } instead of f itself. ] is called

unbiased with respect to f if Prob(](Y1,...,Yn) 1) Prob(f(X1,... ,Xn) 1}.
Theorem 1 may be generalized to this situation as follows.

THEOREM 7. Let X,... ,Xn, Yl,..., Yn be as in 1, f (0, 1}n - (0, 1} a de-
terministic function, and ]" (0, 1)n

__
{0, 1} a probabilistic or deterministic function

that is unbiased with respect to f. Put e min<i<n i. Then

(i) Prob(f(Xl,... ,Xn) O, ](Y,..., Yn) 1} _> ep(1 p)
and

(ii) if f is nontrivial, 0 < e < 1, and 0 < pi < 1 for all i, then strict inequality
holds above.

Sketch of proof. First, we generalize the notation gA,B for sets A and B to a
function gR,S for fractional sets R,S; in other words, functions R,S {0, 1} ---+

[0,11CN.

g.,s= R()[I-S(b)IHe(a,b).
ae{0,1}n bE{0,1}n i=l

For A c {0, 1}n, set
1 ifa E A,R(a)= 0 ifaC. A.

We say that the fractional set R belongs to A. Thus, if R belongs to A and S belongs
to B then gA,B gR,S.

We define the weight of a fractional set R to be

WR--- R(a)w(a).
aE{0,1}

With this notation we can formulate a probabilistic generalization of Theorem 2.
THEOREM 8. Let R and S be fractional sets on {0, 1}n. Then

gR,S + gs,R >_ [WR(1 WR) + WS(1 WS)] + (WR WS)2,

where minl<i<n i.

The proof of Theorem 8 is analogous to that of Theorem 2, and is therefore
omitted. D

Setting
iff(a)--- 1,R(a)= 0 iff(b)=0,

and S(b) Prob(](b) 1}, we obtain part (i) of Theorem 7.
For the proof of part (ii), we start by considering the case n 2.
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LEMMA 9. If n 2, 0 < Pl < 1, 0 < p2 < 1, 0 < < 1, e _< 1,2, the fractional
set R belongs to one of the two sets {00, 11} or {00}, and S is an arbitrary fractional
set on {0, 1}n, then

gn,, + gS,R > e[WR(1 WR) + WS(1 ws)] + (WR WS)2.

Sketch of proof. The difference between Lemmas 9 and 4 is that we now have
more choices for the fractional set S (s00, s01, sl0, s11). Because the functions gR,S
and gS,R are linear in each of the sij, we have only to check the boundary cases with
sij E {0, 1} for all i,j. This can be done by a case by case analysis (altogether 2.8 16
cases). The details are omitted. [:]

It is now easy to complete the proof of Theorem 7(ii), just as in the proof of
Theorem 1 (ii).

5. Concluding remarks. (a) Unfortunately Theorem 7(ii) cannot be used to
prove an analogue to the strong pathology theorem (Theorem 6) for arbitrary tree
evaluation functions. Nevertheless, such an analogue does exist. It is proved in [Alt]
by other methods.

(b) For our proofs it is important that X and Y have the same marginal distri-
butions. The result of Witsenhausen [Wit, p. 107] also provides lower error bounds
in the general case with arbitrary marginals. However, these bounds are often not
tight--for wide ranges of probability distributions they are surpassed by bounds given
in a paper of Ahlswede and Gcs [AG], who use other measures of correlation.

(c) It would be desirable to have generalizations of our results for the case with
more than only two values. For general finite sets we make the following conjecture,
based on analogy with Theorem 1.

Let X1,...,Xn, Y1,...,Yn be random variables with values in the finite sets
M,...,Un([Mi[ > 2), and assume that for all/ E {1,...,n} the following state-
ments hold:

(i) for each i, the dependent pair (Xi,) is independent of {(Xj, YJ)IJ : i};
(ii) erob{Xi j} Prob{ j} pij for all j Mi;
(iii) there exists a constant e, 0 _< _< 1, such that for every A c Mi

2Prob{X e A}Prob{ e A}
< Prob{X A, Y E A} + Prob{Xi A, 1 A}
_< 2Prob{Xi A}Prob{] A}.

This condition (iii) is more complicated than the corresponding condition in 1 because
the error probabilities Prob(Xi j, k} for j : k are not assumed to be symmetric
in j and k. In the symmetric case the inequalities in (iii) would reduce to

e Prob{X e A}Prob{] e A}
< Prob{X A, Y Ac} <_ Prob{Xi A}Prob{Y E A}.

We call a function f" M1 ... Mn -* {0, 1} trivial, if there is some i {1,..., n}
and some Ai C Mi, such that

f(Xl,... ,Xn) 0 xi A.

Thus f is trivial if it depends only on one coordinate.
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We use the abbreviations X (X1,..., Xn) and Y (Y1,..., Yn).
CONJECTURE 10. Let the Xi, Yi be as above, and let f MI Mn --* (0, 1.

Then
(i) 2e Prob(f(X) 0}erob(f(Y) 1 _< erob(f(X) O, f(Y) 1 /

erob(f(X)-- 1, f(Y)--0} _< 2 erob(f(X)--0)erob(f(Y)-- 1
and

(ii) if f is not trivial, 0 < < 1, and pij > 0 for all E (1,...,n},j (0,...,
m- 1, then the first inequality in (i) holds strictly.

We believe that part (ii) of this conjecture might be genuinely more difficult to
prove than part (i)min contrast to the situation with Theorem 1.

It might be possible to deduce part (i) of Conjecture 10 from the results of Wit-
senhausen [Wit, p. 107] or hhlswede and Ghcs lAG, p. 926]. The problem is that
their parameters of correlation (S cosO in [Wit], sp(W, P) in [AG]) cannot be easily
computed in the nonbinary case.
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Abstract. Khmer defined the notion of graph entropy. He used it to simplify the proof of the
Fredman-Komlos lower bound for the family size of perfect hash functions.

We use this information-theoretic notion to obtain a general method for formula size lower
bounds. This method can be applied to low-complexity functions for which the other known general
methods do not apply.

Key words. Boolean functions, graph entropy, circuit complexity
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1. Introduction. Khrner [7] defined the notion of graph entropy. This notion is
information theoretic and was used in [8] to simplify the proof of the Fredman-Komlos
[2] lower bound for the family size of perfect hash functions.

We use this information-theoretic notion to obtain a general method for for-
mula size lower bounds for Boolean functions. This method can be applied to low-
complexity functions for which the other known general methods ([11], [12], [3], and
see also [18]) do not apply. Specifically the results are as follows:

1. a new general lower bound on the formula size of quadratic Boolean functions;
2. as a corollary we get an gt(n21ogn) lower bound for the function that decides

whether a graph of n vertices has a cycle of length 4, and to the function that decides
whether a graph has a vertex of degree at least 2;

3. a simple proof of a result of Krichevskii [10], stating that the formula size for
the threshold-2 Boolean function with n variables is at least n log n;

4. a simple proof of a lower bound first proved by Snir [17], stating that a V A V
formula for an n-variable threshold-k function, where all A gates have fan in k, has a
size of

logk-log(k-1) nklog

2. Definitions and notation. Let X be a finite set, interpreted as Boolean
variables. A formula is a rooted tree whose leaves are labeled with members of X
or their negations and whose internal nodes are labeled with the Boolean operations
AND, OR. The root of the tree computes a Boolean function f; {0, 1}x H {0, 1} in
the natural way. If no negations appear, we say that the formula and the function
computed are both monotone. The size of a formula is the number of leaves in the
tree.

Let f be any Boolean function. The formula size of f is the minimum size of
a formula that computes f; it is denoted by L(f). For a monotone function f, the
minimum size of a monotone formula for f is denoted by LM(f).
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The threshold-k Boolean function, denoted by T, is a Boolean function on n
variables that gets value 1 if and only if the input has at least k variables assigned 1.

The set {1,..., n} is denoted as In].
For a Boolean function f on n variables, we will assume that the variables are

numbered from 1 to n, and by writing f(T) 0 (f(T) 1), T C_[n], we mean that
f(x) 0 (f(x) 1) for the characteristic vector x of T.

A hypergraph G (V, E) is a set of "vertices" V, and a set E of subsets of
V (also called the set of "edges"). If all edges e E E have a constant size k, the
hypergraph is called k-uniform. A 2-uniform hypergraph is simply a graph. The
s-uniform hypergraph on n vertices that contains all subsets of size s is called the
complete s-uniform hypergraph and is denoted by K. The complete graph on n
vertices is denoted by

For a graph or hypergraph, an independent set I is a subset of V that contains
no edges of E.

For a probability distribution Qx" on a cross product A x B, Qx (Q’) denotes
the marginal distribution of Qx" on A (B).

All logarithms in this paper are to the base 2.

3. Definition and basic properties of entropy and hypergraph entropy.
1. Let X and Y be random variables in some probability space. The entropy of

X is defined as

1
H(X) Ep(x) log p(x-.

The mutual information between X and Y is defined as I(X, Y) H(X)4- H(Y)
H((X, Y)) and it may be written also as:

1
I(X, Y) H(X) Ep(x, y)log

p(xly)

Further information on information theory may be found in [1].
2. Khrner [7], [8] defined the notion of hypergraph entropy as follows: Let

G(V,’E) be a hypergraph and P a probability distribution on V. Let A(G) be the
collection of all maximal independent sets of G.

Define Q(G, P) to be the set of all probability distributions QxY on V x A(G)
such that, for every v E V,

(a) Qx’(v,I) 0 if v I.
(b) Qx(v) P(v) (where Qx(.) is the marginal distribution of QxY on Y).

The hypergraph entropy H(G, P) is defined as

H(G, P) min{I(X, Y)IQxY e (G, P)},

where I(X, Y) is the mutual information between two random variables X and Y that
are distributed according to the marginal distributions Qx and Qy.

3. Hereafter, we consider only uniform distributions on V, so we refer to the
hypergraph entropy of G as H(G).

4. We shall need the following basic properties of H(G) proved by Khrner and
Marton [7]-[9].

(i) For two hypergraphs on the same vertex set G(V, Ea),F(V, EF), let K
G t F be the hypergraph on V with E Ec U EF; then H(K) <_ H(G) 4- H(F).
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(ii) The hypergraph entropy is monotone--that is, deleting an edge can only
decrease the entropy.

(iii) The entropy of the complete k-uniform hypergraph is H(Kk) log n
log(k- 1).

(iv) The entropy of a bipartite graph on m (out of n) vertices does not exceed

(v) The generalization for hypergraphs is as follows: Let G (V, E) be a k-
uniform hypergraph. We call G a k-partite hypergraph if there is a partition of V into
k parts VI,..., Vk such that, for every edge e E E and every V, E[k], le f V 1.

We have that the entropy of the k-partite hypergraph on m (out of n) vertices is
no more than (log k log(k 1))

4. A lower bound for formula size of Boolean functions. In this section,
we develop a general technique for formula lower bounds. A natural approach is to
associate a nonnegative cost function # to each Boolean function with the property
that if f g h, then #(f) _< It(g) + It(h) (where o is either A or V). Such a cost
function is called an "abstract complexity measure" [18], [16]. It directly gives a lower
bound on the formula size of a Boolean function in terms of its cost. We find that
for monotone formulae, graph entropy is a natural choice for such a measure. It leads
to nontrivial lower bounds for monotone formulae for quadratic functions (4.1). We
then extend it to the nonmonotone case using a lemma of Krichevskii.

4.1. A lower bound for monotone formula size. We assign each monotone
function a cost and prove that the cost of a function computed by /, A gates is
no more than the sum of costs of the inputs (thus the cost function is an "abstract
complexity measure" for monotone formulae). The cost of a single variable will be 1.

n
Hence, (by induction on the formula) for a function of cost It one gets a lower bound
of nIt.

The definition of the cost function is given below.
DEFINITION 4.1. Let g: {0, 1}n {0, 1} be Boolean function g on n variables.

We identify the variable set with the set In]. Define the following:
1. (g)k is the set of "minterms" of g of size k, formally; (g)k {S S c_ [n],

IS k, g(S) 1, VT C S g(T) 0}..
2. We are interested only in (9)1 and (9)2. Observe that (9)1 is a subset of

In] and (g)2 is a set of unordered pairs on In]. (g2) is identified with the graph
G(g) (V, E), Y In], E (g)2.

3. The cost It of a function g is defined as

It(g) H(G(g)) + I(g)ll

THEOREM 4.2. Let g be a monotone Boolean function. Let LM(g) be the mono-
ton fo .  Za of Th n L (a) > up(v).

Proof. We note the following:
1. For a variable xi (a leaf of a formula), (Xi)l {i}, G(xi) (the empty

graph), and so It(xi) 2.
n

2. The cost function is monotone with respect to inclusion; if (g)l C_ (h)l and
(g)2 c_ (h)2 then It(g) _< It(h).

Subadditivity for V gate. Let g h V f. We have (g)l (h)l U (f)l and (g)2 c_
G(h) U G(f); thus

It(g) + H(G(h) 2 G(f))
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](h)l____]--
n n + H(G(h))+ H(G(f)) #(h) + #(f).

The first inequality follows from the monotonicity of #. The second follows from 4(i)
in 3.

Subadditivity for A gate. Let g h A f. Denote A (h)l, B (f)l.
We get that (g)l A f3 B and (g)2 c_ G(h)U G(f)U G((A- B), (B- A)), where

G(L, M) denotes the complete bipartite graph G with parts L and M. Thus

#(g) <_ H(G(h) U G(f) U G((A B), (B A))) +
n

[A- B + IB- A IA 0 B<_ H(G(h)) + H(G(f)) + +
n n

IA[ / IBI<_ H(G(h)) + H(G(f)) + #(h) + #(f).
n

The first inequality follows from the monotonicity of #. The second follows from 4(i)
and 4(iv) in 3.

for any leaf t of the formula, and theThe theorem now follows, since #(t)
cost of the output function does not exceed the sum of costs of all the leaves. 13

Remark. We note here that the best this method can give (by direct application)
are lower bounds of at most n log n.

4.2. The general lower bound. We use a lemma (Krichevskii [10]) to extend
our monotone lower bound method to nonmonotone formulae.

LEMMA 4.3 (see [10]). Let f(xi,..., Xn) be any Boolean function for which f(S)
0 for every S, IS[ 1. Then there is a monotone function such that the following
hold:

1. Cf(S)---0 for any S, IS] 1.

3. LM(f

_
L(f).

For completeness, we present a proof.
Proof. The proof is by induction on the formula size L(f). For L(f) 2, the

claim is true. Let F be an optimal formula for f. If F G V H, where G (H) is the
optimal formula for g (h), then by induction there are Cg and Ch for which conditions
1-3 of Lemma 4.3 are satisfied. It is easy to see that Cf Cg V Ch satisfies conditions
1-3 of Lemma 4.3 for f.

If F G A H with the functions g and h, respectively, then define G1
{xilg({xi}) 1, and xi appears in G}. Define H similarly. By the assumption
on f, it follows that G1 f3 H . Assume (w.l.o.g) that G1 {Xl,...,xk} and
H1 {Xk+l,... ,xk+t}. Let

F* (x V... V xk V G(0,..., 0, Xk+l,... ,Xn))
/k(Xk+lV’"VXk+lVH(Xl,...,Xk,0,...,0, Xk+l+l,...,Xn)).

We have that F* is a formula for some function f*. It is easy to verify that, for any
S with ISI 1, I*(S)= 0, and, for any S with ISI 2, I*(S) >_ I(S). In addition,
G(0,..., 0, x+1,... ,Xn) and H(Xl, ,xk, 0,..., O, xk+t+,. ,Xn) are. formulae of
some functions g* and h* that meet the requirements of the lemma, so by induction
there are monotone functions Cg. and Ch* with monotone formulae G* and H* as
required. Observe that by plugging G* and H* into F* we get a monotone formula
for Cj that satisfies conditions 1-3 of Lemma 4.3. 13
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We state now the main theorem for nonmonotone formulae.
THEOREM 4.4. Let f be a Boolean function with f(S) 0 for every S, ISI 1.

Then L(f) >_ up(f).
Proof. By the previous lemma, there is a monotone function ] for which L(f)

nM(f). From Theorem 4.2, we get that LM(f) _> n#(,). Since I(S) _> f(S) for

ISI _< 2, the monotonicity of the cost function # implies the result.

4.3. Application to specific functions. Let C4(n) be the Boolean function
that decides "1" on a graph of n vertices if the graph contains a cycle of length 4.
Let D2(n) be the Boolean function that decides "1" on a graph of n vertices if the
graph contains a vertex of degree at least 2.

Note that C4(n) and D2(n) are Boolean functions on N () variables.
COROLLARY 4.5. Any formula for D2(n) has size (n2 log n).
Proof. By Theorem 4.4, it is enough to show that #(D2(n)) t(log n). Observe

that (D2(n))1 and (02(n))2 L(Kn), the line graph of Kn (the graph whose
vertices are the edges of Kn; two edges are connected if they have a common vertex
in Kn).

We show that #(D2(n)) (log n) by explicitly specifying the optimal distribu-
tions according to the definition of graph entropy. We do this by showing an upper
bound of log(n- 1) and log on the graph entropies of L(Kn) and its complement,
respectively. (Note that the sum of these two numbers is log ().) However, by 4(i)
and 4(iii) in 3, the sum of the two graph entropies must be at least log (); thus the
upper bounds are, in fact, tight.

The independent sets of L(Kn) are matchings (in Kn). The cliques in L(K) are
stars and triangles (in Kn). (A star is a set of all edges adjacent to a vertex.) Let
denote the set of perfect matchings, $ denote the set of maximal stars, and E denote

2 for everythe edge set of K. Define the probability Q1 on E A//; Ql(elM -matching M E A4, e E M, and such that the induced probability on A//is uniform.
Let (X1, Y1) be a random variable on E A/i distributed according to Q1. Define a
probability distribution Q2 on E S; Q2(elS for every star in , e S, and
such that the induced probability on S is uniform. Let (X2, Y2) be a random variable
on E distributed according to Q2.

It is easy to check, using the definitions in 3, that I1 (X1, Y1) log(n- 1) and
I2(X2, Y2) log . However,

log ()H(L(G))--H(L(G)C)

The first inequality follows from 40) in 3 and the fact that L(G) 2 L(G)C is the
complete graph on () vertices. The second inequality follows from the definition of
graph entropy. Thus we get equality all the way and H(L(G)) 11 t(logn).

COROLLARY 4.6. Any formula for C4(n) has size gt(n log n).
Proof. Let f be the restriction of C4(n + 1) obtained by the following procedure:

Take a special vertex z and set all edges adjacent to it to "1." Clearly, if there is
a vertex of degree at least 2 in the remaining graph (the graph induced by unset
edges), then there is a cycle of length 4 in the original graph. We have (f)l and
(/)2

_
(92)2, so by the monotonicity of the cost, we get that #(92) _< #(f), and the

result follows by Corollary 4.5. []

COROLLARY 4.7 [10]. Let T be any formula that computes T; then the size of
T is at least nlogn. (We note here that this is the best possible result.)
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Proof. (T)I and G(T) Kn (the complete graph on n vertices); thus by
4(iii) in 3, #(T) -log n.

Remark. A proof of the monotone formula lower bound for T was given also by
Hansel [5]. (See also [13].)

5. A lower bound on the size of a V A V formula for a threshold-k
function, where A gates’ fan-in is k. A V A V formula, where A gates have fan-in
k, is a formula of the form P kVi= Aj= Vqe&tq, where tq E (Xq, -Xq} for every q.

The notion of hypergraph entropy can be used here to give a simple proof to a
lower bound of Snir for such restricted formulae.

THEOREM 5.1 [17]. The size of a V A V formula for T, where A gates have
fan-in k, is at least

nn log k_l
s >

log k

The original proof was based on some ad hoc combinatorial considerations. We
will follow the lines of the proof of the previous section.

Proof. Consider a minimum-size V A V formula for T--that is, of the form
Vi-lP/j--lk /qES tq. Let (gi, i 1, ., p} be the functions computed at the A gates.
Clearly, the formula must be monotone (that is, no negations), and for every fixed
i, 1 _< i _< p, the sets Sij, 1 _< j _< k are pairwise disjoint.

Let g be any Boolean function; define, as in the previous section, (g)k {S c_ In]
ISI k, g(S) 1, and, for all T c S, g(T) 0. Define the hypergraph G whose

edge set is (g)k. We get that G is a k-partite hypergraph on vertex set (.Jj Sj. (The
"parts" are Siy, 1 < j < k.) Similarly, define T to be the hypergraph whose edge set
is (T)k. T is the complete k-regular hypergraph Kn. Since T Vigi, we get that
(T)k U(g)k--that is, a formula of this kind for T defines a way to decompose
the complete k-regular hypergraph to a union of k-partite hypergraphs. The size of
the formula is

p k p

i=1 j--1 --1

The hypergraph entropy of Knk is log n -log(k- 1) (from 4(iii) in 3). For each
Gi, we have H(Gi) _< Iv(a)l (log k -log(k 1)) (by 4(v) in 3) Thus, by the

?

subadditivity of the hypergraph entropy (4(i) in 3),

P

H(Kk) log n -log(k- 1) _< E H(Gi)
i=1

1 P

_< -(log k -log(k-1))Elv(ai)l Slog,. ,k
n n -’i--1

and we get the desired lower bound

n log n

>
log k

Some remarks are due here.
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1. This result was significantly improved recently by J. Radhakrishnan [14] using
graph-entropy methods. He proved a near-optimal lower bound for any VAV formulae
for T of the order e(k)nlogn, where i(k) f(ogk) and k < logs (see also [15]).

2. For constant k, there is an (optimal) construction of O(n logs) V A V
formulae for T [6], [4].

Acknowledgments. We are grateful to Mauricio Karchmer and Aviad Cohen
for helpful discussion.
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FEASIBLE OFFSET AND OPTIMAL OFFSET FOR GENERAL
SINGLE-LAYER CHANNEL ROUTING*

RONALD I. GREENBERG? AND JAU-DER SHIH$

Abstract. This paper provides an efficient method to find all feasible offsets for a given sep-
ration in a very large-scale integration (VLSI) channel-routing problem in one layer. The previous
literature considers this task only for problems with no single-sided nets. When single-sided nets
are included, the worst-case solution time increases from O(n) to (n2), where n is the number of
nets. But if the number of columns c is O(n), the problem can be solved in time O(n1"5 lg n), which
improves upon a "naive" O(cn) approach. As a corollary of this result, the same time bound suffices
to find the optimal offset (the one that minimizes separation). Better running times result when
there are no two-sided nets or all single-sided nets are on one side of the channel. This paper also
gives improvements upon the naive approach for c O(n), including an algorithm with running
time independent of c. An interesting algorithmic aspect of the paper is a connection to discrete
convolution.

Key words. VLSI layout, channel routing, single-layer wire routing, discrete convolution,
combinatorial algorithms

AMS subject classifications. 68Q35, 68Q25

1. Introduction. Much attention has been given to planar or single-layer wire
routing for very large-scale integration (VLSI) chips. Most popular has been river
routing in the restricted sense of the term, the connection of two parallel rows of cor-
responding points, e.g., [11] and the references therein. Other works have considered
routing within a rectangle [2], placement and routing within a ring of pads [1], or
routing between very general arrangements of modules [10], [4].

Ironically, single-layer routing may become more relevant as technology evolves
toward chips with increasing numbers of layers. With many layers, it becomes more
likely that an individual layer can be dedicated to a coplanar subset of the original
collection of nets. For example, the heuristic multilayer channel router MulCh [7]
improved upon previous multilayer channel routers by dividing the problem into es-
sentially independent subproblems of one, two, or three layers.

In this paper, we consider the single-layer channel-routing problem, which is more
general than the more heavily studied river-routing problem. Channel routing is
similar to river routing in that both deal with the interconnection of terminals lying
in two parallel rows (sides of the channel); also, for simplicity, we restrict attention to
two-point nets as in river routing.2 But we allow nets that have both their terminals
on the same side of the channel, contrary to river routing. The existence of these
single-sided nets is both realistic (as in the example problems of [7]) and a significant
algorithmic complication. As shown in Fig. 1, the usual convention is to draw the rows
of terminals horizontally; only the region between these rows is available for routing.

Received by the editors July 12, 1993; accepted for publication (in revised form) June 9, 1994.
This research was supported in part by National Science Foundation grant CCR-9109550.
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This is the only use of the term "river routing" in this paper; we refer to more complicated
variations of the problem as "single-layer" or "planar" routing.

2 Multiterminal nets can be handled by a transformation that might be considered "folklore." It
is described in [8] in the context of showing that minimum separation problems can be solved even
more easily than by actually applying the transformation.
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1 1 2 3

,i i
2 4 4 3

separation

FIG. 1. An example of a routed single-layer channel.

We refer to single-sided nets that have their two terminals on the top (bottom) as
upper (lower) nets. Nets with terminals on opposite sides are referred to as two-sided
nets. We restrict attention to a rectilinear, grid-based model in which terminals lie
on gridpoints and wires are disjoint paths through grid edges. We use c to denote the
total number of grid columns from the leftmost terminal to the rightmost terminal
and n to denote the number of nets.

The greatest attention has been given to the minimum separation version of the
problem. In this case, we assume that the horizontal positions of the terminals are
completely fixed, but we seek the minimum vertical distance between the two rows of
terminals that allows the routing to be completed. An O(n) time solution in the river-
routing case was given in [6]. Though some erroneous solutions have been published
for the general channel-routing case, a simple and correct O(n) algorithm is provided
in [8].

In this paper, other important versions of the river-routing problem are solved in
the context of channel routing; in these problems, we allow the rows of terminals to
be offset relative to one another. That is, we allow the upper row of terminals to be
slid as a block to the left or right, though individual terminals do not shift position
relative to one another. (This models the situation in which we are trying to wire
together two modules, each having terminals on one side, and we have substantial
freedom on how to place the modules.) The optimal offset problem involves finding
the offset that minimizes the amount of separation necessary to route the problem.
A related problem, which we refer to as the feasible offset problem, is to determine all
offsets that are feasible (i.e., give enough room to route) at a given separation. In the
river-routing context, the second problem is usually called the offset range problem,
since the feasible offsets always constitute a single continuous range, but this property
does not hold for channels with single-sided nets.

Mirzaian [11] showed that feasible offset and optimal offset can be computed in
O(n) time in the river-routing case, but we are not aware of any published solutions
for channels with single-sided nets. One complication that arises when single-sided
nets are included is that the solution time is no longer insensitive to the number of
columns in the problem (at least for feasible offset). As illustrated in Fig. 2, if the
number of columns is large, the number of disjoint intervals of feasible offsets may
be t(n2). But if c- O(n), we show that feasible offset can be solved in O(nL5 lgn)
time. This improves on the naive O(cn) time obtained by running the O(n) algorithm
for the minimum separation problem at each of the 2c offsets that may need to be
checked. In the remainder of this paper, we express our running times in terms of c
as well as n where necessary but concentrate on obtaining a good running time when
c O(n). Later, we give an algorithm that is less efficient for c O(n) but has a
running time independent of c.
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nets

n/2 nets

FIG. 2. For small separation, the number of disjoint intervals of feasible offsets of the channel
above is (n2).

The remainder of this paper is organized as follows. In 2, we introduce some
additional terminology and notation and show how to solve the feasible offset problem
for a channel in which all nets are single sided. In this case, the running time with
c O(n) is O(n1"5 l/i), which leads to an O(n1"5lx/) algorithm for optimal offset.
(The optimal offset problem as defined above is trivial when all nets are single sided;
large offset minimizes separation. But we can handle a nontrivial generalization of the
problem in which certain offsets are disallowed.) In 3, we show how to combine ideas
from 2 with some new ideas to obtain solutions for channels with both single-sided
and two-sided nets. For the general channel, the running time to solve either feasible
offset or optimal offset is O(n1"5 lgn). Section 4 provides concluding remarks and
some additional results. In particular, feasible offset and optimal offset can be solved
in time O(n2 lg n) independent of c. Also, the optimal placement problem, involving
multiple modules on each side of the channel, can be handled in O(n3) time.

2. Channels with single-sided nets only. In this section, we deal with the
special case of channels with only single-sided nets. Much of the work we do here will
help us in the next section where we consider channels that have both single-sided
and two-sided nets.

We begin by explaining some notation and terminology that we use throughout
this paper. First, we use L, U, and T for the sets of lower, upper, and two-sided
nets, respectively, and N for the complete set of nets in the channel. In addition, we
often use the same notation interchangeably for a set of nets or for a lower or upper
contour. The contour of a set of lower nets is the upper boundary of the routing
region consumed in the routing of those nets that minimizes total wire length. That
is, when the nets are routed as tightly as possible against the bottom of the channel,
the contour is formed by the uppermost nets and portions of the channel boundary.
The contour of a set of upper nets is defined similarly. We also refer often to subsets of
contours, which simply means restricting the contour to certain columns (even though
there may be no set of nets that would generate the resulting contour). We use the
notation FOP and OOP to refer to the feasible offset problem and optimal offset
problem, respectively. We also use the more precise notation FOP(s, A) to represent
the set of solutions to the feasible offset problem with separation s and the set A of
nets (or contours or contour fragments). We also use analogous notation SSFOP and
SSOOP for the corresponding problems when all nets are single sided. (For optimal
offset, we permit the problem specification to disallow some set of offsets, e.g., all
offsets _> c/2; otherwise SSOOP is trivial.)

Our first step in solving SSFOP is to find the contours of the upper and lower nets.
We use Pinter’s result that O(n) time suffices to find a contour (i.e., the coordinates
of all the bends in the contour) [12].

LEMMA 2.1 (Pinter). The contour of a set of n single-sided nets can be found in
O(n) time.
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Once we find the contours of the upper and lower nets, SSFOP can be expressed
simply in terms of these contours. At each column, we define the extension of a contour
to be the distance that the contour extends into the channel at that column. Then we
are simply seeking all offsets for which no vertical cut corresponds to extensions of the
upper and lower contours that sum to more than the separation under consideration.
One way to solve this problem would be to compute the discrete convolution of the
two sequences of extensions with the max and / operators substituted for the usual
+ and . It is unknown whether max, / convolution for vectors of length n can be
computed in better than (n2) time; still it will be seen that there is some relationship
between convolution and our solution technique for SSFOP.

We begin with a general lemma that allows us to decompose SSFOP into smaller
instances of the problem. In each of the smaller problems, we use only a portion of the
lower contour, while retaining the entire upper contour. In fact, the lemma applies
even when there are also two-sided nets. (Naturally, we also could switch the roles of
the lower and upper contours.)

LEMMA 2.2. Let L1,L2,...,Lk be any subsets of the contour L of the lower
nets such that LI U L2 (2... (.J Lk L, and let A be an additional set of nets. Then
FOP(s, L t2 A) k[i= FOP(s, Li U A).

Proof. This follows from the fact that routing is possible if and only if each line
segment from the top of the channel to the bottom of the channel is long enough (in
the L metric) to accommodate the number of nets that must cross it (i.e., each cut
is safe). More details on the theory of single-layer routability can be found in [10];
see especially 2.1. D

We now proceed to decompose the lower contour into pieces that are easier to
handle and not too numerous. The next three lemmas are directed toward handling
pieces of the contour that have large extension, and the following two lemmas handle
portions of the contour in which there are not too many distinct extensions. Then we
show how to put these two ideas together to solve the entire problem.

For the next lemma, we define a special type of contour fragment such that if it
comprises the entire lower contour, then SSFOP is particularly easy to solve. A mono-
tonic subset of the lower contour L is a subset of L, such that the extensions within
the selected columns are monotonically nondecreasing or monotonically nonincreasing
as we move across the columns.

LEMMA 2.3. If Lm is a monotonic subset of the lower contour and U is the upper
contour, then we can solve SSFOP(s, Lm U U) in O(n) time.

Proof. Without loss of generality, assume the (nonzero portion of the) lower con-
tour has nondecreasing extensions from left to right. We need only march across
the columns of the upper contour once from left to right. Initially, we consider a
far left position for the lower contour (highly negative offset). The check for each
column of the upper contour involves adding the upper extension to the lower exten-
sion for the corresponding column of the lower contour, based on the current offset,
and comparing to the upper bound on separation. After any unsuccessful check, the
current offset is incremented and we do not yet advance to the next column of the
upper contour. After each successful check, we move to the next column of the upper
contour; prior columns never need to be rechecked at larger offsets since the lower
contour is nondecreasing. When the rightmost column of the lower contour is in-
volved in a successful check, a feasible offset has been found and, again, the current
offset is incremented. The O(c) approach just described can actually be improved to
O(n) time because of the following two facts. First, we really only need to look at



OFFSET PROBLEMS FOR SINGLE-LAYER CHANNEL ROUTING 547

columns of the upper contour where the upper contour bends. Second, there are at
most n places where the extension of the lower contour changes, and preprocessing of
the lower contour will allow us to increment offset sufficiently after each unsuccess-
ful check so that we can proceed immediately to the next bend point of the upper
contour.

In the next lemma, we show that not only are monotonic pieces of contour easy
to handle but that we don’t have to check too many of them as long as we restrict
attention to sections of contour with large extension. Here we define a monotonic
subset to be maximal if no other monotonic subset contains it. Now we bound the
number of maximal monotonic subsets in the portion of the contour with extension
of at least h.

LEMMA 2.4. Let Lg be the subset of the lower contour containing only extensions
greater than or equal to h. Then Lg contains at most c/2h maximal monotonic pieces.

Proof. To have a maximal monotonic piece of the lower contour with extensions
of at least h, there must be h lower nets nested one inside the next. Therefore, a
maximal monotonic piece with extensions greater than or equal to h must span at
least 2h columns, so Lg contains at most c/2h maximal monotonic pieces.

We can now put together Lemmas 2.2, 2.3, and 2.4 to solve SSFOP efficiently for
any piece of lower contour in which all extensions are large enough.

LEMMA 2.5. If Lg is a subset of the lower contour containing only exten-
sions greater than or equal to h and if U is the upper contour, then we can solve
SSFOP(s, Lg U U) in O(cn/h) time.

Proof. By Lemma 2.2, we know that it suffices to solve the problem independently
for each of the maximal monotonic pieces of La. By Lemma 2.4 there are O(c/h) such
pieces, and by Lemma 2.30(n) time suffices for each piece.

What remains is to solve the SSFOP for the portion of the lower contour with
small extensions. (Later we’ll show how to choose h, the dividing point between
large and small extensions.) The next lemma handles the simplified case in which all
extensions on the lower contour are 0 or 1. The following lemma goes on to handle h
distinct extensions.

LEMMA 2.6. If all extensions are 0 or 1, we can solve SSFOP in O(clg c) time.

Proof. The only interesting case is separation 1, and the feasible offsets corre-
spond to the zero entries in the convolution of the upper and lower extensions. The
convolution can be computed in O(c lg c) time by using the Fast Fourier Transform
method. (See [5], for example.)

LEMMA 2.7. If all extensions of the lower contour are at most h, we can solve
SSFOP in O(hclgc) time.

Proof. From Lemma 2.2, SSFOP(s, L t U) h[i=1 SSFOP(s, Li U U), where Li is
the subset of the lower contour with extension i. We can now solve SSFOP(s, Li U U)
using Lemma 2.6 after assigning 1 to the lower extensions in Li and those upper
extensions exceeding s- and 0 to the other extensions. Since we have a total of h
problems, each solvable in O(c lg c) time, the total time is O(hc lg c).

Now we can provide an overall solution to SSFOP by combining our results for
contours with large extensions and contours with small extensions.

THEOREM 2.8. SSFOP can be solved in O(cv/n lg c) time.

Proof. SSFOP(s, L U U) SSFOP(s, L U U) N SSFOP(s, Lg U), where L is
the subset of L with extensions less than h and Lg is the subset of L with extensions

greater than or equal to h. Using Lemmas 2.7 and 2.5 with h v/n/lg c, the solution
time is O(cv/n lg c).
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FIG. 3. The effect of two-sided nets in (a) is incorporated into the top contour in (b). In this
figure, Lo is a monotonic portion of the lower contour.

We can adapt the halving technique of [11] to solve SSOOP in the same time as
SSFOP. The details will be shown in 3. The following theorem is just a simplified
version of Theorem 3.8:

THEOREM 2.9. SSOOP can be solved in O(cv/n lg c) time.
COROLLARY 2.10. SSFOP and SSOOP can be solved in O(n1"5lx/) time for

c O(n).

3. General single-layer channel. In this section, we use the ideas of 2 to
solve FOP and OOP when there are two-sided as well as single-sided nets. As before,
we begin by computing the contours of the upper and lower nets. Also as before we
consider separately the portions of the lower contour with large extensions and the
portions with small extensions and then show how to put these ideas together. But
first we consider an intermediate case, that is, when there are both single-sided and
two-sided nets but all the single-sided nets are on one side.

LEMMA 3.1. When all single-sided nets are on one side, FOP and OOP can be
solved in O(n) time.

Proof. When the single-sided nets are on one side, we can extend the method
of Mirzaian [11]. The basic idea is that as in river routing, the feasible offsets at a
given separation form a continuous range whose bounds are determined by O(n) cut
conditions. More details can be found in [9]. [-I

To deal with the extra complications of two-sided nets, we also must introduce
two new definitions.

First, let L0 be a subset of the contour of the lower nets and T a set of two-sided
nets whose lower terminals are to the left of L0. Define T/Lo as the upper contour
obtained by pulling up the lower terminals of the nets in T and reconnecting them to
the upper side to the left of preexisting terminals. That is, we convert the nets in T
to single-sided nets without violating planarity and without moving what were their
lower terminals to the wrong side of L0. This notation is also used analogously for any
set A of upper and two-sided nets as long as the lower terminal of each two-sided net
is to the left or right of all nonzero extensions in L0. In all cases, A/Lo is the upper
contour formed by moving lower terminals in T away from L0 and to the upper side.
Finally, the notation can also be used with a portion of the upper contour, in which
case "upper" and "lower" are reversed throughout the definition. Figure 3 illustrates
the definition of (T U)/Lo.

For the second definition, let M be a subset of the contour of the upper or lower
nets. We define M] to be a new contour in which we replace all extensions exceeding
s- 1 with extension s- 1.

We now proceed in the next two lemmas to handle a portion of lower contour with
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only large extensions. As before, the first lemma shows how to handle a monotonic
piece of lower contour, and the second lemma handles a contour portion with large
extensions by dividing it into maximal monotonic pieces.

LEMMA 3.2. Let A be a set of upper and two-sided nets. Then we can solve
FOP(s, L, U A) in O(n) time, where Lm is a monotonic portion of the lower contour.

Proof. The solution is the intersection of the feasible offsets from two subproblems.
In the first subproblem, we solve FOP without Lm (using Lemma 3.1). In the second
subproblem, we retain Lm and reroute the two-sided nets in the fashion shown in
Fig. 3, i.e., we determine (UUT)/Lm. Since we have already determined the infeasible
offsets in the absence of Lm (in the first subproblem), we now ignore those portions
of (U T)/L, with extension exceeding s- 1; we need only determine those offsets
for which a vertical cut through (U T)/Lm and L, has too large a sum of upper
and lower extensions. So the second subproblem is SSFOP(s, Lm ((U
which can be constructed and solved in O(n) time by Lemmas 2.1 and 2.3. [:l

Now we combine Lemmas 2.2, 3.2, and 2.4 to solve FOP for a subset of L with
large extensions. As before, we define large as exceeding h and specify the value of h
later.

LEMMA 3.3. If Lg is a subset of L containing only extensions greater than or
equal to h, then we can solve FOP(s, L9 U T) in O(cn/h) time.

.Now that we have taken care of FOP with large extensions, we use the next two
lemmas to deal with small extensions. The next lemma tells us how to transform
certain instances of FOP into SSFOP and will be used in handling general instances
of FOP with small extensions.

LEMMA 3.4. Let Tl and Tr be two sets of two-sided nets such that all the nets in

TI are to the left of those in Tr. (That is, the upper terminals in T are to the left of
those in Tr and similarly for the lower terminals.) Also let Ut be a set of upper nets
in which all terminals are to the left of (the upper terminals of) Tr, and let Lr be a
set of lower nets in which all terminals are to the right of Tt. (See Fig. 4.) Then

FOP(s, Ut [2Tl t2T t2 Lr) FOP(s, Ut t2Tt UT) N FOP(s, L Tt UT)
N FOP(s, ((Ut t2 TI)/L)I8 ((Lr T)/Ut)I8

Proof. The argument is similar to the one for Lemma 3.2. At any given offset
that is infeasible, either there is a vertical cut demonstrating infeasibility that goes
through both Ut and L or there is not. In the former case, we know that we can
incorporate the effect of the two-sided nets into the upper and lower contours; i.e.,
solving FOP(s, ((U t T)/L)I ((L J Tr)/UI)I), as illustrated in Fig. 4, will rule
out the infeasible offsets of the first type. On the other hand, if the infeasibility does
not result from interaction between Ut and Lr, it suffices to solve FOP(s, Ut UTt t2Tr)
and FOP(s, L T J T). Thus, intersection of the feasible offsets from these three
problems provides the feasible offsets for the original problem.

We can now solve FOP with small extensions.
LEMMA 3.5. If the extensions of the upper and lower contours are all less than

h, then we can solve FOP in O(hc lg2 c) time.

Proof. Let t be the number of two-sided nets. We first consider the case when
s < 4h. Divide the channel into t/4h blocks B1, B2,..., Bt/4h, each spanning 4h two-
sided nets as shown in Fig. 5. Let Li, Ui, and Ti denote the lower nets, upper nets,
and two-sided nets in block i. (Single-sided nets at a boundary between blocks of
two-sided nets are assigned to exactly one of those blocks.) Since the upper side and
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FIG. 4. The eect of two-sided nets in (a) is incorporated into the upper and lower contours in
(b).

4h two-sided nets 4h two-sided nets 4h two-sided nets
II

L ..IL .J L

FiG. 5. The partition for s < 4h.

lower side of a block may not be of the same length, we define ci to be the sum of the
number of columns spanned by the upper side and the number of columns spanned
by the lower side.

From Lemma 2.2, FOP(s N) (=t/4h FOP(s, Li U T U U) Since s < 4h, thereIi=1
must be fewer than 4h two-sided nets through any vertical cut at any feasible offset.
Therefore, any offset with vertical cuts through L and Uj for j > i + 1 or j < i- 1
would be an infeasible offset, because such a cut would be crossed by all the nets in

T+I or T_1. Thus we can write

t/4h

FOP(s,N) N [fOP(s, niuTuUi)rfOP(s, niuTuUi+l)RfOP(s, niuTuUi_l)]
i--1

Note also that no vertical cuts through both Li and Uj can cut any two-sided nets
outside blocks i through j, so we can rewrite FOP(s, N) as

t/4h

R [FOP(s, niuTiuUi)rFOP(s, niuTiuTi+l uUi+l)rFOP(s, niUTi_l uTiUUi_I)].
i----1

Now we can solve each of FOP(s,L U T U T+I U Ui+) and FOP(s,L U T_ U
T U U-I) in time O(h(ci_ + c + c+)lg(c_ + c + Ci+l)) as follows. We use
Lemma 3.4 to decompose the problem further, Lemma 2.1 for the computation of
new contours (which will still have O(h) extensions), and Lemmas 3.1 and 2.7 to
solve the subproblems.

To solve FOP(s, LUTUU), we use a recursive method, for which we consider the
general problem of solving FOP(s, L* UT* U U*) with IT*I t* _< 4h. We decompose
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such a problem into left and right blocks, each having half as many two-sided nets as
the original. Using subscripts and r to denote the portions of L*, T*, and U* falling
in the left and right blocks, we know from Lemma 2.2 that

FOP(s, L* t2 T* U U*) FOP(s, L t2 T* U U*)N FOP(s, L kJ T* U*)
FOP(s,LTU)FOP(s,LT*U)
FOP(s, L T* U) FOP(s, LT U).

The restrictions from T* to T and T are determined by reoning similar to that
used above. Also above, we use Lemma 3.4, Lemma 2.1, Lemma 3.1, and Lemma 2.7
to solve FOP(s, L T* U) and FOP(s, L U T* U) in time O(hc* lg c*), where
c* is the sum of the number of top and bottom columns spanned by L*, T*, and U*.
FOP(s, L * U) and FOP(s,L T U) are just recursive calls; we denote
the sum of the number of top and bottom columns in these subproblems as c and
c. Then, the time T(t*, c*) to compute FOP(s, L* T* U*) can be written as

T(t*, c*) T(t*/2, c) + T(t*/2, c) + O(hc* lg c*)

* c* and T(1, c) O(hclgc). There are O(lgt*)for all t* 4h, where c + cr
stages in the recursion, and the total work on all subproblems at any given stage is

O(hc* lg c*) time. Thus, T(t*, c*) O(hc* lg c* lgt*), and, in particular, T(4h, ci)
O(hci lg ci lg h) O(hci lg2 c).

Putting everything together, the time to solve FOP(s, N) is

t/4h t/4h

T(t,c) T(4h, c) + O((ci--1 + Ci + c+)hlgc)

t/4h

O(hci lg2 c) + O(hc lg c)

O(hc lg2 c) + O(hc lg c)
O(hc lg2 c).

Finally, we must return to solving the original problem in the case that s 4h.
We divide the channel into t/2h blocks, each spanning 2h two-sided nets. om
Lemma 2.2, FOP(s, N) t/2h FOP(s, Li U T U U). rthermore, at any offset, we
need not consider any vertical cut for which the number of two-sided nets crossing
the cut is less than s- 2h or greater than s. In the former ce, we know the cut
cannot provide evidence of infeibility; in the latter case infeibility is guaranteed.
Thus, we can write

t/2h

FOP(s, N) [FOP(s, Li Ti Ti+l U’" Ti+/2h Ui+/2h-1 Ui+/2h)

FOP(s, Li Ti Ti_ ... Ti-/2h U Ui-/2h+l Ui-/2h)].
At this point, we could proceed when s < 4h by incorporating two-sided nets
into the upper and lower contours, but there are too many two-sided nets to get the
desired running time; we might end up with more than O(h) distinct extensions in the
contours. Instead, we take out the s- 4h two-sided nets between Li and Vi+s/2h_
and the s-4h two-sided nets betweon Li and Vi_s/2h+l and we decree s by s-4h.
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Each infeasible offset in this new problem actually denotes the center of a range of
2(s- 4h) + 1 infeasible offsets of the original problem, but with this proviso, the task
is to solve

t/2h

N [FOP(4h, L U T U Ti+s/2h_ [.J Ti+s/2h [_J Ui+s/2h_ [_J Ui+s/2h)
i--1

FOP(4h, gi U Ti U Ti_s/2h+l [.J Ti_s/2h [.J Ui_s/2h+l U Ui-s/2h)].

We can solve these subproblems using Lemmas 3.4, 2.1, 3.1, and 2.7 as before. Also,
with a similar analysis for the combined running time of the subproblems, we get
total time of O(hc lg c).

THEOREM 3.6. FOP can be solved in O(cVrlg c) time.

Proof. We can use Lemma 2.2 to write FOP(s,N) FOP(s, Lt t2 T 2 Ut)
FOP(s, L T U) FOP(s, U9 T [2 L), where Lt is the subset of L with extensions
less than h and L is the subset of L with extensions greater than or equal to h, and
similarly for Ut and Ug. The first subproblem can be solved in O(hclg2 c) time using
Lemma 3.5, and the latter two subproblems can be solved in O(cn/h) time using
Lemma 3.3. By letting h v/-/lg c, FOP can be solved in O(cx/lg c) time.

We now show how to use a halving technique similar to that of [11] and [9] to
solve OOP in the sam time as FOP. We actually focus here on finding optsep(P),
the minimum separation attainable with an optimal offset for the routing problem P;
once optsep(P) is determined, the solution of the feasible offset problem can be used
to determine the optimal offsets. From the original problem P, we create a simpler
problem P that has about half the separation of P. The basic idea is to halve the
extensions of the contours of single-sided nets, remove every other two-sided net, and
compact the channel horizontally to eliminate .the freed space. More precisely, if the
two-sided nets are numbered 1 through t from left to right, we remove all the odd-
numbered nets and move the terminals of net 2i to the left by units. The nonzero
portions of the single-sided contours are also shifted left so that they stay the same
distance from their nearest two-sided nets. This is the same transformation used in [9],
but the effect on optsep is slightly different here due to the general arrangement of
single-sided nets and the disallowance of routing on the channel boundaries, and the
timing analysis for computing optsep(P) differs more substantially. The following
lemma states the relationship between optsep(P) and optsep(P).

LEMMA 3.7. Let s- optsep(P) and se optsep(Pe). Then 2s-2 _< s _< 2s+2.
Proof. We again use the theory of single-layer routability from [10]. In our

context, the flow of a cut is the number of nets that must cross it, and the cut is

safe if its flow is no greater than one less than the maximum of the horizontal and
vertical extents of the cut. A cut X in P that crosses f nets, p of which are lower
nets, q of which are two-sided nets, and r of which are upper nets, can be seen to
correspond to a cut X with the following properties: (1) The flow of X is in the range

+ +2 2 + + ] [2 32,2t + 2, and (2) the horizontal extent of Xe is
diminished relative to X to the same extent as the flow. Thus se- 1 E s-21 2’3 s-21 .],1
i.e., 2s E Is- 2, s + 2]. [:!

THEOREM 3.8. OOP can be solved in O(cv/-lg c) time.

Proof. To find optsep(P), we recursively find s optsep(Pe). Then we need only
determine which of the five separations in [2s 2,2se + 2] have feasible offsets for P.
Let T(m) be the solution time for optsep(P) where P has maximum extension m but
has been derived by repeated application of the halving transformation to a problem
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with maximum extension M. Then any extension h in P has been derived from an
extension hM/m in the original problem. An argument as in the proof of Theorem 3.6
then tells us that we can solve FOP for P in O(v/-v/n/Mclgc) time. Thus we

have T(m) T(m/2) + v/--v/n/Mc lg c, which yields T(m) v/--v/n/Mc lg c _<
x/rc lg c. B

COROLLARY 3.9. FOP and OOP can be solved in O(nl"51gn) time for c

O(n) D

4. Conclusion and further results. We have shown how to solve the feasible
offset and optimal offset problems for single-layer channel routing in time O(cv lg c).
(The time is O(cv/n lg c) when all nets are single sided and O(n) when all single-sided
nets are on one side of the channel.) This result is unattractive for large values of
c, but there is a superior alternative when c is larger than n1"5. Essentially all the
necessary machinery is already in place for the following result, which states that FOP
can be solved in O(n2 lg n) time independent of the number of columns.

THEOREM 4.1. FOP can be solved in O(n2 lgn) time.

Proof. Using Lemma 2.2, we decompose the lower contour into maximal mono-
tonic subsets. Since there are only n nets, we have at most n monotonic subsets. We
can find the feasible offsets for each subset in O(n) time using Lemma 3.2. The total
time required to find the feasible offsets for all of the subsets of the lower contour
is O(n). Furthermore, for each subset, the set of feasible offsets can be output as
a list of at most n nonoverlapping intervals with all the interval endpoints in sorted
order. Two sets of nonoverlapping intervals with endpoints in sorted order can be
intersected in time proportional to the total number of intervals, which is an upper
bound on the output size. We intersect the O(n) sets of intervals in a tournament
style, i.e., we go from n sets with n intervals in each set to El2 sets with 2n intervals
in each set, to 1 set with n2 intervals. There are lg n stages, with O(n2) work at
each stage, yielding a total time of O(n2 lg n). B

One direction for further research is to improve the time for feasible offset when
the number of columns is large. We know that t(n2) is a lower bound on the worst-
case running time, but we suspect that it may not be difficult to obtain an O(n2) upper
bound as well. Another remaining open question is whether our upper bounds for
feasible offset with smaller c can be improved. We know of no nontrivial lower bounds,
i.e., better than (min{c, n2}). It also might be possible to improve the time required
to solve optimal offset without making further progress on feasible offset. Though it
seems unlikely that optimal offset would be much easier than feasible offset, optimal
offset has a much smaller output size, and output size is the only basis for our lower
bounds on feasible offset.

It is also desirable to handle the situation in which there are multiple modules.
Within each module, the positions of the terminals are fixed, but on each side of the
channel the modules can slide back and forth as long as their order does not change.
In the optimal placement problem, the goal is to minimize the channel length given a
channel width. We can solve this problem in O(n3) time by adapting ideas used by
Chao and LaPaugh [3] for density minimization; more details can be found in [13]. A
further direction for research is to improve this O(n3) time when there is a reasonable
bound on the number of columns.

Finally, an interesting open problem related to SSFOP is efficient computation
of the max, + convolution. The technique in Lemma 2.7 can be extended to yield a
solution to max, + convolution for n-vectors of small integers (e.g., _< n/a) in less
than O(n2) time. If the range of integers could be extended to 1 through n, improved
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solutions for several VLSI routing problems would result (e.g., see [11]).
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Abstract. The existence and uniqueness of a canonical minimal encoder for any given sliding
block decoder are proven. The structure of this encoder is given in terms of an explicit sequence of
state splittings. The universality of the state splitting algorithm for code construction is clarified.

Key words, sliding block code, state splitting, symbolic dynamics

AMS subject classifications. 68R10, 94A24

1. Introduction. Consider a finite directed graph whose edges are labeled by a
finite alphabet. We call such an object a labeled graph. Now, together with a given
subset of initial states and a given subset of terminal states, a labeled graph presents
a regular language, defined as the set of all blocks obtained by reading the labels of
paths which begin at an initial state and end at a terminal state. When a labeled
graph is viewed as describing a regular language, it is usually called an automaton.

A labeled graph also presents a sofic shift, which is defined as the set of biinfinite
sequences obtained by reading the labels of biinfinite paths in the graph. When viewed
in this way, a labeled graph is usually called a presentation.

Regular languages form a prominent class of languages that is studied in automata
theory. Sofic shifts form a prominent class of systems that is studied in symbolic
dynamics. As can be seen just from the definitions, there is a strong connection
between regular languages and sofic shifts. And many results for regular languages
have analogues for sofic shifts.

The best-known example of this is the uniqueness of minimal presentations. These
are fundamental results which show how regular langauages and sofic shifts can be
presented in a canonical and minimal way.

For regular languages the result is as follows: Every regular language has a unique
minimal deterministic (i.e., at each state, the outgoing edges are labeled distinctly)
automaton; here, minimality is taken either in terms of number of states or in a
functorial sense (see [17]).

The analogous result for sofic shifts would be that every sofic shift has a unique
minimal deterministic presentation; this is not quite true. However, sofic shifts can, in
some sense, be broken down into irreducible pieces, and it is true that every every irre-
ducible sofic shift has a unique minimal deterministic presentation; again, minimality
can be taken either in terms of number of states or in a functorial sense ([13]).

These minimality results (one for regular languages and the other for sofic shifts)
are closely related, but neither implies the other.

It is natural to wonder if there is a notion of deterministic mapping between
regular languages or deterministic mapping between sofic shifts, and if such mappings
can also be presented in a canonical, minimal way. Indeed, for mappings between
regular languages, this was done some time ago (see [23, p. 290]). By considering the
identity mapping on a regular language, this result generalizes the minimality result,
mentioned above, for regular languages.
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We offer the notion of a sliding block decoder as the notion of deterministic
mapping between sofic shifts. A sliding block decoder is a special kind of sliding
block code; the latter is a mapping from one sofic shift into another such that each
symbol in the image sequence is a function of only a fixed number m (the memory) of
past symbols, the present symbol, and a fixed number a (the anticipation) of future
symbols in the domain sequence, and this function does not change with time. In
6, we define a sliding block decoder as a sliding block code that can be presented
by what we call a finite-state code or encoder (finite-state codes belong to a class of
objects known in automata theory as transducers). In 7, we give intrinsic and other
equivalent definitions of sliding block decoders.

In Theorem 6.2, we show that every sliding block decoder on an irreducible sofic
shift has a canonical, minimal encoder which is unique in a strong functorial sense.
And, again by considering the identity map, this result generalizes the fact that each
irreducible sofic shift has a unique minimal presentation. The canonical encoder
comes from a general construction for sliding block codes that is given in 5. In 8,
we describe how our canonical encoders can be constructed using specific splitting
and amalgamation operations on graphs. As part of our development in 8, we show
(Lemma 8.5) how any 1-block conjugacy (i.e., invertible sliding block code) between
two graph shifts (special kinds of sofic shifts) can be canonically decomposed into
splitting and amalgamation operations. This result may be of independent interest
within symbolic dynamics.

Aside from the connection with automata theory, there is a strong connection
between sofic shifts and the theory of constrained coding, a subfield of coding theory.
A typical problem in constrained coding is that of encoding a user’s digital data
stream into another digital data stream tailored to a channel across which it is to be
transmitted. No assumptions are made about the user’s data stream other than it
is binary or ternry or k-cry. It is the encoder’s job to encode the user’s arbitrary
stream of symbols into a stream of symbols conforming to specific constraints. We
assume that the constrained sequences, into which the user’s stream is encoded, lie
in some sofic shift W. The constraints are imposed either because of the physical
limitations of the channel or in order to improve the reliability of the transmission
process. For instance, W might be the (d, k) run-length limited sofic shift: between
any two consecutive l’s, there must be at least d and at most k O’s. Such a constraint
arises in magnetic and optical data storage channels where very short runs of O’s and
very long runs of O’s are prone to error (see [18], [33]). Or W might be an error-
correcting code i.e., a set of binary sequences such that any two distinct sequences
differ in a "large" number of coordinates; so, if a "small" number of errors are made,
then a sequence in W cannot be corrupted to look like a different sequence in W (see
[]).

In these practical applications, the encoding is done via a finite-state code. The
finite-state code is used as a finite-state machine to encode information in a symbol-
by-symbol manner. One can also use the finite-state code to decode, but the decoding
is done with bounded delay--not symbol-by-symbol (see the definition of finite-state
code in 6). Finite-state codes can be implemented in hardware.

Now, if the noise in the channel causes an error in the encoded information,
then because of the state-dependence of the decoding, such an error could propagate
indefinitely. For this reason, it is desirable that the decoding be implemented via
a sliding block code; by definition, such a code is a sliding block decoder. As a
consequence, any particular constrained-stream symbol figures into the computation
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of only a bounded block of user symbols; so, an error caused by the channel gives rise
to only a bounded burst of errors in the user’s sequence.

Given a sofic shift W and a positive integer k, a necessary and sufficient condition
for the existence of a finite-state code which encodes arbitrary k-ary data to sequences
in W is the entropy inequality: h(W) >_ log(k); here, h(W) denotes the entropy of
W, i.e., the asymptotic growth rate of the number of n-blocks that appear in W; this
is a consequence of the state-splitting algorithm ([1]); see 9.

For finite-state codes with sliding block decoders, stronger assumptions are needed.
It is sufficient that h(W) > log(k) or that W be a shift of finite type (a special kind
of sofic shift) and h(W) >_ log(k) (see [1], [20], [26]). Methods for constructing such
codes are contained in [1], [9], [14], [18], [28], among many others.

The state-splitting algorithm requires the choice of a deterministic presentation
and an auxiliary vector, called an approximate eigenvector; see, for example, the
formulation given in [28, El.

If we allow arbitrary choices in both the presentation and approximate eigen-
vector, then Corollary 11.7 shows that the algorithm is strong enough to find every
sliding block decoder. This is a broad and not-so-algorithmic interpretation of the
algorithm. See the discussion after Corollary 11.7.

If we fix the presentation to be the minimal deterministic presentation but allow
arbitrary choice in the approximate eigenvector, then Corollary 12.2 shows that, up
to a change in the domain of the decoder and a shift of the decoding function (but no
change in the decoding function itself), the algorithm is strong enough to find every
sliding block decoder. See the discussion after Corollary 12.2. In particular, it will
find the sliding block decoder with smallest window length; but Example 11.4 shows
that, in some cases, it will not find the sliding block decoder with smallest number of
encoder states ("state expansion" and "in-splitting" are additional necessary tools).

The narrowest and most algorithmic interpretation of the state-splitting algo-
rithm fixes the presentation to be the minimal deterministic presentation and the
approximate eigenvector to be a smallest such vector (in terms of maximal compo-
nent). Example 10.1 shows that, with this intrepretation, the algorithm need not find
the sliding block decoder with minimal window length. This is the first such example
we know of where W is a shift of finite type and h(W) log(k); examples of this
phenomenon, where h(W) > log(k), were found in [19] and [18].

Sections 2-4 provide most of the necessary background from symbolic dynamics.
There may be some overlap between our work and that of Hollmann ([16]).
2. Background. In this section, we .review definitions of some of the basic con-

cepts in symbolic dynamics.
The full shift over a finite alphabet ,4 is the set of all biinfinite sequences over

.4. A block (over ,4) is a finite sequence of symbols (in jr). An n-block is a block
of length n. The shift map a is defined by a(x) y, where y x+l. For an
element x .... x_ixox.., in a full shift, x[,,n] denotes the block which appears in
coordinates rn through n:

And

X[m,n Xm Xn.

X[n,o) ----XnXn+l... X(--cx),n] Xn--lXn.

The full k-shift is the full shift over A {0,..., k 1}.
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A shift space or a shift is a shift-invariant subset of a full shift obtained by for-
bidding the appearance of a collection of blocks.

A shift of finite type (abbreviated SFT) is a shift space obtained by forbidding
the appearance of a finite collection of blocks.

By a graph we mean a finite directed graph. For a graph G, we write G
()(G), $(G)), where ;(G) is the set of vertices (sometimes called states) and $(G) is
the set of edges. We write a finite path as a sequence of edges

?.t el. .en.

s(u) denotes the initial state of u and t(u) denotes the terminal state of u.
A graph homomorphism from a graph G to a graph H is a pair of mappings, the

state mapping

and the edge mapping

L* ;(G) ];(H),

L" (G) (H)

that are consistent in the sense that initial states and terminal states of edges are
preserved. We often refer to L itself, rather than the pair (L*, L), as a graph homo-
morphism. This makes sense because if L is the edge mapping of a graph homomor-
phism, then L determines L*. A graph homomorphism such that L and L* are 1-1 is
called a graph isomorphism.

The graph shift, sometimes called an edge shift, Xc is the set of all biinfinite
paths on G:

X( {... e_e0el..." e (G) and e+l follows e in G}.

We often regard graph shifts based on isomorphic graphs as being identical. Note
that any graph shift is an SFT.

For a square nonnegative integral matrix A, we take XA to be a graph shift
defined by a graph whose adjacency matrix is A. For instance, X[k] may be regarded
as the full k-shift.

A labeled graph (G, L) is a graph G together with a labeling L of its edges. A
sofic shift X is the set of all biinfinite sequences obtained by reading the labels of a
labeled graph (G, L)"

X- {...L(e_)L(eo)L(el)... ...e-le0el e XG}.

(G, L) is called a presentation of X. Note that any graph shift is a sofic shift. In fact,
it is not hard to see that any SFT is a sofic shift. A sofic shift which is not an SFT
is called strictly sofia

Let X and Y be shift spaces. Let m, a be integers such that m / a _> 0 and (I) a
map from (m + a + 1)-blocks of X to 1-blocks (i.e., symbols) of Y. Let " X -- Y be
the map defined by

() ([_,+]).
is called a sliding block code with memory m and anticipation a. The window

length is defined to be m + a + 1. We write
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By an (m, a)-block code, we mean a sliding block code that can be expressed with
memory m and anticipation a. By an n-block code we mean a sliding block code that
can be expressed with window length n. Unless otherwise specified, an n-block code

is assumed to have memory 0, i.e., is a (0, n- 1)-block code; when we write

we make this tacit assumption. In particular, unless otherwise specified, a 1-block
code has memory 0 and anticipation 0.

Note that the memory, anticipation, and window length of a sliding block code are
not well defined. For instance, a sliding block code with memory m and anticipation
a can also be expressed as a sliding block code with memory m and nticipation a + 1.
One might hope that the ambiguity could be removed if we were to restrict ourselves
to a consideration of (m, a) with minimum window length m + a + 1. If X is a graph
shift, then this does the tricksee Proposition 7.2. There are a unique memory and
anticipation which achieve the minimum window length; but even for SFT’s, this does
not hold in general (see [21]).

If X is a shift space and n is a positive integer, then the higher block system X[]

is the shift space obtained by breaking the sequences in X into overlapping blocks of
lenh n: the alphabet of X[] is the set of n-blocks in X, and each sequence x X
gives rise to the sequence... (x_...x_)(xo...Xn-1)(.Xl...Xn)... e XIn].

Note that an n-block code on X may be viewed as l-block code on X[].
There is an analogous notion for graphs: G[] denotes the graph whose states are

paths of lenh n- 1 in G and edges are paths of length n in G with the same kind of
overlapping condition as in X[]. There is a ntural identification between the graph
shift Xa and (X)[].

Observe that for labeled graph (G,L), L is a l-block code. In fact, every
l-block code on a graph shift is of this form. One special case of this is as follows.
Suppose that (G, L) is presentation of a sofic subshift contained in a graph shift
XH. Then L can be regarded (the edge mapping of) a graph homomorphism:
(L*,L) (P(G),$(G)) (P(H),$(H)).

A factor map, sometimes called a factor code, is sliding block code which is
onto. We say that the image is a factor of the domain and the domain is n extension
of the image. An imbedding is a sliding block code which is 1-1. A conjugacy is a
sliding block code which is 1-1 and onto. Conjugacies re the fundamentM mappings
of symbolic dynamics. If there is a conjugacy from one shift space X to another shift
space Y, then X nd F re forced to share mny properties; for instance, if one is
an SFT (resp., sofic), then so is the other. However, the property of being a graph
shift is not preserved under conjugacy; in fact, it is well known that a shift space is
an SFT if and only if it is conjugate to a graph shift.

3. The structure of conjugacies betweeen graph shifts. It is well known
that every conjugacy between graph shifts cn be broken down into conjugacies ob-
tained by the basic graph operations: out-splitting; in-splitting; out-amMgamation;
in-amMgamation; nd graph isomorphism. We briefly review these operations.

An out-splitting H of a graph G is obtained follows: for each state I of G,
partition the outgoing edges from I into sets {P,...,P}. The graph Hh vertices

{I,... ,ITM } and n edge, called eJ, from state I to state JJ for each edge e P
from I to J. The states I are cMled descendants of state I, and the edges ej are
cMled descendants of edge e. The state I and its outgoing edges in H re shown in
Fig. 1.
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FIG. 1.

Note that an out-splitting can split several states simultaneously, each into several
pieces (sometimes, an out-splitting is called a round of out-splitting to emphasize that
several things are done at the same time).

And an in-splitting is defined by partitioning incoming edges rather than outgoing
edges. When H is an out-splitting of G, we say that G is an out-amalgamation of
H. When H is an in-splitting of G, we say that G is an in-amalgamation of H. We
include graph isomorphism as a basic graph operation as well.

The notion of "state combining," as in [18], is a combination of in-splitting and
out-amalgamation.

Each basic graph operation creates a graph H from a graph G. Associated to
such an operation is a basic graph conjugacy Xa - XH. For instance, if H is an out-
spliting of G, then the basic graph conjugacy is the 2-block code Xa --. XH
defined by

(ef) ej,

where j is the index of the partition element to which f belongs. Now, G is an
out-amalgamation of H and the associated basic graph conjugacy is the 1-block code

:XH --* Xv defined by

The basic graph conjugacy associated to a graph isomorphism is simply a relabeling
of the symbols of the shift; for our purposes, this is not very important, and we
will often forget about it (on the other hand, it is extremely crucial in the theory of
automorphisms of SFTs--see [34]).

We sometimes refer to the conjugacy,associated with a basic graph operation as
that basic graph operation itself.

The following is a cornerstone of symbolic dynamics, due to R. F. Williams.
THEOREM 3.1 ([35], [32, Chap. 5, 3]). Every conjugacy between graph shifts is

the composition of basic graph conjugacies.
Now, let (G, L) and (H, M) be labeled graphs which present the same sofic shift

X. We say that (H, M) is obtained from (G, L) by basic graph operations if there is
a sequence of presentations

(G, L) (Go, Lo), (G1, L1), (Gn, L) (H, M)

of X and basic graph conjugacies

i XG XG+I
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z-= (z0L 1
X

FIG. 2.

FIC. 3.

such that the diagram in Fig. 2 commutes. Notice what happens to the labeling L of
(G, L) if Xc --+ XH is a splitting: the label of each edge in G is copied to all of
its descendants in H. Viewed the other way, this says that if -1 XH --+ Xc is an
amalgamation, then any two edges of H amalgamating to the same edge of G must
have the same label.

By focusing on the perimeter of the commutative diagram of Fig. 2, we see that if
(H, M) is obtained from (G,L) by basic graph operations, then there is a conjugacy

" Xa --+ XH such that the diagram in Fig. 3 commutes.
In fact, the converse is true.
THEOREM 3.2. Let (G, L) and (H, M) be labeled graphs which present the same

sofic shift X. Then (H,M) is obtained from (G,L) by basic graph operations if and
only if there is a conjugacy " XG -- XH such that the diagram in Fig. 3 commutes.

Proof. It remains to verify the "If" direction. Decompose into basic graph
conjugacies X --+ Xa+1. We claim that this can be done so that all of the
splittings come first. To see this, it suffices to show that if H is an amalgamation
(out or in) of G and K is a splitting (out or in) of H, then there is a graph A such
that A is a splitting of G and K is an amalgamation of A and the diagram of basic
graph conjugacies in Fig. 4 commutes. This can be done by mimicking the splitting
of H by a splitting of G or by using the fiber product construction--for the latter,
see Proposition 8.6 and the definition of fiber product before it; we leave the proof as
an exercise for the reader.

So, we may suppose that G Go, G1,..., G/are constructed by out-splitings/in-
splittings, and G+I,...,Gn H are constructed by out-amMgamations/in-
amalgamations. For 0 _< i _< t- 1, let (O) (0)-1o o ()-1;
then 0 is a 1-block code, and we define L LoO{. For t <_ <_ n- 1, let
0 (O) (n_1)o-.. o (); then 0 is a 1-block code, and we define n MoO.
The reader can verify that, with these choices, the diagram in Fig. 3 above
commutes.

In later sections, we will have more to say about the specific sequence of basic
graph operations used to pass from (G,L) to (H,M) in terms of the conjugacy
See Proposition 8.2 and Lemma 8.5.
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FIG. 4.

FIG. 5.

4. Right-resolving labelings and the Fischer cover. A labeled graph is
called right resolving if, at each state I, all of the outgoing edges from I have dis-
tinct labels. Intuitively, this means that, given knowledge of an initial state, the label
resolves the outgoing edge. In automata theory, "right resolving" is usually called "de-
terministic." When (G, L) is right resolving, we will sometimes say that the labeling
L, or the 1-block code L that it generates, is right resolving.

Likewise, we have the notion of left resolving: replace "outgoing" with "incoming"
in the definition above.

Consider the special case in which the following conditions hold: G is irreducible,
(G, L) presents a graph shift XH, and L is right resolving; then, we have the following
unique lifting property: L is the edge mapping of a graph homomorphism (L*, L) from
G to H, and for each state I of G and each outgoing edge e in H from L*(I), there is
a unique edge d in G such that d is outgoing from I and L(d) e as shown in Fig. 5.
See [11, p. 8].

Every sofic shift X has a right-resolving presentation. We define one such pre-
sentation below.

Let X+ (resp., X-) denote the set of all right (resp., left) semiinfinite sequences
which appear in elements of X:

X+ {x[0,) x e X};

X- (x(_,_t] x e X}.

For a left semiinfinite sequence x- E X-, define the follower set of x- to be the set
of all right semiinfinite sequences that can follow it:

{u+: z-u+ e x}.
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Now, the Krieger cover (Kx, Mx) of X is the right-resolving labeled graph whose
vertices are the follower sets {gr(x-) x e X} with an edge

labeled u whenever there is an x E X such that x0 u, $’1 $’(x-) and $’2
(x-u). Such an edge is denoted e($’1, u). It is well known that a shift space is
sofic if and only if it has only finitely many follower sets, and if so, (Kx,Mx) is a
(right-resolving) presentation of X.

A shift space X is called irreducible if for every (ordered) pair of blocks u, v that
appear in X, there is a block w such that uwv appears in X. An element x E X is
called left transitive if every block that appears in X appears infinitely often to the
left in x. It is not hard to see that a shift space is irreducible if and only if it has a
left-transitive point. In fact, if X is irreducible, then the set of left-transitive points is
dense in the sense that for every x X and positive integer n, there is a left-transitive
point x X such that x X[-n,n]

For an irreducible sofic shift X, let Fx be the subgraph of Kx whose edges are
incident to follower sets of left-transitive points (here, we mean a vertex which can be
expressed as the follower set of a left-transitive point; it may also be expressable as the
follower set of a point which is not left transitive). Clearly, Fx is a sink component
of Kx, i.e., every outgoing edge in Kx from a vertex in Fx is an edge in Fx. So, Fx
is irreducible. Let Lx MxIFx. The labeled graph (Fx,Lx) is called the Fischer
cover of X.

Let X be an irreducible sofic shift. According to [13], X is an SFT if and only if
(Lz)o is 1-1. It is easy to see that X is a graph shift if and only if Lx is 1-1.

For a sofic shift X, a magic word w is a block in X such that whenever uw and
wv are blocks in X, so is uwv. If a sofic shift is irreducible, then it has a magic
word ([13]). Observe that if x- (x’)- and this semiinfinite sequence contains a
magic word, then 9r(x-) ’((x’)-). The only important thing to remember about
left-transitive points is that they contain magic words infinitely often to the left; this,
together with the fact that (Lz)o is right resolving, yields the following: If x is left
transitive, x(-,i] x_o#], (Lz)o(z) x, (Lz)o(z’) x’, then z(_#]
In particular, (nx):2(x) consists of a single point.

The next result summarizes some basic facts regarding the Fischer cover. In
particular, the Fischer cover is the minimal right-resolving presentation.

THEOREM 4.1. Let X be an irreducible sofic shift with Fischer cover (Fx,Lx).
(1) ([13], see also [25]) For every right-resolving presentation (G,L) of X, with
G irreducible, there is a right-resolving graph homomorphism q2 G --. Fx
such that to is onto and the diagram in Fig. 6 commutes.

FIG. 6.

Sometimes this is called the Shannon cover of X.
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(2) ([24], see also [10]) /f : X Y is a conjugacy, then there is a unique
conjugacy c XFx -- XF. (called the lift of ) such that the diagram in
Fig. 7 commutes.

FIG. 7.

The following is a useful fact regarding right-resolving labelings.
PROPOSITION 4.2. Let G, H be irreducible graphs, and let fl Xo -- XH, f2

XH -- Y be 1-block codes with fl onto. Then f2 o fl is right (resp.., left) resolving if
and only if f2 and fl are right (resp., left) resolving.

Proof. Clearly, the composition of two right-resolving codes is right resolving. If
f2 o f is right resolving, then fl cannot collapse two edges of G having the same
initial state. Thus fl is right resolving. So, it remains to prove:

f2 o f right resolving = f2 right resolving.

Write fl (F1)oo and f2 (F2)oo. If f2 were not right resolving, then there would
be two distinct edges e, e’ in H, with the same initial state J such that F2(e) F2(e’).

Since fl is a 1-block code from a graph shift into another, F is the edge mapping
of a graph homomorphism: (F, F1). Since fl is a right-resolving code from one
irreducible graph shift onto another, it has the unique lifting property. So, we can lift
the edges e, e to distinct edges d, d in G with the same initial state, namely any F-
preimage I of J, such that F (d) e, F (d’) e’. This is shown in Fig. 8. However,

FIG. 8.

then F2 o Fl(d) F2 o F (d’), contradicting the fact that f2 o fl is right resolving.

There is a "delayed" version of right resolving: a labeled graph (G, L) is called
right closing if there is a. nonnegative integer d such that for each state I all paths
of length d -F 1 which begin at I and have the same L-label must also have the same
initial edge. We denote the smallest such d by d(G,L) d(L) d(Loo), and we
call this the delay of L. If (G, L) is not right closing, then we declare d cx). We
sometimes call the labeling L itself, or the 1-block code Loo, right closing. Observe
that L is right resolving if and only if L is right closing with delay zero.

Both notions, right resolving and right closing, can be formulated in the more
general context of sliding block codes on shift spaces as follows.
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Let X Y be a sliding block code on a shift space. We say that is right
resolving if it is a 1-block code O and whenever uv and uv’ are 2-blocks in X
(with the same initial symbol u) and O(uv) O(uv’), then v v’; we say that is
right closing if whenever x, x’ E X, x(_o,] x_o, for some i, and (x) (x’),
then x

We leave it to the reader to verify that these definitions reduce to the definitions
that we gave earlier in the case that is a 1-block code on a graph shift (i.e., induced
by a labeled graph).

The following is an analogue of Proposition 4.2 for right-closing codes.
PROPOSITION 4.3 (see [10]). Let X, Y be irreducible SFTs and f X Y, g

Y -- Z be sliding block codes with f onto. Then g o f is right closing (resp., left
closing) if and only if g and f are right closing (resp., left closing). Also, if X and Y
are merely sofic and g o f is right closing (resp., left closing), then f is right closing
(resp., left closing).

The proof of this is analogous to that of Proposition 4.2; it is contained in [10,
Lem. 12].

For right-closing labelings, we have the following more specific version of Propo-
sition 4.3, which generalizes Proposition 4.2. Since it is not used directly in the
remainder of this paper, we defer the proof to Appendix I.

PROPOSITION 4.4. Let G,H be irreducible graphs, and let fl Xc -- XH, f2
XH - Y be 1-block codes with
d(f2 o f), and d(f2), _< d(f2 o f). In particular, f2 o f is right closing if and only if
f2 and f are.

There is a version of the notion of delay for sliding block codes on irreducible sofic
shifts; this is given in 7. Proposition 4.4 actually generalizes to this setting.

5. A basic construction. In this section, we associate some apparatus to slid-
ing block codes--especially sliding block codes on sofic shifts.

Let X, Y be shift spaces over the alphabets b/, P. Let X Y be a sliding
block code. Define

(x)) e x}.

We naturally identify a pair of sequences with a sequence of pairs, and regard S as
a subshift over the alphabet/d Y. Define

V V, Zo(u,v)=v

and

O :bl --, U Oo(u, v) u.

Then (Z) S r and (O)o S, X are 1-block codes, and we have

(x))

Note that is a factor map (i.e., onto Y), if and only if (Z) is.
The following is a consequence of the definitions.
PROPOSITION 5.1. Let X and Y be shift spaces and X -- Y be a sliding block

code. Then ((90)o is a conjugacy, and we have the commutative diagram in Fig. 9.
Proof. ((.90) is a conjugacy since x determines (x). The commutativity of the

diagram is immediate.
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X

FIG. 9.

So, X and S share many properties, such as the following: X is an SFT if and
only if S is an SFT; X is sofic if and only if S is sofic; X is irreducible if and only
if S is irreducible. In particular, if X is an irreducible sofic shift, then, so is S, and
thus it too has a Fischer cover. We denote the Fischer cover (Fs,,Ls,) by simply
(Pc, L). We write

Z Z o L, 0=0oL.

Applying the basic properties of the Fischer cover in this setting, we obtain the
following theorem.

THEOREM 5.2. Let X be an irreducible sofic shift, and let X -- Y be a sliding
block code.

(1) The diagram of Fig. 10 commutes.

FIG. 10.

(2) (PC, (.0) (Pc, O o L) is obtained from (Fx, Lx) by a sequence of basic
graph operations.

Proof. (1)" this follows from Proposition 5.1, Theorem 4.1 (part (2)), and the
definitions of 27, O. (2): this comes from the commutativity of the left-most triangle
in part (1) and Theorem 3.2. [l

WhenZ is right resolving, the apparatus given in Theorem 5.2 has more meaning.
This is developed in the next section.

6. Encoders, decoders, and the canonical encoder. A finite-state code
(G,Z, O) is a graph G, together with two labelings Z, O (the input and output la-
belings) such that/: is right resolving and O is right Closing.

The idea is that we can use a finite-state code as a finite-state machine to en-
code right semiinfinite sequences presented by (G,Z) (well, at least all sequences that
are presented by the Z-labeling of G beginning at some fixed state of G) to right
semiinfinite .sequences presented by (G, (9); since Z is right resolving, the encoding is



CANONICAL ENCODERS 567

accomplished symbol-by-symbol, and since (9 is right closing, the decoding is accom-
plished with bounded delay.

Recall from 1 that we imagine that encoded information is transmitted across
a noisy channel and then decoded. Recall also that it is desirable that each decoded
symbol be a function of only a bounded number of encoded symbols, and thus that
decoding be implemented by a sliding block decoder.

A sliding block decoder X Y is a sliding block code for which there is a
finite-state code (G,:l, O) such that X O(XG), :I(XG) Y, and the diagram
in Fig. 11 commutes. We say that is a decoder for (G,:/, (9) and that (G,:I, (9) is
an encoder for . Note that, by definition, (X)= :I(XG)= Y.

FIG. 11.

If the diagram in Fig. 11 commutes, and :/is right resolving, then by Proposi-
tion 4.3, (9 is automatically right closing. So, we have the following proposition.

PROPOSITION 6.1. An encoder for a sliding block decoder is a (G,:I, (9) such
that the diagram in Fig. 11 commutes and :l is right resolving.

The following result shows that every sliding block decoder on an irreducible sofic
shift has a canonical minimum encoder. The proof is based on an idea of M. Nasu’s.
In [31, 7], he views a pair of graph homomorphisms p" K --. G and q" K -- H as
a presentation (K, (p, q)) of a sofic shift, and then considers a canonical cover of this
sofic shift. Here, we consider the Fischer cover XF, of the sofic shift S.

THEOREM 6.2. Let X be an irreducible sofic shift, and let " X -+ Y be a sliding
block decoder. Then (F,,50) is an encoder for and is the unique minimum
encoder in the following sense"

Let (G,:I, (9) be any encoder for with G irreducible. Then there is a right-
resolving graph homomorphism M G - F such that M is onto and the diagram
in Fig. 12 commutes.

X
FIG. 12.

Proof. Let (G,2", (9) be an encoder for with G irreducible. Let I, be the labeling
of the graph G defined by

() -= (O(),()).
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Then

=_ Vow(Z)

and we have the commutative diagram in Fig. 13. Now, since , (2")oo and 2"00 are

FI. 13.

1-block codes and 2" is right resolving, so is . Since Ooo maps onto X, (G, ) is a
right-resolving presentation of S. Thus, by Theorem 4.1 (part 1), there is a right-
resolving graph homomorphism M" G -- F such that Moo is onto and the diagram
in Fig. 14 commutes. Thus, the diagram in Fig. 12 commutes.

FIG. 14.

By Proposition 4.2, since Z is right resolving, so is :; thus, (F, :,) is indeed
an encoder for .

Note that the minimality of the Fischer cover (Theorem 4.1 (part (1))) amounts to
the special case of Theorem 6.2 where X Y and id (here, and in the remainder
of the paper, id denotes the identity map).

We now consider sliding block decoders that have an encoder (G,2-, O) such that
O is left resolving and X, the domain of , is a graph shift. In the following, we will
see that in such a case (9 itself is left resolving.

PROPOSITION 6.3. Let be a sliding block decoder on an irreducible graph shift
X XH which has an encoder (G,2-, O) such that G is irreducible and 0 is left
resolving. Then, (0)oo is a left-resolving conjugacy.

Proof. By Theorem 6.2, we may write

(1) 0oo (0)oo o Moo,
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where M" G F is a graph homomorphism with Mo onto. By Proposition 4.2,
since O is left resolving, so is

Since X is an SFT, (L)o is a conjugacy. Thus, since (O)o0 is always a conju-
gacy, (O) is a conjugacy. So, (O)o is a left-resolving conjugacy.

If, in the preceding result, Oo is a left-resolving conjugacy, then by (1) M
XG -, XF, is a left-resolving conjugacy. But since Z (:) oM and 2; is right
resolving, Mo is a biresolving (i.e., both right- and left-resolving) conjugacy. Since
the domain and range of his code are both irreducible graph shifts, M is a graph
isomorphism (see [30, 2], [5, Lem. 4]). Thus, we have recovered the result [5, Thm.
2] that whenever a conjugacy " Xv --, XH between graph shifts can be expressed as

(2) =gof-1,

where f XK -- XG is a left-resolving conjugacy and g XK -- XH is a right-
resolving conjugacy, then expression (2) is unique (up to codes that simply relabel
the alphabet). M. Nasu has informed us that this also follows directly from [31, Lem.

7. Characterization of sliding block decoders. Our next result character-
izes when a sliding block code is a sliding block decoder in terms of a "right-resolving"
type of property. The proof of this result pretty much boils down to an understanding
of what (F, L) really is. Well, (F,L), is the right-resolving labeled graph whose
vertices are the follower sets ’((x,y)(_,_ll) where (x, y) S is left transitive, with
an edge

labeled (u, v) whenever (x’, Y’)(-o,-] (x, y)(_,_](u, v); such an edge is denoted
e(9v, (u, v)), where 5r ((x, Y)(-o,-]) is the initial vertex.

THEOREM 7.1. Let be a sliding block code on an irreducible sofic shift X. Then
is a sliding block decoder if and only if .for all left-transitive points x E X and

y (x), x(_,_] and Y(-o,0] determine xo (that is, if x, x’ X are left transitive,
y (x), y’= (x’), x(-o,-z] x(_oc,_z], and Y(-o,0] Y-o,0], then xo Xo).

Proof. Suppose that is a sliding block decoder.
By Theorem 6.2, (F,:, 0) is an encoder for . So, is right resolving, and

this means that - and v uniquely determine the edge e(’, (u, v)); equivalently, " and
v uniquely determine u.

Now, if x X is left transitive and y (x), then (x, y) S is left transitive too.
So, .T" _: ’((x, Y)(-o,-_l]) e ];(F). Now, X(_o,_l] and y(_,_] uniquely determine
the vertex ’. Since Z is right resolving, " and y0 uniquely determine the edge
e(’, (x0, Y0)) and therefore x0. Thus, x(_,_] and Y(-,0] determine x0.

For the converse, we will show that if the condition holds, thenZ is right resolving
and so is a sliding block decoder.

Let " be a vertex in F, and let e(’, (u, v)) be an outgoing edge from ’. Then
there is a left-transitive point (x, y) S such that " ’((x, Y)(-o,-]) and (u, v)
(x0, Y0). Now, x is left transitive, and y--(x). So, x(_,_] and Y(-,o] determine
x0. So, " and v determine e(9, (u, v)), and so 2: is right resolving, as desired.

The goal of the remainder of this section is to give a version of the condition in
the preceding result that is more concrete and is based on graph shifts.

Recall that the memory and anticipation of a sliding block code are not uniquely
defined. Nevertheless, it is natural to consider the minimum memory and anticipation
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of a sliding block code:

amin amin() min{a for some m, is an (m, a)-block code}
mmin -= mmin() min{m for some a, is an (m, a)-block code}.

The following result shows that the minimum memory is actually independent
of the minimum anticipation for sliding block codes on graph shifts. See [21] for an
example which shows that this result is false for sliding block codes on sofic shifts--in
fact on SFTsin general.

PROPOSITION 7.2. Let be a sliding block code on a graph shift Xa.
(1) is an (mmin, amin)-block code.
(2) If is an (m, a)-block code, then m + a + 1 >_ mmin + amin + 1 with equality

if and only if m mmin and a amin. In particular, the minimum window
length, mmin + amin-+-1, is divided uniquely between memory and anticipation.

Proof. (1): Let

m* min{m " is an (m, amin)-block code}.

Clearly m* _> mmin. We must show that m* mmin. Suppose not. Then

mmin m*.

Write (I)*’amin. By the definition of m*, there are paths in G

f- Amin

of length m* + amin + 1 such that

and ei fi, -m* + 1 <_ i <_ amin.

Now, we can also write l]mmin’a for some a > amin Let w be a path of length
a- amin which begins at t(3’) t(). Let x, y E Xa such that

X[-m*,a] 3"W and Y[-m*,a] z]o).

Then,

(3) (u)0.

But since mmin m*,

(4) (X)0---- II](x[--?Ttmin,a])--- (Y[--mmin,a])---(Y)o"

Equations (3) and (4) contradict one another. This yields part (1).
(2): If m + a + 1 mmin + amin -+- 1 and m > mmin, then a < amin, contrary to

the definition of amin. This gives Part (2). V!

Write 3’ o (Lx). Define

a a() =- amin(3’), m m() ?Ttmin(3’
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and define d() as the smallest nonnegative integer such that for z E XFx and y
"(z), Z[-m,a-1] and Y[0,d] determine Za. It is easy to see that this generalizes the
notion of delay for labelings that we gave in 4.

The following proposition characterizes sliding block decoders in terms of d()
and a().

PROPOSITION 7.3. Let : X -+ Y be a sliding block code on an irreducible sofic
shift X. Then is a sliding block decoder if and only if

d() _< a().

Proof. Suppose that is a sliding block decoder. Let z,z’ XFx, Y "(z),
"(z’) be such that

Z[-m,a-1] zi_,,a_l and Y[o,a] Y[o,]"

Then d() _< a().We will show that z z.
We may assume z and z’ are left transitive and z(-,a-1] zi_,a_l]. Let

x- (Lz)(z), x’- (Lx)(z’).

Then x and x’ are left transitive. Now x(-,a-1] x(_,a_l] and y(_,] Yi-,a]"
Since Lx is right resolving, zThus by Theorem 7.1, Xa Xa. Za.

Suppose d _< a. Let x, x’ X be left transitive, y (x), y’- (x’), x(_,-1]
(-o,-1], and Y(-,o] Yi-,0]" We will show x0 x. Choose z,z’ XFx

such that (Lx)o(z) x and (Lx)(z’) x’. Then z(_,_l] z’(-,-1]" Since

Y(-,0] Y’ and d < a, we have z0 z Therefore x0 x. Therefore is a(-o,O]
sliding block decoder by Theorem 7.1.

In the next proposition, we characterize the delay of a sliding block decoder
X Y in terms of the output labeling O of any finite-state code (G,, O) having

sliding block decoder .
PROPOSITION 7.4. Let G be an irreducible graph. Let (G,:, O) be a finite-state

code having a sliding block decoder " X -+ Y. Then

d() min{d" Vu Xc, u0 determines Ocx(?)[O,a-d]}.

Proof. Write d d() and

d’- min{d" Vu e Xc, u0 determines O(U)[o,-d]}.

d’ _< d: Let u E Xv. We must show that u0 determines O(U)[O,a_d]. We can
assume that u is left transitive. Let z XFx be such that (Lx)(z) O(u).
Set y :(u). By the definition of delay, z(-,-d+] and Y(-,I-+] together
determine Zl-d+. Thus z(-,-d] and Y(-,0] determine Z[l_d,a_d]. Now u(_,0]
determines both Z(-,a-d] and Y(-,0]; so u(-,0] determines (Lz)c(Z)[1-d,a-d]
O(U)[1-d,a-d], SO U(-,0] determines O(U)[O,a-d]. But O is a 1-block code on
Xv; so actually, the edge uo determines Ox(U)[O,a_d] as was to be shown.

d _< d" Fix z XFx and set y o (Lx)(z). We must show that Z[_m,a_l]
and Y[0,d’] determine Za. Since XFx is a graph shift and o (Lx) has memory m, it
suffices to show that z(-c,a-1] and Y[0,d’] determine z. By Theorem 6.2

d’ min{d" Vu e XF, Uo determines (O)(U)[O,a-d]}.
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Now d(O) < a. (Otherwise there would be two (m + a + 1)-blocks
in F with u0 =fi u) (and thereforeu-re.., u-luo ua and u_, u_lu’o ua

with :$(u0) :(u)) but with O(u-m U-lUo ua) O(U--m U--U’o U’).)
By Theorem 5.2, there is a conjugacy XF - XF,. Now z(-_oo,-] de-
termines (Lx)oo(z)(-oo,-l] ((-0)oo(O(z))(_oo,_]. Using that d(O) < a,
(f9)oo(0(z))(-oo,-l] together with Z(-oo,a-] determines 0(z)(-oo,-1]. Use that

Z is right resolving to see that O(z)(-oo,-1] together with Y[0,d,] determines

0(z)(-oo,d,]. By the definition of d’, O(z)(-oo,d,] determines (O)oo(0(z))(-oo,a-d,+d,]
(Lz)oo(Z)(-oo,]. But this (together with Z(-oo,-l] again) determines Za, as was to
be shown. E!

Sliding block decoders are intimately related to the following class of codes intro-
duced in [11, 4].

A sliding block code on an irreducible sofic shift is right closing a.e. if for
each left-transitive x E X, the tail X(-oo,-] and the image (x) of x, taken together,
determine x.

From [11, 4], one can see that is right closing a.e. if and only if o (Lz)oo
is right closing (so, if X is an SFT, then right closing a.e. =v right closing). And
from this, one can show that is right closing a.e. if and only if there is some k _> 0
such that for each left-transitive x E X, X(-oo,-1] and (x)(-oo,k], taken together,
determine x0.

From this and Theorem 7.1, we obtain the following corollary.
COROLLARY 7.5. A sliding block code on an irreducible sofic shift X is right

closing a.e. if and only if for some k > O, o a is a sliding block decoder.

8. Construction of (F, (9) by basic graph operations. We view the canon-
ical encoder (F,:2,) as the labeled graph (F, (..0) together with a choice of right-
resolving labeling/:. In the main case of practical interest, Y is the full k-shift. In
this case, F has out-degree k at each state, and Z is simply a 1-1 assignment, for
each state I in F, of each of the k-cry symbols to the edges outgoing from state I
(such a labeling is sometimes called a road coloring). So, in some sense, the heart of
the construction of (F,:, 0) is the construction of (F, 0). This is why we focus,
in this section, on how (F, (9) can be obtained from the Fischer cover (Fx,Lx) by
an explicit sequence of basic graph operations. This strengthens Theorem 5.2 (part
(2)).

Whis section is somewhat CechnicM. So, we recommend ha he reder skim
it first, paying prticulr attention to the statements of Theorem 8.1, the left nd
right Markov properties, Proposition 8.2, and Proposition 8.11. After reading the
remaining sections, the reader can then come back to this section in detail.

THEOREM 8.1. Let be a sliding block decoder on an irreducible sofic shift
X. Then (F, 0) is obtained from (Fx, Lx) by a sequence of at most re(C) + d()
in-splittings, followed by at most a() out-splittings, followed by a sequence of in-
amalgamations. That is, there are presentations

(Fx,Lx) (G0, L0),..., (G,Ln) (F, 69)

of X and basic graph conjugacies i Xc --+ XG+I such that for 0,..., re(C) +
d() 1, %hi are in-splittings, for m() + d(),..., re(C) + d() + a() 1, are
out-splittings, for re(C) + d() + a(),..., n 1, i are in-amalgamations, and
the diagram in Fig. 15 commutes.

Observe that if one is interested in the construction of only some encoder for
(rather than the canonical encoder), then the in-amalgamations can be eliminated.
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FIG. 15.

We break the proof of Theorem 8.1 down into Proposition 8.2 and Lemmas 8.3,
8.4, and 8.5.

Proposition 8.2 shows that all resolving conjugacies Xv XH between
graph shifts can be constructed by state splitting. The proposition also gives an
interpretation of the states of G as the atoms of a partition P of the length-m paths
of H, where m + 1 is the block length of -1. These atoms are related to subsets of
paths called independent paths in [15]. The partition satisfies a property that we
now explain.

Let :P be a partition of paths in H of length m. We use the notation [w] to denote
the atom of T’ to which w belongs, and w w’ to mean that w and w’ belong to the
same atom.

We say that :P satisfies the right Markov property if the following holds:

If w w’ and e is an edge that follows w in H,
then w2... wine w2 w’e.

Note, in particular, that if w w’, then t(w) t(w’).
Define a graph A9 as follows. The vertices of the graph Ap are the atoms [w] of

P. For each [w] E P(A9) and each edge e that follows w in H, we endow A9 with an
edge, called ([w], e), from [w] to IT2... Wme]. By virtue of the right Markov property,
this makes sense independent of the choice of representative of [w].

We define the l-block code 9 (9) by

Notice that @9 is right resolving.
Symmetrically, we can consider partitions that satisfy the left Markov property:

If w w’ and e is an edge that precedes w in H,
then ewl w,-i ewl wm--l"

And we have the analogous graph construction A9 and 1-block code 9.
PROPOSITION 8.2. Let Xv --. XH be a 1-block code, and let m be a

positive integer. Then the following conditions are equivalent:
(1) is a 1-block conjugacy with an (m,O)-block inverse (resp., (O,m)-block

inverse).
(2) (G, ) is obtained from (H, id) by a sequence ofm in- (resp., out-) splittings.
(3) There is a partition P of the set of blocks of length m in H that satisfies

the right Markov property (resp., left Markov property) such that G is graph
isomorphic to A9 and via this isomorphism, 9.
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Moreover, a 1-block conjugacy Xa --* XH has an (m, O) (resp., (O,m))-block
inverse for some m if and only if 42 is right (resp., left) resolving.

LEMMA 8.3. Let be a sliding block decoder on an irreducible sofic shift X. Let

9" o (Lx) XFx -- Y.

Then there is a right-resolving conjugacy

r" XF, XF,
such that the diagram in Fig. 16 commutes.

FIG. 16.

LEMMA 8.4. Let 9" be a sliding block decoder on an irreducible graph shift Xa.
Then (() XG -- Xc is a 1-block conjugacy whose inverse is an (m(9") +
d(9’), a(9"))-block code.

LEMMA 8.5. Let 0 0o Xc XH be a l-block conjugacy from one graph
shift to another such that -1 is an (m, a)-block code. Then (G, O) is obtained from
(H, id) by a sequence of at most m in-splittings, at most a out-splittings and at most
rn in-amalgamations.

Before we prove the lemmas, we show how to use them to prove Theorem 8.1.
Proof of Theorem 8.1. Let 9’ be as in (7). By Proposition 8.2 and Lemma 8.3,

(F, () is obtained from (F, Lx o () by a sequence of in-amalgamations.
By definition, m(9’)= re(C), a(9’)= a() and d(9’)= d(). In particular, we see

from Proposition 7.3, that 9’ is also a sliding block decoder. We have, by Lemmas 8.4
and 8.5 (applied to 0 ()), that (F, () is obtained from (Fx, id) by a sequence
of at most re(C) + d() in-splittings, followed by at most a() out-splittings, followed
by t most re(C)+ d() in-amalgamations.

So, (F, O) is obtained from (Fx,Lx) by a sequence of at most re(C) + d()
in-splittings, followed by at most a() out-splittings, followed by a sequence of in-
amalgamations, as desired, v1

Thus we have the commutative diagram of Fig. 17.

in-amal.

FIG. 17.

Proof of Proposition 8.2. We will prove Proposition 8.2 presently, but first we
remark that a proof is already contained in the literature. In [4, Lem. 2.6], it was
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shown that conditions (2) and (3) are equivalent. (Actually, in that paper, this result
was proven only for full shifts, but essentially the same proof works in general.) In [5,
Lem. 5], it was shown that conditions (1) and (3) are equivalent. So, putting these
two results together we obtain Proposition 8.2. The "if" half of the "moreover" is
contained in [5, Lem. 1]. The other half is easy to see.

(1) = (3). First we show that any two paths x-re.., x-1 and Xt_m... Xt_l in G
with q2(X-m...x-l) (xt_.m xt_.l) have the same terminal state. Let

Let x’. be any edge preceding x’ in G and let x0 be any edge following x-1--m--1

in G. Denote -1 @(m,0) Then x’ @(m’)((x’, 1)Y--re" "Y-l) and x0
(m’)(Y-m Y-I@(xo)). Now @( --m--1)Y--m Y--I@(X0) is a path in H, so t(xt_l)
 (x0)

Let :P be the partition of the length-m blocks of XH having, for each state I of
G, an atom

PI {Y-re... Y-l" Y-re... Y-1 (X-m... X-l) and t(x_l) I }.

It is not hard to show that :P is a right Markov partition. We define a label-preserving
graph homomorphism O from (G, ) to (A,) by mapping states via I PI and
mapping edges via x0 (Ps(xo), (x0)). It is not hard to show that this graph homo-
morphism has an inverse that maps edges by (PI, yo) (,,0)(y_,... y-lyo), where
Y-m... Y-1 is any element of the atom PI. It follows that O is a graph isomorphism
and that o O.

(3) (2). We use induction on m. We must show that (A’,) is obtained
from (H, id) by a sequence of m in-splittings. A degenerate base case m 0 is easy
and we omit it. Suppose m _> 1 and we are given a right Markov partition :P of the
length-m blocks of H. We define a partition Q of the length-(m- 1) blocks of H as
follows. Declare W-m+1 w-1 w w if there are edges W-m and wmq-1 --m

with w_,w_,+l w-1 w w w (Two length-0 blocks are equivalentm --m+l 1"
if and only if they have the same terminal state.) Now define Q to be the equivalence
classes of the transitive closure of the relation . It is not hard to verify that Q is
a right Markov partition.

We show that (A’,) is obtained from (AQ, Q) by one round of in-splitting.
In fact, given a state [u_,+l... u_ 1] in A, the set

corresponds to a partition of the in-coming edges to state [u-,+l... U-l]. To be
precise, [W-m... w-l] E :P corresponds to an atom

in the partition of the in-coming edges to state [w_,+l w-l] in A. This gives the
inductive step.

(2) (1). It suffices to prove the case m 1, since the composition of an
(m, 0)-block map with a (1, 0)-block map is a (m + 1, 0)-block map. Suppose (G, )
is obtained from (H, id) by one round of in-splitting. Then is the basic graph
conjugacy associated with the in-amalgamation leading from (G, ) .to (H, id). Now
a length-2 block fe of H determines the index j for which f E P, and therefore
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determines the edge eJ (the unique edge in G terminating length-2 blocks x-lxo with
q(x_ixo) re). Thus has a (1, 0)-block inverse.

Finally, we prove the "moreover." Suppose first that the 1-block conjugacy "XG XH has an (m, 0)-block inverse. Then the implication (1) (3) shows that
is essentially ’ for some right Markov partition P. But, as noted above, CP is right
resolving.

Now suppose that Xc XH is a right-resolving conjugacy, say with inverse

-1 (i)(-,a). To show that a can be taken to be 0, we must show that

((m’a)(y--m YOYl Ya) ((m’a)(y--m YoYtl Yta)

for any pair of paths Y-re... YoY... Ya and Y-m... YoY’I... Y in the graph H. If
a > 0 and if y Ya-1 YI"" Ya--1,. then the edges

XO ((m,a) (Y-re YOYl Ya)

and

((m,a)(y_m yOYtl yta)

share the same initial state, namely, the terminal state of any edge in G that can
be expressed as (b(’’a)(y_m_... YOYl... Y-) for some edge y_,_l preceding Y-m.
Now (x0) Y0 (x) and is right resolving, so x0 x. This shows that, so
long as a > 0, a can be replaced by a- 1. By induction, we conclude that a can be
taken to be O.

Proof of Lemma 8.3. Define

f F S, --- S, (z, 3’(z))- (x, (x)) where x (Lz)(z).

Then we have the commutative diagram in Fig. 18. We claim that f is a right-resolving

FIG. 18.

sliding block code (recall that we defined right-resolving sliding block codes--as op-
posed to only right-resolving labelings--at the end of 4). To see this, first observe
that we may write f =Fo where

F(u, v) (Lx(u), v).

Now, suppose that (u,v)(r,s) and (u,v)(r’,s’) are 2-blocks (with the same initial
symbol (u, v)) in S such that F((r,s)) F((r’, s’)). Then s s’ and r, r’ are edges
in Fx both of which follow the edge u and have the same Lx-label; since Lx is right
resolving, r r’ as well, and we have (r, s) (r’, s’). So, f is right resolving.

Since L is also right resolving, we have that the composition F o L is also
right resolving. Since both (L) and F are onto, (F, F o L) is a right-resolving
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FIG. 19.

presentation of S. By Theorem 4.1(part (1)), there is a right-resolving factor map
r XF. XF, such that the diagram in Fig. 19 commutes. Putting the diagrams in
Figs. 18 and 19 together, we get the desired commutative diagram, Fig. 16.

It remains now only to see that r is actually a conjugacy. For this, recall from
Theorem 5.2 (part (1)) that there is a conjugacy c c(o,)o :XF --> XFx such that
the diagram in Fig. 20 commutes. From the diagrams in Figs. 16 and 20, we get

FIG. 20.

(Lx)o o

Now, since (Lx)oo is 1-1 on the left-transitive points, and since sliding block codes
preserve left-transitive points, we have that

c o (z) ()(z)
for every left-transitive point z XF. But since the left-transitive points are dense,
this must hold on all of XF"
(8) o

Now, since (O7) is a conjugacy, $7 is an SFT. So, (gT) is a conjugacy, and
therefore so is (O). By (8), so is

Proof of Lemma 8.4. Since the domain of 7 is a graph shift X XG, we have
(Fx, Lx) (G, id), so a a(7) amin(7) and m m(7) mmin(7). Write d d(7).
By Proposition 7.2, 7 is an (m, a)-block code.

(O) is a 1-block code by definition. To say that (O7) is a conjugacy whose
inverse is an (m + d, a)-block code means: For x X and y 7(x), X[-(m+d),a] deter-
mines the edge e(((x, Y)(-,-1]), (x0, Y0)) in FT. Well, clearly X[-(m+d),a] determines
(x0, Y0). It suffices to show that X[-(m+d),a-1] determines ((x, Y)(-,-1]).

Let x, x X such that

X[_(m+d),a_l] X[_(m+d),a_l].

Let

v 7(x), v’= 7(x’).
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Suppose that

We must show that

Let

z x(_,_l]U[o,).

Then z E X and

7(z) y(_,_lv[0,).

Let

Z X_x),_l]U[0,cx).

Since 0 _< d _< a, we have X--1 X__ 1, and so z E X. It remains to show that

(9) 7(z’) y(_,_l]V[o,).

We break up the integers into four regions pictured in Fig. 21 and check (9) for
coordinates in each region separately.

(illlllllllllllli(lillllllli(ZllZZ
ut p---

FI. 21.

i e (-cx,-a- 1]" Since -y(x’) y’, we have (z’)(_,__] y_,__].
i Ira, x)" Since "y(u) v, we have -),(z’)[,,) V[m,).
i I-d, m 1]" First, note that if m + d _< 0, then this case does not occur. Now

observe that

Zi_(m+d),a+m_l] Xi_(m+d),_l]U[O,a+m_l]
X[_(mWd),_llU[O,a..l_m_l]

Z[_(m..l_d),a..t_m_l].

Thus, since 7 is an (m, a)-block code,

(10) (Zt)[_d,m_l] (Z)[_d,m_l] y[_d,_l]V[o,m_l].

Since X[_(m..l_d),a_l] Xi_(mWd),a_l] we have

11 Y[-d,- 11 Y[-d,- 11"

Comparing (10) and (11), we see that

"Y(Z’)[-d,m-l] Y[_d,_llV[O,m-I].
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i e [-a,-d- 1]: Since d d(’), x(-o,-1] z(-o,-1] and "(x)[-a,-1]
Y[-a,-1] ")’(z)[-a,-1], we have

Thus,

X[O,a_d_l] Z[O,a_d_l].

X[O,a_d_l] U[O,a_d_l].

Zi_m_a,a_d_l] X[_m_a,_l]U[O,a_d_l]

Xi_m_a,_l]X[O,a_d_l]
Xl-m-a,a-d- 1]"

Thus, since -), is an (m, a)-block code,

[(Z’)[--a,--d--1] ’(X’)[-a,-d-1] Y[-a,-d-1]"

Proof of Lemma 8.5. The proof of this result will make use of the following
construction.

Let 1 X1 --* Y and 2 X2 --* Y be sliding block codes on shift spaces. The
fiber product (Z, 1, 2) of 1, 2 is the shift space

Z {(Xl,X2) e X1 X2 1(Xl)--2(x2)}

together with

i:Z Xi, (xl,x2) H x, i- 1,2.

We call 1, 2 the legs of the fiber product and )1, 2 the arms of the fiber product.
The following proposition is well known and easy to prove (see [3], [10]).
PROPOSITION 8.6. Let 1 X1 -- Y and 2 X2 -- Y be sliding block codes on

shift spaces. Let (Z, 1, 2) be the fiber product of 1, 2.
(1) If X1 and X2 are graph shifts (resp., SET, sofic), then Z is a graph shift

(resp., SFT, sofic).
(2) If a leg has any of the following propertiesmright resolving, right closing,

1-1, onto, conjugacy, l-block codemthen so does the opposite arm.
For the proof of Lemma 8.5 we may assume rn > 0, for otherwise, by Propo-

sition 8.2, 0 is a left-resolving conjugacy and (G, O) is obtained from (H, id) by at
most a rounds of out-splitting. Now, the conclusion of Lemma 8.5 is, by virtue of
Proposition 8.2, equivalent to the existence of graphs A and K, a left-resolving con-
jugacy 1 XK XA with a (0, a)-block inverse, and right-resolving conjugacies
2 XK Xa, XA -- XH, both with an (m, 0)-block inverses, such that the
diagram in Fig. 22 commutes.

We first construct the right-resolving conjugacy XA XH. Then (XK, 1, 2)
will be the fiber product of , 0.

The vertices of the graph A will be atoms of a partition of m-blocks in XH. In
order to define this partition, we need the following result.

SUBLEMMA 8.7. Let O X - XH be a l-block conjugacy with an (m,a)-block
inverse. Let x, x’ E X such that O(x)[_m,a_l] (X’)[_m,a_l]. Then s(xo) s(xo).
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FIG. 22.

Proof. Let

Observe that E XH since XH is a graph shift.
Let

Since 0-1 is an (m, a)-block code, it follows that

X_I X_I and x0 20.

Thus,

s(xo) t(x_) t(2_1) s(20) s(xo). 0

We continue the proof of Lemma 8.5. For an (m + a)-block w of XH, flX y XH
such that Y[-m,a-1] W, and let

Sublemma 8.7 shows that s*(w) is well defined independent of the choice of y.
For each m-block w Wl... w, of XH, let fw denote the following function on

a-blocks of XH outgoing from t(w)"

Define a partition P on the set of m-blocks of H by declaring w, w to belong to the
same atom if and only if

Note that implicitly fw fw, = t(w) t(w’). As before, we say that w w’ when
w and w belong to the same atom, and we denote this atom by [w].

We now establish the right Markov property (5) for our partition 7). Suppose
that w w’ and e follows w. Let u Ul... ua be an a-block such that s(u) t(e).
We must show that

8* (w2... WmeU) 8* (w2 WmeU).

Since w w, we have

8* (We[1,a_l]) 8* (Wt[1,a_l]).
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Now, let v be any path in H of length m such that s(v) t(u).
Write -, -
For a 1-block code, such as 0 O, a diamond is a pair of distinct paths with

the same initial state, terminal state, and O-label. It is well-known that a l-block
conjugacy cannot have a diamond (see [12], [22]).

Now, the paths r H(weuv) and r’ H(w’euv) in G have the same initial state
and the same terminal state; since O and H are inverses of one another, r and 7’
have the same O-label. Thus, r’. In particular,

as desired. So, the right Markov property (5) holds. Let

A= A’,

By Proposition 8.2, is a right-resolving conjugacy with a (m, 0)-block inverse.
Let (XK,1,2) be the fiber product of ,0--we are justified in writing the

domain of the fiber product as a graph shift XK by Proposition 8.6 (part (1)).
By Proposition 8.6 (part (2)), since is a right-resolving conjugacy with an

(m, 0)-block inverse, so is 2, It remains to show that 1 XK - XA is a left-
resolving conjugacy with an (0, a)-block inverse. This means that if (z, x) E XK, then
z[0,a] determines x0.

For this, first observe that, by the definition of ’, (z[_,,_l]) is a path in
H that belongs to the state s(zo) e V(A), regarded as an atom of the partition P.
Thus, s(zo) and (z[0,a-1]) uniquely determine the state s(xo) e P(G).

For the same reason, s(zl) and (z[1,a]) uniquely determine the state S(Xl)
t( o) e v(c).

Now, (zo) O(xo). Thus, Z[o,a] determines the initial state, terminal state, and
O-label of xo. Since 0 has no diamonds, we see that Z[o,] does indeed determine xo.

This completes the proofs of the lemmas and therefore the proof of
Theorem 8.1.

The in-splitting corresponding to the conjugacy XA - XH in the proof of
Lemma 8.5 is the minimal amount of in-splitting possible to reach (G, O) from (H, id)
by first in-splitting, then out-splitting, and finally in-amalgamating. A precise version
of this is given in Proposition 8.8 below. In order to state this result, we need to say
what it means for a partition P on blocks of length m to refine a partition P on
blocks of length m, when m = m. Well, each partition induces a partition on blocks
of length m0 max(m, m): two blocks of length m0 are in the same atom of the
partition induced by :P if their suffixes of length m are in the same atom of :P (and
likewise for P’). When we say that :P refines P, we mean that the partition induced
by T’ on m0-blocks partition refines the partition :P on m0-blocks.

PROPOSITION 8.8. Let O Xv XH be a 1-block conjugacy from one
graph shift to another such that - is an (m, a)-block code. Suppose that we have the
commutative diagram of Fig. 23, where XA, -- XH is a right-resolving conjugacy,

’1 XK, -- XA, is a left-resolving conjugacy, and XK, X is a 1-block code;
then the partition
corresponding to (where is as in the proof of Lemma 8.5).
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Fro. 23.

Proof. We may assume that 7)I and P are partitions of blocks of the same length,
and we call this length m0. Let a0 denote the maximum of the anticipation of ()-1
and -1 (where 1 is as in the proof of Lemma 8.5). For an m0-block w and an
a0-block u, by s*(wu), we mean s*(fi), where t is the suffix of w of length m and
where fi is the prefix of u of length a.

To show that pl refines P, we choose two m0-blocks w and w in the same atom of
:pl and show that they are in the same atom of P. To this end, let u be any a0-block
in XH with t(w) s(u). We will show that s*(wu) s*(w’u), giving fo fo,,
whence w and w are in the same atom of P.

Suppose y, yl E Zg’ satisfy /o)l(y)[_mo,ao_l] wu and /o)l(yl)[_mo,ao_l]
wlu. Now

(u)0) (u’)0)

because both ’o (Y)[-mo,-1] w and ’ o )(Y’)[-mo,-1] wl are in the same
atom of :pl. Now /is right resolving, so

(Y)[0,ao--1] (Yl)[0,ao--1]"
But ()-1 is an (0, a0)-block map, so by Sublemma 8.7,

Write Since the diagram in Fig. 23 above commutes,

completing the argument that w and w are in the same atom of :P. [:]

The following corollary asserts that the in-splitting used in our proof of Theo-
rem 8.1 is the minimal amount of in-splitting that suffices there.

COROLLAPY 8.9. Let be a sliding block decoder on an irreducible sofic shift X.
Let 9’ o (Lx). Suppose that we have the commutative diagram of Fig. 24, where
)’ XA’ -- XFx is a right-resolving conjugacy, ’ XK, -- XA, is a left-resolving
conjugacy, and XK, ---, XF is a 1-block code; then the partition P’ corresponding
to ’ via Proposition 8.2 refines the partition 7) corresponding to (where is as in
the proof of Lemma 8.5 for 0 (0)).

Proof. (K’,Z o , 9’ o ) is an encoder for 9’. Thus, by Theorem 6.2, there
is a graph homomorphism M" K’ Fv such that the following diagram in Fig. 25
commutes. Now, apply Proposition 8.8 to 0 (O). [:]

Suppose that for a finite-state code (G,Z, (9) with sliding block decoder , (9 can
be expressed as

O=LxoM,
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where X is the domain of and M X XFx is a left-resolving factor map.
We call such a code a left-resolving encoder. Such codes arise in the state-splitting
algorithm ([1]) and the stethering construction ([2], [8]). In the following, we see that
if has a left resolving encoder, then (F,) is obtained from (Fx,Lx) without
using in-splittings.

PROPOSITION 8.10. Let " X - Y be a sliding block decoder on an irreducible

sofic shift with a left-resolving encoder. Then (F, O) is obtained from (Fx,Lx) by
a sequence of out-splittings followed by a sequence of in-amalgamations.

Proof. By Proposition 8.2, the conclusion of this result is equivalent to the
existence of a graph K, a left-resolving conjugacy 1 XK XFx, and a right-
resolving conjugacy 2 XK Xv, such that the diagram in Fig. 26 commutes.
Let ff o (Lx). By Proposition 6.3, (O) XF -- XFx is a left-resolving

FIG. 26.

conjugacy. Now, apply Lemma 8.3.
Our next result shows that, in Theorem 8.1, the in-splittings can be exchanged

for out-splittings if we are allowed to "shift" the sliding block decoder.
PROPOSITION 8.11. Let be a sliding block decoder on an irreducible sofic shift

X. Let c ocrm+d. Then
(1) There is an encoder (F,Z’, 0’) for such that (F, 0’) is obtained from

(Fx,Lx) by a sequence of at most m + d + a out-splittings.
(2) (Fa, () is obtained from (Fx, Lx) by a sequence of at most m + d + a

out-splittings, followed by a sequence of in-amalgamations.
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Proof. At the heart of the proof is the following simple fact: If k rounds of
complete out-splitting (resp., in-splitting) are performed on the pair (G, id), then one
obtains (G[k+l], t), where (e0... ek) eo (resp., gt(e0.., ek) e).

As shown in Theorem 8.1, an encoder (K,2", (9) for X --. Y can be obtained
from (Fx, Lx) by m / d rounds of in-splitting (resulting in right-resolving conjugacy

XA --* XFx), followed by a rounds of out-splitting (resulting in a left-resolving
conjugacy 1 XK XA). The encoder for is the tall commuting triangle on the
right side of the commutative diagram in Fig. 27.

FIG. 27.

The m/d rounds of in-splitting leading from Fx to A can be completed by further
l[mWd-1] x[m+d+1]in-splitting to reach -x Write r Fx XA for the right-resolving

conjugacy corresponding to this further in-splitting. The composition o r] is the
right-resolving conjugacy induced by the edge mapping that maps the edge e0... em+d

][mWd+l] l[mWd+l]in. x to the edge em+d in Fx. On the other hand the graph, x can also
be obtained by m + d rounds of complete out-splitting, resulting in the left-resolving
conjugacy w X[Fmx+d+l] Xfx induced by the edge mapping e0... em+d - eO. Using
these explicit descriptions, it is clear that w a-(m+d) o o . Now let (XF, 1, t)
be the fiber product of r, Ct. It is easy to verify by chasing the commutative diagram
that 2; o r]

. XF Y gives an input labeling on F and (Lx) o w o XF X
gives an output labeling on F that together define an encoder (F,2", O) for a. Now
notice that w o is a left-resolving conjuagcy obtained by at most m+d+a rounds of
out-splitting. So, (F, (9’) is obtained from (Fx, Lx) by a sequence of at most m+d+a
out-splittings. This completes the proof of part (1).

For part (2), first observe that for z E XF,

and (O’)(z) a-(re+d) o

Let g: Sa S be the map defined by g(x, y) (a(m+d)(x), y).
Now, by Theorem 6.2 there are right-resolving graph homomorphisms M K

F and M’: F - Fa, such that (0,5) Lo M and (O’,2:’) La o M’.
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From (12), we have

g o (L)oo oM (L)0o o Moo o 7’.
From this it follows that the lift (see Theorem 4.1) cg’Xg XF

cg oM Moo o

of g satisfies

(see the argument at the end of the proof of Lemma 8.3). By Theorem 8.1, we may
assume that Moo is a conjugacy. But r/ is also a conjugacy. So, M is a conjugacy as
well. Thus, (F, (.0) is obtained from (F, (.9’) by a sequence of in-amalgamations. So,
(Fa, O) is obtained from (Fx, Lx) by a sequence of at most m + d + a out-splittings
followed by a sequence of in-amalgamations. Vl

We remark that the estimate, rn 4- d 4- a, of out-splittings given here is often too
high. A look at the proof shows that the number of out-splittings needed to produce
F is equal to the total number of splittings (out and in) needed to produce F.

9. The state-splitting algorithm. In this section, we give a brief summary of
the state-splitting algorithm; see [1] and [28] for more detail.

Suppose that we are given a sofia shift W and a positive integer k, and we wish
to encode arbitrary k-cry sequences to sequences that satisfy the constraints of W
via a finite-state code (G,27, (9). It is important that 270o(Xa) be the entire full k-
shift X[k], so that all (right semiinfinite) k-cry sequences can be encoded, and that
(.90o (Xa) C_ W, so that the encoded (right semiinfinite) sequences obey the constraints
dictated by W. If the finite-state code has a sliding block decoder, then it should be
defined on X (.90o(Xa) but not necessarily on all of W.

We introduce the following definitions in order to take account of this perspective.
Let W and Y be shift spaces. A finite-state (W, Y)-code is a finite-state code

(G,Z, O) such that

and Y Z0o(Xa).

A finite-state (W, X[k])-code is sometimes called a finite-state (W, k)-code.
A sliding block (W, Y)-decoder is a sliding block decoder that maps a subshift

of W onto Y. A sliding block (W, X[])-decoder is sometimes called a sliding block
(W, k)-decoder.

Given an irreducible sofia shift W and a positive integer k with h(W) >_ log(k),
the state-splitting algorithm constructs a finite-state (W, k)-code (H,Z, (9). The al-
gorithm begins with a right-resolving presentation (G,L) of W and a nonnegative
integral vector satisfying Aar >_ kr (where Aa is the adjacency matrix of G); such
a vector is called an approximate eigenvector (for G and k) and k is called an ap-
proximate eigenvalue. The entries of r are called weights. The algorithm proceeds
by a sequence of out-splittings beginning with the graph G; the goal is to arrive at
a graph H which has a subgraph H with uniform out-degree k, ie., each state of H
has out-degree exactly k. Now, H inherits an output labeling (9 from (G, L) via the
sequence of out-splittings, and an input labeling 27 is defined on H by assigning, at
each state, each k-cry digit to a unique outgoing edge. This defines a finite-state code
(H,Z, O). In general, such a code need not have a sliding block decoder. However,
if L0o is a conjugacy (e.g., if W is an SFT and (G, L) is the minimal right-resolving
presentation), then O0o is invertible and a sliding block (W, k)-decoder is defined on
Ooo(XH) W by 270o o (00o)-. So, if W is an SET and h(W) >_ log(k),
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then there is a sliding block (W, k)-decoder (this is the main result of [1])--results for
strictly sofic shifts are contained in [20].

The key to the algorithm is the way that the out-splittings are selected. An out-
splitting that constructs a graph ( from a graph G is said to be legal with respect to
an approximate eigenvector r (for G and k) if there is an approximate eigenvector
(for G and k) such that for each state I of G, the f-components of the descendants of
I in ( sum to the r-component of I. What this means is that it is possible to assign
weights I to each atom P of the partition which defines the splitting so that (1)
the sum of the r-weights of the terminal states of the outgoing edges in each partition
element P is at least k. i and (2) - i ri. The algorithm guarantees that, for
any choice of approximate eigenvector, it is always possible to find a sequence of legal
out-splittings which eventually arrives at a graph with an approximate eigenvector
consisting only of O’s and l’s--this is the graph/ above.

Let r be an approximate eigenvector for G and k. We claim that any out-splitting
of G is legal with respect to kr. To see this, let qI be the sum of the r-weights of
the terminal states of the edges in P; then assign weights such that (1) each
i

__
qi and (2) ’ i kr. It follows that, in fact, any sequence of n rounds of

out-splitting is legal with respect to knr.

10. An example. In this section, we consider, for some fixed G and k, sliding
block (Xc, k)-decoders where the domain of the decoder is all of Xc.

G will be an irreducible graph with h(Xc) log(5). In such a case, an approxi-
mate eigenvector (for G and 5) must be a true eigenvector (for eigenvalue 5), and so
it is unique up to scale. Thus, there is a unique smallest approximate eigenvector (for
G and 5), and we call it the primitive eigenvector. We describe three sliding block
(X, 5)-decoders.

The first decoder is obtained by applying the state-splitting algorithm (in partic-
ular, only out-splittings) to the presentation (G, id) and the primitive eigenvector r.
This decoder has the smallest (89 states) canonical encoder of any (Xc, 5)-decoder.
It has decoding window length 4, and we will show that this minimizes the decoder
window length of any decoder constructed in this way.

The second decoder is obtained by first in-splitting G to obtain a graph ( and
then applying the state-splitting algorithm to (G, ) (where ( -* G is the cor-
responding graph homomorphism) and the primitive eigenvector on (. This decoder
illustrates the use of all three graph operations in Theorem 8.1. Compared to the
first decoder, its canonical enocoder is only slightly larger (91 states), but it has the
significant advantage of a smaller decoding window length (3).

The third decoder is obtained by applying Proposition 8.11 to the second decoder.
This is equivalent to applying the state-splitting algorithm to G and the vector 5r. So,
only out-splittings are used. This yields a decoder with the same window length (3)
as the second decoder, but many more states (5.89 445) in its canonical encoder.

Example 10.1. In this example, X Xc where G is the graph in Fig. 28 and
Y X[5], the full 5-shift. The primitive eigenvector components (r-weights) are
indicated by the numbers inside the circles.

For our first decoder, we exhibit 3 rounds of legal out-splitting applied to the
vector r.

In round 1, we split each state I in row 4 into r states, each of weight 1, by
partitioning the outgoing edges into groups of 5 edges each. We can do this since
these edges terminate at the top state, which has weight 1. The resulting graph looks
just like G in rows 1, 2, and 3, but has 70 states of weight 1 on the bottom row, with



CANONICAL ENCODERS 587

All returns are to state t(a).
FIG. 28.

a total of 350 outgoing edges, all terminating at the top state.
At this point, the terminal states of the outgoing edges from states of row 3 have

weight 1. So, in round 2, we can split the states of row 3 into states of weight 1.
Finally, in round 3, we split each of the states in row 2 into 2 states each of weight 1.
At this point, we have constructed a graph H with uniform out-degree 5. This graph
can be endowed with input and output labelings 5, (9 as described in 9.

We claim that this finite-state code has a sliding block decoder with memory 0
and anticipation 3. For this, observe that since we applied 3 rounds of out-splitting,
each path XOXlX2X3 of length 4 in G determines an edge e in H in the sense that all
paths in H which are O-labeled XoXlX2X3 begin with edge e (see Proposition 8.2);
now, we can define O(XoXlX2X3)

So, this gives a sliding block decoder with window length 4. At the end of this
section, we will show that any sliding block decoder obtained by applying legal out-
splittings to the primitive eigenvector r must have window length 4. The encoder
that we have constructed has 89 states (the sum of the entries of r), and it is easy to
see that no states can be merged. In fact, it follows from [27] that no encoder for
sliding block (XG, 5)-decoder can have fewer than 89 states.

Our second decoder is obtained by 1 round of in-splitting, 2 rounds of out-
splitting, and 1 round of in-amalgamation.

We first in-split the state t(f) t(g) into 2 states, resulting in the graph ( in
Fig. 29, with the indicated primitive eigenvector (inherited from G).

We then apply the state-splitting algorithm to G and . In our first round of
out-splitting, we split the two descendants, with weight 6, in as shown in Fig. 30
below, and simultaneously we split each of the states t(j), t(k),..., t(q) entirely into
states of weight 1 by partitioning their outgoing edges into atoms of 5 edges each (we
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lnspllt:

FIG. 29.

oufspllf:

FIG. 30.

do not show this part of the graph in the figure). Call the resulting graph (1.
At this point, one more round of out-splitting will yield a graph G2 having uniform

out-degree 5. The history of the incoming and outgoing edges to state t(f) and
their descendants is shown schematically in Fig. 31. The input labeling on the edges
outgoing from these descendants is also shown. The input labeling on the remainder
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FIG. 31.

of the graph is unimportant.

These in/out-splittings define a 1-block conjugacy E9oo Xo --* Xa. With the
indicated input labeling 27, we get a finite-state code (G2,27, O). Now, while (000) -1
has memory 1 and anticipation 2 (because there was one round of in-splitting and
two rounds of out-splitting), 27 is chosen so that the sliding block decoder =_

270 o (00o) -1 Xa X[5] has memory 0 and anticipation 2, and thus decoding
window length 3. To get the canonical encoder requires 1 round of in-amalgamation
on (G2,27, (9). The number of states of this canonical encoder is the sum of the
eigenvector components (89) plus 6 (because of in-splitting) minus 4 (because of in-
amalgamation), which is 89 + 6 4 91.
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Now, we apply Proposition 8.11 (really the proof of Proposition 8.11) to the
second decoder. We exchange the one round of in-splitting for one round of out-
splitting. This gives a decoder with memory -1 and anticipation 3--so, it too has
decoding window length 3. This decoder is obtained by 3 rounds of out-splitting;
these splittings are not legal with respect to r, but it is not hard to see that they are
legal with respect to 5r. The number of states in the resulting encoder is the sum of
the entries of this vector: 5.89 445. We leave it to the reader to verify that any
encoder for a sliding block decoder on a graph shift using only out-splittings cannot
be collapsed onto a smaller encoder. So, the canonical encoder for this decoder has
445 states.

Finally, we show that no sequence of out-splittings, legal with respect to the
primitive eigenvector r, can yield a sliding block decoding window length of less than
4. We do this by showing that the anticipation of any sliding block decoder must be
at least 3 and the memory cannot be negative.

We begin by showing that, if only out-splitting is used in the construction of a
finite-state (Xc, 5)-code (H,:, (9), then at least 3 rounds of out-splitting are required.
For this, first observe that nontrivial legal splittings of the two states in row 2 cannot
be carried out until the state I, in row 3, with weight 6 is split. But, as the reader
can check, there is no way to split I that works simultaneously for both states in row
2. Thus, we must split states in row 4 (terminal states of outgoing edges from I),
then split state I, and finally split the states in row 2. So, there must be at least
three rounds of out-splitting (and we saw earlier that three rounds of splitting will
suffice). In fact, in Appendix II, we show that there must be at least three rounds of
out-splitting, legal with respect to any approximate eigenvector.

Now, since at least 3 rounds of out-splitting are required, there are paths e0ele2
and loll f2 in H with the same initial state I0, the same output labeling, but distinct
initial edges. So, for any path r which terminates at I0, O(re0ee2) (9(foff2),
but I(e0) = (f0). From this, it follows that the anticipation must be at least 3.

If the memory were negative, then all edges in H which terminate at the same
state would have the same input label. Now, the unique descendant I* in H of the
state of G in row 1 is the terminal state of all of the outgoing edges from all of the
descendants of states in row 4. Thus, in fact, we see all 5 input labels on edges
incoming to I*. So, the memory cannot be negative. This completes the proof of the
fact that no sequence of out-splittings legal with respect to the primitive eigenvector
r can yield a decoding window length of less than 4. So, the state-splitting algorithm,
in its narrowest and most algorithmic form, can fail to find the sliding block decoders
with smallest decoding window length.

11. Improper encoders. In this section, we focus on finite-state (W, Y)-codes
and sliding block (W, Y)-decoders where the domain of the decoder is a proper subshift
of W. We call an encoder for such a decoder an improper encoder.

This is really the typical case. To see why, first observe that if X Y is a
sliding block (W, Y)-decoder, then since right-resolving and right-closing factor maps
preserve entropy,

h(X) h((9(Xc)) h(X) h(:(Xv)) h(Y),

and thus h(W) >_ h(X) h(Y) is a necessary condition for the existence of a sliding
block (W, Y)-decoder. If h(W) > h(Y), then the domain X must be a proper subshift
of W and any encoder must be improper.
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We assume that W is irreducible. While this does technically entail a loss in
generality, we could always replace W by an irreducible sofic subshift of maximal
entropy; since entropy is not reduced, encoding into this subshift is no more difficult
than encoding into W.

We write X O(XG), the domain of the sliding block decoder . We assume
that Xc, and therefore X, is irreducible. This assumption can be met by restricting
2", (9 to an irreducible component of G with maximal entropy; this does not change
the encoding or decoding in any essential way.

Since right-resolving factor maps preserve entropy, if h(W) > h(Y), then XFx
will have strictly smaller entropy than XFw. Since XFo is conjugate to XFx, it too
will have strictly smaller entropy than XFw. Thus, since conjugacies preserve entropy,
it is impossible to construct (F, (0) from (Fw, Lw) via basic graph operations. It is
natural to wonder if (Pc, 0) can be obtained from (Fw, Lw) by a sequence of basic
graph operations together with pruning, i.e., deletion of some edges. This turns out
to be false. For instance, if W were an SFT, then (Lw) would be a conjugacy, and
so, if the above were true, then ((0) would be a conjugacy of a graph shift onto X.
This would force X to be an SFT. But X can be strictly sofic--just take X to be any
strictly sofic subshift of the full 2-shift; there are lots of them!

Nevertheless, there is something that can be said along these lines. In order to
say. this, we need the following result, which we prove below.

PROPOSITION 11.1. Let X C W be irreducible sofic subshifts. Then there are
right-resolving labeled graphs (F, L) and (G, M) such that (F, L) presents XFx (G, M)
presents XFw, and F is a subgraph of G, with the obvious imbedding XF --+ Xc,
such that the diagram in Fig. 32 commutes.

i

FIG. 32.

Moreover, ifW is an SFT, thenL can be taken to be a right-resolving conjugacy,
and if X is an SFT, then M can be taken to be a right-resolving conjugacy.

The preceding result asserts that (Fx, Lx) can be obtained from (Fw, Lw) by ex-
pansion (i.e., a right-resolving extension), pruning, and merging (i.e, a right-resolving
factor). In the special case that W is an SFT, the merging can, by Proposition 8.2, be
taken to be a sequence of in-amalgamations. So, for any sliding block (W, Y)-decoder, we can construct (PC, O) from (Fw, Lw) by expansion, pruning, merging, and
basic graph operations. So, there is a collection of operations that can be used to
construct a canonical (improper) encoder.

The proof of Proposition 11.1 relies on Theorem 8.1 and the fiber product con-
struction and its properties (see Proposition 8.6).

Proof of Proposition 11.1. Let (Z,1,2) be the fiber product of (Lx) and
(Lw), viewing (Lx) as a map into W. By Proposition 8.6 (part (1)), we may
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write Z XF. We have the commutative diagram in Fig. 33.

FIG. 33.

Write

)1 LL, 2

By Proposition 8.6 (part (2)), since (Lx) is right resolving, so is 2; thus, 2 is
a right-resolving code into XFw. So, (F, M’) is a right-resolving presentation of a
subshift of XFw. By [7, Thm. 5], there is a right-resolving presentation (G, M) of
XFw such that F imbeds as a subgraph of G and M extends the labeling M’. Take
L L’. This gives us the desired commutative diagram in Fig. 32.

If W is an SFT, then (Lw) is a right-resolving conjugacy. So, by Proposition 8.6
(part (2)), 1 L is also a right-resolving conjugacy.

If X is an SFT, then (Lx) is 1-1. So, by Proposition 8.6 (part (2)), 2 is also
1-1. Thus, the image of 2 is an SFT in XFw.

For a graph H and positive integer m, let 0H, (OH,m) X] XH be the
right-resolving conjugacy which simply reads off the last symbol in an m-block.

Now, for some m, the higher block shift 2(X]) is a graph shift Xg in X.
In particular, K is a subgraph of Fm]. Thus,

fle-1 ooeu,’X]+X
is a right-resolving imbedding whose image is XK. So, X] + XK can be
decomposed into a sequence of in-splittings. om this, it is not hard to see that
F[m] imbeds in a graph G such that extends to a right-resolving conjugacy ()
Xo X.

Now, take L L’ o F,m and M
Assume that h(W) > h(Y). So, h(W) > h(X). In our passage from (Fw, Lw)

to (F, O) via expansion, pruning, merging, and basic graph operations, we cannot
eliminate pruning, since right-resolving factor maps, as well as conjugacies, preserve
entropy. In the following, we give two (very simple) examples to show that expansion
and merging are necessary as wellven if we interpret pruning to mean an imbedding
of a graph shift (rather than the trivial kind of imbedding obtained by deleting edges).

We will consider the labeled graphs in Fig. 34. Figure 34 (a) presents the full
2-shift, (b) presents the even shi, i.e., the sofic shift consisting of binary sequences
where run-lengths of zeros are constrained to be even, and (c) presents the trivial
shift.

In the first example, we show why expansion is necessary.
Example 11.2. Let W be the full 2-shift and X be the even shift. Let be

the identity map. Then, we may regard (technically, only to graph isomorphism)
(F,) (Fx, gx). Now, suppose that we could pass from (Fw, gw) to (F,
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(Fx, Lx) via pruning, merging, and basic graph operations only. Then there would be
an imbedding Z -- X[2] and a factor map rl Z -- XFx (the composition of a right-
resolving factor map and conjugacies) such that the diagram in Fig. 35 commutes.
Let p .... 000... E X C_ W. Let e be the self-loop labeled 0 in Fig. 34 (a), and let

FIG. 35.

z .... eee Then ((Lw))-l(p) z. Since is an imbedding, ((Lw) o )-l(p)
consists of at most one point. But ((Lx) o )-(p) ((Lw) o )-l(p), and so it
too must consist of at most one point. Since is onto, this contradicts the fact that
p is presented, via (Lx), by two distinct elements of XFx" the two phases of the
periodic 2-cycle in Fig. 34 (b) above.

In our next example, we show why merging is necessary.
Example 11.3. Let W be the even shift and X be the shift space consisting of

only the single point p 000 Let be the trivial code (p) p. Then we
may regard (technically, only up to graph isomorphism) (F, (9) as the trivial labeled
graph in Fig. 34 (c). Now, suppose that we could pass from (Fw, Lw) to this trivial
graph via expansion, pruning, and basic graph operations only. Then there would be
a factor map 7"ZG XFW and a point z E XG such that ((Lw) o 7)-l(p) z.
But this contradicts the fact that p has two preimages in XFw via (Lw).

In our final example, we exhibit an SFT W such that the minimal number of
states in any finite-state (W, 2)-code is achieved uniquely (let (G,2", (9) denote this
unique finite-state code). Moreover, (G,2", (9) has a sliding block decoder which is
a 1-block code. So, from the point of view of (1) number of encoder states and (2)
sizes of decoder window length, this finite-state code is the unique "best" finite-state
(W, 2)-code. We will see that O(XG) is strictly sofic (i.e., sofic, but not SFT). So,
according to the discussion earlier in this section, (G,2", (9) cannot be obtained via
only pruning and basic graph operations--in particular, the state-splitting algorithm,
applied to (Fw, Lw) and any approximate eigenvector (for Fw and k 2), will fail
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to find this code.
Example 11.4. Let W be the SFT with alphabet {a, b, c} defined by forbidding

the blocks {bb, cc, bab, cac}. Let (G,, (9) be the transducer in Fig. 36. Here, the

FIG. 36.

labels in front of the "/" are the 2?-labels, and the labels in back of the "/" are the
O-labels.

Now, from the presentation (G, O), we see that X O(Xc) is the sofia shift
defined by forbidding {banb’n >_ 0} U {canc’n >_ 0}. It is clear that X is strictly
sofia and obeys the constraints dictated by W.

This is a finite-state (W, 2)-code since (G2-) is a right-resolving presentation of
the full 2-shift, (9 is right closing, and X c W.

The 1-block code O X X[2] is defined by

(13) O(a) 0, (I)(b)= 1, O(c)= 1.

Now, is a sliding block decoder for (G,I, (9) because for all edges e

o

Now, by exhaustively examining all possibilities (there aren’t too many) one can show
that (G,:, (9) is the unique finite-state (W, 2)-code with at most two states. Just
keep in mind that G must have two outgoing edges from each state (since 2: is right
resolving), (G, (9) must present a subshift of W, and (9 must be right closing.

Let W be the sofic shift and be the l-block decoder in Example 11.4. Fig. 37
depicts the Fischer cover of W. Since W is an SFT and the sliding block decoder

FIG. 37.

is a 1-block code, it follows from Proposition 11.1 and Theorem 8.1 that (F, (9) is
obtained from (Fw, Lw) by expansion, pruning and in-amalgamations. This sequence
of steps is shown in Fig. 38.

It is interesting to note, however, that there is a different 1-block sliding block
decoder obtained merely by pruning the Fischer cover of W: in Fig. 37 simply delete
one of the edges outgoing from state 0 that is labeled b or c, and assign an input
labeling Z that defines the same map as in (13) (i.e., if Lw(e) a, then 2:(e) 0,
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FIG. 38.

FIG. 39.

and if Lw(e) b or c, then 2:(e) 1); one sees that I is indeed right resolving, and
so this gives the finite-state code with the 1-block decoder shown in Fig. 39. This is
the same decoder as before except that the domain has changed; note that the new
domain is an SFT.

So, here we found a 1-block decoder and then found that there was actually
another 1-block decoder given by pruning the Fischer cover. This is no accident.

PROPOSITION 11.5. Let W be an irreducible sofic shift and k be a positive integer.
Suppose there is a finite-state (W, k)-code with a 1-block (i.e., m a O) decoder.
Then there is another finite-state (W, k)-code (G’,:[’, 0’) with a 1-block decoder where
G’ is a subgraph of Fw and O’ restricts the labeling Lw.

Proof. Let (G,:[, (9) be a finite-state (W, k)-code with a 1-block decoder <I>.
Let (XF, 1, 2) be the fiber product of O, Lw. Write 1 (@1) and 2 (@2).

x,

FIG. 40.

We have the commutative diagram in Fig. 40.
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Since m a 0 and 2" is right resolving, it follows that (9 is right resolving. So,
2 is also right resolving.

For each state J E ]?(Fw) that is in the image of , choose (arbitrarily) a state
I Ij "I(F) such that ’.(Ij) J. Let I denote the set of edges outgoing from I.

Let G be the subgraph of Fw which consists of the edges

t Uje{image of ) I/2(Ij)"

For e g/, choose d d gls(e) such that 2(d) e. Define

O’(e) Lw(e), Z’(e) Z o l(d).

Now, we show that (G’,2"’, (9’) is a finite-state (W, k)-code.
First, we show that 2"I is right resolving. Let e, f $/with the same initial state.

Then d, df have the same initial state in F. Now, 2" is right resolving. Since Lw is
right resolving, so is 1. Thus, 2" o 1 is right resolving. So, if 2-’(e) 2"(/), then
2" o 1 (de) 2" o 1 (dr) and so d dr. Thus, e f. So, 2"’ is right resolving.

Now, G has uniform out-degree k; since 1 and 2 are right resolving, F and
therefore also G have uniform out-degree k. Thus, the image of 2" is the entire full
k-shift. And, by definition, the image of (.9 is contained in W. Since 2"/and I are
right resolving, (G’,2", (9’) is a finite-state (W, k)-code.

Define ’: (Lw)(XG,) -- X[k] by ’= {I), a 1-block code. We claim that ’ is
a decoder for (G/,2"/, (9/). For this, we must .show that {I)o (91 2"/or, equivalently,
for all edges e ’ OoLwo 2(de) 2"0 l(d). But this follows from the definition
of the fiber product and the fact that is a decoder for (G,2", (9). El

The main result of 12 is a generalization of the preceding result for arbitrary
memory and anticipation.

Of course, we know from the discussion above that the decoder, defined by the
finite-state code in Fig. 39, cannot have an encoder with less than three states. In
fact, by merging states in Fig. 39, we get the canonical (3-state) encoder shown in
Fig. 41.

FIG. 41.

The following result organizes the operations used to pass from (Fw, Lw) to
(F, L) in a different way than explained in the discussion following the statement
of Proposition 11.1.

THEOREM 11.6. Let X C_ W be irreducible sofic subshifts. Let " X Y be a
sliding block (W, Y)-decoder. Then (F, (9) is obtained from (Fw,Lw) by a right-
resolving extension, a left-resolving conjugacy, pruning of edges and a right-resolving
factor, i.e., there are graphs G1,G2, and G3 such that G2

_
G3, a right-resolving

factor map al XG - Xgw a left-resolving conjugacy a2 X X and a right-
resolving factor map a3 X --. XF such that the diagram in Fig. 42 commutes.
Moreover, if W is an SFT, then a3 can be taken to be a right-resolving conjugacy.
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FIG. 42.

The proof of this result is based on Proposition 11.1, Theorem 8.1, fiber products,
and the fact that for any right- (resp., left-) resolving conjugacy " XK XF and
any graph G that contains F, there is a graph K’ containing K such that can be
extended to a right- (resp., left-) resolving conjugacy XK, XF. We leave the proof
as an exercise for the reader.

COROLLARY 11.7. Let X C_ W be irreducible sofia subshifts. Let " X -- Y be a
sliding block (W, Y)-decoder. Then (F, (9) is obtained from (Fw, Lw) by expansion,
out-splitting, pruning, and then merging.

We remark that the steps of expansion, out-splitting, and pruning already give
an encoder. Merging simplifies this encoder.

From Theorem 4.1, we know that the right-resolving presentations of W are the
same as the expansions of (Fw, Lw). Recall from 9 that every sequence of out-
splittings is legal with respect to some approximate eigenvector. Thus, Corollary 11.7
says that if we are allowed to start with any right-resolving presentation (G, L) of W
and any approximate eigenvector for G and k, then the state-splitting algorithm will
find every sliding block (W, k)-decoder.

12. State splitting without expansion. Proposition 11.5 shows that if W is
an irreducible sofia shift having a finite-state (W, k)-code (G,I, (9) with a 1-block
decoder (I), then in fact we can construct a finite-state (W, k)-code (G’,:’, O’)
with a 1-block decoder ’ (I) starting from (Fw, Lw) by pruning alone. No
expansion is needed! Moreover, (I) and (i) are identical as functions of the 1-blocks of
W. The sliding block decoders and differ only in the strict mathematical sense
that their domains O(Xc) and O(Xc,) might be different subshifts of the sofia
subshift W. This is a distinction without any operational significance to the engineer
who will design a circuit to implement the decoder (of course, there may be a vast
difference in the encoders).

We generalize this result as follows.
PROPOSITION 12.1. Let W be an irreducible sofia shift and let k be a positive

integer. Suppose there is a finite-state (W, k)-code (G, 2-, (9) with a sliding block (W, k)-
decoder (,a X X[k] having memory m, anticipation a, and delay d. Then
there is another finite-state (W, k)-code (G’,Z’, (9’) with a sliding block (W, k)-decoder
’: X’ --, X[k], where ’= (I)m’a and (G’, (9’) is obtained from (Fw, Lw) by at most
m + d rounds of in-splitting, followed by at most a rounds of out-splitting, followed by
pruning. Moreover, has memory m, anticipation a, and delay d.

Thus the operation of expansion is not needed to obtain some encoder having a
sliding block decoder specified (except for its domain) by the finite-block function
(I). What is more, if one is willing to compose the given decoder with a power of
the shift map a then by Proposition 8.11, in-splitting can be avoided as well.
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COROLLARY 12.2. Let W be an irreducible sofic shift and let k be a positive
integer. Suppose there is a finite-state (W, k)-code (G, ’, O) with a sliding block (W, k)-
decoder o,a X -- X[k] having memory m, anticipation a, and delay d. Then
there is another finite-state (W, k)-code (G",:", (9") with a sliding block decoder ":
X" -- X[k], where " o-d,a+m+d and (G", (9") is obtained from (Fw, Lw) by
m + a + d rounds of out-splitting followed by pruning.

We conclude that out-splitting and pruning are, taken together, powerful enough
tools to construct (W, k)-codes from (Fw, Lw) having the shortest possible decoder
window length. However, as Examples 10.1 and 11.4 show, we avoid in-splitting and
expansion at the peril of greater encoder complexity.

Recall from 9 that any sequence of n rounds of out-splitting is legal with respect
to the scaled-up approximate eigenvector knr (where k is the approximate eigenvalue
and r is any smallest approximate eigenvector (in terms of maximal component)).
Corollary 12.2 gives an upper bound on this scaling factor in terms of the parameters
d, m, and a of the sliding block (W, k)-decoder . The bound is km+a+d. Now if s
is the number of states in the constraint graph Fw, then [6] gives an upper bound of
k2s on the largest entry of a smallest approximate eigenvector r. The state-splitting
algorithm will operate by a series of at most m + a + d rounds of legal splitting
on Fw (with an initial approximate eigenvector whose components are dominated
by k2s+m+a+d) to produce a finite-state (W, k)-code having sliding block decoder

Oxd’a-t-mWd and having no more than 8k2s+aWmWd states.

Proof of Proposition 12.1. Let (G,:, (9) be a finite-state (W, k)-code having a
sliding block decoder o,a. X X[]. Let (XF, 1, :) be the fiber product of
(9, (Lw). We have the commutative diagram in Fig. 43.

FIG. 43.

Write 1 (I/1)cx and 2 (2). Note that (F, ’OI/1, Lwo2) is a (W, k)-
/,[,+a+’] XFw.+o+l bycode having sliding block decoder . Define 2 XFI’+"+I

[m-a--l]
2 2 , where

[mWa-l](X_m_d Xa_d)- 2(X_m_d) 2(Xa-d)2

Apply m + d rounds of complete in-splitting followed by a d rounds of com-

plete out-splitting to (Fw, Lw) to obtain (F[w’++l], L), where L(y-,-d... Y-d)-
Lw(Yo).

Let H C_ F[wm++l] be the subgraph remaining after pruning away all of the edges
TIra-t-a-I- 1]of F[wm+a+l] that are not in the image of 2 and then pruning away any stranded

,g m-t- a-t-1]states. Notice that the image of 92 is actually contained in XH.
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We will define a left Markov equivalence relation on the d-blocks of XH in two
stages. First we define an equivalence relation on the edges of H. Let Y-m-d... Ya-d
and ff[m+a+ 1]

Y-m-d’’" Ya-d be two (re+a+ 1)-blocks of Fw that are in the image of 2
(These are edges of H.) We declare

Y-m-d Ya-d Ym-d.......Ya-d

if there are (m + a + 1)-blocks X-m-d Xa-d and x_m_d" Xa-d! of F such that

[m+a+l](x d Xa-d) Y-,-d Ya-d,

and

i/[mWa+l]
2 (Xm-d Xa-d) Y,-d Ya-d"

Now we extend the relation to an equivalence relation by taking its transitive
closure.

If

Y-m-d Ya-d 2 (X-m-d X-dX-d+l X-d+a)

and

l[mTa+1]
...XY-,-d Y,-d 2 (X-,-d X-dX_d+l --dTa),

then clearly

Y-m-d Y-d Y-,-d"" Yd"
But more is true. By Proposition 7.4, the edge X-d of the encoder graph F determines

Lw o 2(X-d+l...X-2d+). But Lw is right resolving. So the edge X-d determines
2(X-d+l... X-2d+a). So in fact

Y-m d Y-2d+a m-d" Y2d+a
Thus if

Y-m-d Ya-d m-d" Ya-d

then

Y-m-d Y-2d+a Y-m d 2d+a"

Now let Ul... Ud and u... u be two d-blocks of XH. We define ul... Ud ,.
for 1 < < d. We show that satisfies the left Markov property.u...u if u u

We can regard Ul ...Ud as an (m+a+d)-block Yl-m-d...Y, of Fw, each (re+a+ 1)-
l[m+a+l] Similarly, we can regard u... u assubblock of which is in the image of 2

an (rn + a+ d)-block Y-m-a"" Y, of Fw. Since ui ui we have Yi-m-a... Yi-2a+,

Y-m-a Yi-2d+a for 1 _< _< d. So Yl-m-d. Y,-d Yl-,-a Ya-a Now, if uo is
any edge preceding the edge u in H, then uo. Y-m-a... Ya-d for some edge Y-m-d
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of Fw such that Y-m-d Ya d is in the image of l[m+a+l]
2 So u0 also precedes the

edge u. Hence uoul... Ud- uou... Ud_i.
Let r XH, XH be the left-resolving conjugacy corresponding to the left

Markov equivalence relation , according to Proposition 8.2. Each edge of H can
be regarded as an -equivalence class, where is regarded as an equivalence re-
lation on that set of (m + d + a + 1)-blocks of Fw all of whose (m + a + 1)-sub-

ff [m+a+l] y_blocks are in the image of 2 Here, Y-m-d Ya ,-d’’" Y if and only if
for all 0 < < d. We now use this view of theYi-m-d Yi-d+a Yi-m-d Yi-d+a

edges of H to define two labelings 2- and (fl on the edges. These will be the input
and output labelings when they are restricted to a subgraph G of H.

First we define the labeling 2-. For the edge z0 of H choose any representative
(m+d+a+ 1)-block Y-m-d... Y in Fw and set 2"(z0) OoLw(Y-m... Ya). We must
verify that 2- is well defined. Suppose that Y-m-d’’’Y is another representative
(m + d + a + 1)-block of the edge z0. We must show that (I) o Lw(y-,... Ya)

o Lw(y_,... y). We can assume that there are (m + a + 1)-blocks x_,...Xa

and x in XF such that X-m TI[’++I](x xa)_,...x ...x0 x’_, ..x) _,...
X’a)Y-m Ya, and 2 y_,., y because the equivalence relation

is the transitive closure of pairs of (m + a + 1)-blocks of XFw related in this way.
We have

o Lw(y-,... y) 2- o q2 (xo) 2- (Xo) Lw(y_,... Ya),

showing that 2 is well defined
Now define a labeling (9 on H as follows. We regard an edge z0 of H as

an -equivalence class of (m + d + a + 1)-blocks in Fw. All of the representative
(m+d+a+ 1)-blocks of z0 have identical initial (m+a+ 1)-blocks, say Y-,-d... Y-d.
Define 50’(z0) Lw(Yo). This is the labeling inherited from (F[w’++I],L) after
the edge deletions and the d rounds of out-splitting leading from H to H. Since

()m,a naturally extends (as an (m + a + 1)-block map) to all of O(XH,)
We now show that 2- o O as functions from XH, to X[k]. Say z XH,.
Then O’(z)[-m,a] Lw(y-,... Ya), where for -m <_ i <_ a, Y-,-d... Y+a is a
representative (m + d + a + 1)-block of the edge zi. So

o OL(z)o o Lw(Y-m... Ya) 2-’(Zo)"

Finally, we show that there is an irreducible subgraph G’ c_ H’ having at each
state k out-going edges that are distinctly 2-’-labelled. Thus (G’,2-’, O’) is a finite-
state (W, k)-code having a sliding block decoder ’ defined by the same function
on (m + a + 1)-blocks that defines " X - X[k].

Fix some (d + m + 1)-block x-,-d... Xo in XF. Let x),..., x[k) be the edges
in F that follow x0. Say they are input-labeled 2" o 91(x)) j, for 1 _< j <_ k.
For each 1 < j < k fix an a-block xj) () in XF with t(xj)) s(xJ)).a+l

Write Y(J)- -d
(j) 2(X-,-d XoX) *+1) Notice that, having fixed

is any a-blockx-,-d...Xo, there is a unique edge z0 of H such that if x...x
following X-m-d Xo in F, then Y-m-d"" Ya q22 (X-m-d... XOXtl Xa) is a repre-
sentative of the edge z0, where z0 is regarded as an -equivalence class. In particular,

Y(-J)m-d’’" Y(aj) for 1 _< j _< k are all representatives of z0. It follows from this that the
() () follows theedge zj) of H that, as an -equivalence class, contains Y-m-d+l "’’a+l,
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edge z0. Now

o

In summary, for any (m + d+ 1)-block X-m-d... Xo in XF, there is a unique edge
z0 in H’ that, as a -equivalence class, contains the set

{92(X-m-d XoX’ X’) X’l X’a follows x0 in F}.

Moreover, z0 is followed in H’ by k distinctly Z’-labelled edges zl),... ,zk). The
same argument applies to each of these k edges to show again that each is followed in
H’ by k edges that are distinctly Z’-labelled. In this way, we can generate a subgraph
of H’ having at each state exactly k out-going edges, and these are distinctly Z’-
labeled. Finally we take G’ to be an irreducible component of this subgraph keeping
full out-degree k.

To summarize the construction of G’, we started with Fw, took the higher block
presentation F[wm+a+l], pruned to get H, out-split to get H’, and finally pruned to

get G’. The higher block presentation F[wm+a+l] was obtained from Fw by m + d
rounds of complete in-splitting followed by a- d rounds of complete out-splitting.
The pruning done on F[wm+a+l] to leave H can be postponed until after the d rounds
of out-splitting leading from H to H’. In starting the d rounds of out-splitting on

F[wm+a+l] rather than its subgraph H, one has only to make sure that at each round
of out-splitting, the descendant edges are partitioned in a way that restricts to a
corresponding partition of the descendants of the edges of the subgraph H when H
is out-split in isolation. How edges that are not descendants of edges of the subgraph
H are distributed in each successive partition is unimportant, for their descendants
will. ultimately be pruned away to leave H’. D

As a corollary of Proposition 12.1, we give a necessary condition for a sliding
block (W, k)-decoder to have a given delay.

In order to state the result, we need to introduce the notion of the higher-power
graph Gn, defined as the graph with the same set of states as G and an edge from I
to J for each path of length n in G from I to J.

COROLLARY 12.3. Let W be an irreducible sofic shift and k be a positive integer.

If there is a finite-state (W, k)-code with an (m, a)-block decoder having delay d, then
there is a graph E such that

(1) E has uniform out-degree kd,
and

(2) E is obtained from (Fw)d by pruning and one (round oJ) out-splitting.
In [8], it is shown that in (1) and (2) above, d can be replaced by the delay of the

output-labeling (9 of the finite-state (W, k)-code. Using Proposition 7.4, it is not hard
to see that a- d < d(O) < a. However, neither d nor d(O) necessarily dominates the
other. There are more necessary conditions in [27].

Proof of Corollary 12.3. We continue using the notation used in the proof of
Proposition 12.1. The graph G’ in that proof can be constructed from Fw by com-
pletely in-splitting (m+d) rounds, completely out-splitting (a-d) rounds, out-splitting
d more rounds, and finally pruning. Let G" be the graph containing G’ before the
pruning is done. Then G" contains an irreducible subgraph (G’) having out-degree k.

We regard the states of G" as the equivalence classes of (m + d + a)-blocks of
Fw defined by the splittings leading from Fw to G". If two (m + d + a)-blocks
Y-m-d Ya-1 and Y-m-d’ Y-’ of Fw are equivalent, then Y-m-d....Ya-d-1
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Y-m-d’" Ya-d- Thus, each (a + m)-block y_, d Ya-d-1 defines a partition
Py--...ya--i of the d-blocks Ya-d... Ya-1 that follow it (according to the equiv-
alence class of Y-m-d... Ya-1). Now define a vector r indexed by the states of Fw
as

rj max {,y_m_g...ya_d_ll y_m_d...Ya_d_l is in the image of 2
t(ya-d-1) J

if J is in the image of , and rg 0 otherwise. If J is in the image of , set
Pj :Py__...y__, where Y-,-d... Ya-d-1 is in the image of 2, t(ya-d-1) J,
and IPjI rg. If a state J of Fw is not in the image of, then define Pj arbitrarily.
Now let A E Pj 7)y_,_...y__, where the set of paths

Y-m-d Ya-d-lA {Y-m-d. Ya-1 Ya-d Ya-1 A}

intersects the image of 2. The set of paths Y-m-d... Ya-d-1A can be identified with
a state I of G" that is in the subgraph G. As such, there are at least kd paths of
length d in G" emanating from I each path terminating at a state y_,.., ya_lA
where Y-m-d... Ya-1 Y-m-d... Ya-d-lA and A Py _. Thus

[rt(y_d...ya_) Ya-d... Ya-1 A]
>- E[IPy - I" Y-re... Ya-1 is in the image of 2 and Y-d... Y-I A]
> kd.

It follows that

’][rt(ya_d...ya_) 8(ya-d’’’ Ya-1) J] >_ rjkd

for each state J of Fw in the image of . It follows that if we out-split (Fw)d

according to the partitions 7)j, we obtain a graph containing an irreducible subgraph
E having out-degree at least kd.

13. Appendix I. Proof of Proposition 4.4:
d(f2ofl)

_
d(f2)+d(fi): Write 11 (F1) and f2 (F2). We can assume that

D d(f2) + d(fl) is finite. Let w To... WD and w’ w...w be (D / 1)-blocks
in Xc with s(w) s(we) and F2 o F1 (w) F2 o F1 (w’). Let Fl(W)[o,k] be the longest
common prefix of Fl(w) and F1 (w’). In case k < D, FI(w)[k+I,D] and FI(w’)[k+I,D]
have the same initial state in H, distinct first edges, and F2 o FI(W)[k+I,D] F2 o

FI(W’)[k+I,D]. So D- k

_
d(f2), giving d(fl) <_ k. In case k D, again d(fl)

_
k.

Recall Fl(w)[o,] Fl(w )[o,k], so Wo w. We can conclude d(f2 o fl)

_
D

d(f2 - d(fl ).
d(fl) <_ d(f2 o fl): Set D d(fl), and let w To... WD-1 and w’ w... w_

be D-blocks in Xc having the same initial state, distinct first edges, and Fl(W)
F1 (w’). Then F2 o F1 (w) F2 o F1 (w’) also, showing D

_
d(f2 o fl).

d(f2) _< d(f2 o fl)" Set D- d(f2). We may assume that d- d(fl) is finite (for,
as we have shown,, d(f) <_ d(f2 o fl)). Let v vo... VD-1 and v’ v... v_ be
D-blocks in XH with s(v) s(v’), distinct first edges, and F2(v) F2(v’). Let v*
be any d-block in XH with t(v*) s(v). Pick a d-block u* .in Xv with Fl(u*) v*.
Using that Xv and XH are irreducible, and that fl is right closing and onto, [7, Lem.
5] gives two (d+ D)-blocks u uo... U+D-1 and u’ Uo... Ud+D_l in Xv such that
s(u) s(u’) s(u*), Fl(u) v’v, and Fl(u’) v*v’. Now

F2 o Fl(U) F2(v*)F2(v) F2(v*)F2(v’) F2 o Fl(u’).
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Since v0 = v), we have Ud Ud If 0 <_ k

_
d is the least index with uk uk, then

So

d(f2 o fl) _> D + d k >_ D d(f2). [:!

14. Appendix II. We show that, for Example 10.1, out-splitting alone requires
at least 3 rounds. The eigenvector r of the adjacency matrix of G, corresponding
to eigenvalue 5, gives an explanation.. Each state s of Fig. 28 is labeled by its cor-
responding eigenvector component rs, called its weight. If G could be out-split in 2
rounds alone to achieve the underlying graph ( of a finite-state (Xa, 5)-code, then
( would have uniform out-degree 5; it follows that there would be a weight w0 such
that for each state s of G, the set of 2-blocks starting at state s would be partitioned
into atoms in such a way that within each atom the sum of weights of terminal states
of its member 2-blocks is w0. It is not hard to see that the only possibility here is

w0 25.
Suppose that there were such a partition and call it P. For each state s, let P8

denote the partition restricted to 2-blocks outgoing from s.
The 2-blocks with initial state t(b) have terminal states t(j), t(k), t(),... ,t(o)

weighing in at 10, 10, 1, 14, 9, 6, respectively. There is a unique partition of this multi-
set of integers into 2 atoms, each atom summing to 25: { 10, 1, 14} and { 10, 9, 6}. Thus
the pair of paths {ft, fm} is contained in one atom of i:t(b) and the pair {fn, fo} is
contained in the other.

Similarly, the 2-blocks beginning at state t(c) have terminal states t(t),
t(m),...t(q) weighing 1, 14,9, 6, 5, 15, respectively. Again there is a unique parti-
tion of these weights into 2 atoms, each summing to 25: {1, 9, 15} and {14, 6, 5}.
Thus the pair {gt, gn} is contained in one atom of Pt(c), and {gin, go} is contained in
the other.

Let P{e,,ln,o} be the partition of the 2-blocks beginning at state t(f) t(g) given
by:

1...5}U{rnmi" i 1...70}, {nni" 1...45}U{ooi" i 1...30}}.

Using that the sets {ft, fm} and {fn, fo} are contained in distinct atoms of
the left Markov property (6) tells us that the partition Pt(f) Pt(g) refines

Similarly, let P{,lm,o} be the partition of the 2-blocks beginning at state t(f)
t(g) given by"

{{tti" i 1...5}U{nni" i 1...45}, {mmi" i 1...70}t{ooi" 1...30}}.

Using that {gg, gn} and {gin, go} are distinct of :Pt(c), we have that
refines P{,l-,o}. Thus Pt(l) "Pt(a) refines P{,mln,o} V :P{t,nlm,o}, which has 4
atoms:

{{tti’i-l...5}, {mmi i l...70}, (nni l...45}, {ooi-i=l...30}}.

But none of these 4 atoms comprises a set of 2-blocks whose terminal states’ weights
sum to a multiple of 25, as each must if the purported partition P exists. This
contradiction shows that at least 3 rounds of out-splitting are required. [:]
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TREEWIDTH AND PATHWIDTH OF PERMUTATION GRAPHS*
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Abstract. In this paper, we show that the treewidth and pathwidth of a permutation graph
can be computed in polynomial time. In fact we show that, for permutation graphs, the treewidth
and pathwidth are equal. These results make permutation graphs one of the few nontrivial graph
classes for which, at the moment, treewidth is known to be computable in polynomial time. Our
algorithm, which decides whether the treewidth (pathwidth) is at most some given integer k, can be
implemented to run in O(nk) time when the matching diagram is given. We show that this algorithm
can easily be adapted to compute the pathwidth of a permutation graph in O(nk) time, where k is
the pathwidth.

Key words, permutation graphs, graph algorithms, treewidth
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1. Introduction. In many recent investigations in computer science, the notions
of treewidth and pathwidth play an increasingly important role. One reason for this
is that many problems, including many well-studied NP-complete graph problems,
become solvable in polynomial and usually even linear time when restricted to the
class of graphs with bounded treewidth or pathwidth [1], [3], [4], [7], [9], and [25]. Of
crucial importance for these algorithms is that a tree decomposition or path decom-
position of the graph is given in advance. Much research has been done in finding
a tree decomposition with a reasonable small treewidth. Recent results show that a
linear-time algorithm exists to find an optimal tree decomposition for a graph with
bounded treewidth [8] (see also [22]). However, the constant hidden in the "big oh"
is exponential in the treewidth, limiting the practicality of this algorithm.

For some special classes of graphs, it has been shown that the treewidth can be
computed efficiently. In this paper we discuss the problem of finding tree and path
decompositions for permutation graphs. We also show that for these graphs, the
treewidth and the pathwidth are the same.

Permutation graphs are a nontrivial class of perfect graphs. They have many
applications in scheduling problems. See, for example, [14], where permutation graphs
are used to describe the memory requirements of a number of programs at a certain
time (see also [17]). Permutation graphs also arise in a very natural way in the problem
of sorting a permutation using queues in parallel. In [17] it is shown that this problem
is closely related to the coloring problem of permutation graphs. Other applications
occur for example in very-large-scale integration (VLSI) layout (see, e.g., [27]). There
exist fast algorithms for many NP-complete problems like CLIQUE, INDEPENDENT SET.,
FEEDBACK VERTEX SET and DOMINATING SET when restricted to permutation graphs
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[12], [13], [15], [17]. However, some problems remain NP-complete, like COCHROMATIC
NUMBEa [16], [30], and ACHROMATIC NUMBER [6].

We give an O(nk)-time algorithm that determines whether the pathwidth (or
treewidth) of a permutation graph is at most k when the matching diagram of the
graph is given. The algorithm can easily be adapted such that it computes the path-
width (or treewidth) of a permutation graph in O(nk) time, where k denotes the
pathwidth of the input graph.

2. Preliminaries. In this section we start with some definitions and easy lem-
mas. For more information on perfect graphs the reader is referred to [5], [11], [17].

DEFINITION 2.1. A graph is chordal if it has no induced chordless cycle of length
at least four.

Chordal graphs are also called triangulated. There are basically two ways to define
the treewidth of a graph. One way is to use the concept of a tree decomposition. For
more information on tree decompositions, the reader is referred to [9]. In this paper,
we introduce the treewidth of a graph by means of k-trees.

DEFINITION 2.2. Let k be an integer. A k-tree is a graph that is defined recursively
as follows. A clique with k + 1 vertices is a k-tree. Given a k-tree Tn with n vertices,
a k-tree with n + 1 vertices can be constructed by making a new vertex adjacent to
the vertices of a k-clique in Tn. A graph is a partial k-tree if either it has at most k
vertices or it is a subgraph of a k-tree T with the same vertex set as T.

Every k-tree G is chordal and w(G) k + 1 (where w(G) is the maximum clique
size). Notice that any graph is a partial k-tree for some k; take k equal to the number
of vertices minus one.

DEFINITION 2.3. The treewidth of a graph G is the minimum value k .for which
G is a partial k-tree.

DEFINITION 2.4. A triangulation of a graph G is a graph H with the same vertex
set as G, such that G is a subgraph of H and H is chordal.

For a proof of the following lemma see for example [25].
LEMMA 2.5. A graph G has treewidth <_ k if and only if there is a triangulation

H of G with w(H) <_ k + 1.
It follows that the treewidth of a chordal graph is the maximum clique size minus

one. The treewidth can be defined in terms of the minimum over all triangulations of
the maximum clique size. We define the pathwidth of a graph using triangulations of
a special kind.

DEFINITION 2.6. An interval graph is a graph of which the vertices can be put
into one-to-one correspondence with intervals on the real line such that two vertices
are adjacent if and only if the corresponding intervals have a nonempty intersection.

There are many ways to characterize interval graphs. We state only one of the
first characterizations [26].

LEMMA 2.7. An undirected graph is an interval graph if and only if the following
two conditions are satisfied:

(i) G is chordal; and
(ii) any three vertices of G can be ordered in such a way that .every path from

the first to the third vertex passes through a neighbor of the second vertex.
Three vertices that do not satisfy the second condition a.re called an astroidal

triple. These are pairwise nonadjacent, and for any pair of them there is a path that
avoids the neighborhood of the remaining vertex.

DEFINITION 2.8. Let k be an integer. A graph G has pathwidth <_ k if and only if
there is a triangulation H of G such that H is an interval graph with w(H)

_
k + 1.
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Determining the treewidth or the pathwidth of a graph is NP-complete [2]. How-
ever, for constant k, graphs with treewidth <_ k are recognizable in O(n) time [8].
The large constants involved in these algorithms usually make them not very prac-
tical. It is therefore of importance to find fully polynomial algorithms for treewidth
and pathwidth for special classes of graphs which are as large as possible.

One of the main reasons why there exist fast algorithms for many problems when
restricted to graphs with bounded treewidth is the existence of vertex separators of
bounded size.

DEFINITION 2.9. A subset S C_ V is an a, b-separator for nonadjacent vertices a

and b if the removal of S separates a and b in distinct connected components. If no
proper subset of S is an a, b-separator, then S is a minimal a, b-separator. A minimal
separator S is a subset such that S is a minimal a, b-separator for some nonadjacent
vertices a and b.

The following lemma, which must have been rediscovered many times, appears
for example as an exercise in [17].

LEMMA 2.10. Let S be a minimal a, b-separator and Ca and Cb be the connected
components of G[V S] containing a and b, respectively. Then every vertex of S has
a neighbor in Ca and a neighbor in Cb.

THEOREM 2.11. Let G be a partial k-tree. There exists a triangulation of G into

a chordal graph H such that the following three statements hold:

(i) w(H) <_ k + 1.
(ii) If a and b are nonadjacent vertices in H, then every minimal a, b-separator

of H is also a minimal a, b-separator in G.
(iii) If S is a minimal separator in H and C is the vertex set of a connected

component of H[V- S], then C induces also a connected component in G[V- S].
Proof. Take a triangulation H, with treewidth at most k and with a minimum

number of edges (this exists by Lemma 2.5). Suppose H has a minimal vertex sep-
arator C for nonadjacent vertices a and b such that either C induces no minimal

a, b-separator in G or the vertex sets of the connected components of H[V- C] are
different from those of G[V- C]. Let S c_ C be a minimal a, b-separator in G. Let
C1,..., Ct be the connected components of G[V- S]. Make a chordal graph H’ as
follows. For each Ci U S, take the chordal subgraph of H induced by these vertices.
Since S is a clique in H, this gives a chordal subgraph H of H. Notice that the vertex
sets of the connected components of H’IV S] are the same as those of G[V- S]. We
claim that the number of edges of H is less than the number of edges of H, which
is a contradiction. Clearly, the number of edges of H does not exceed the number of
edges of H. First assume that S : C and let x E C\ S. By Lemma 2.10, in H, x has a
neighbor in the component containing a and a neighbor in the component containing
b. Not both of these edges can be present in H. Thus, we may assume S C. Then
the vertex sets of the connected components of H[V C] are different from those of
H’[V C]. Since H’ is a subgraph of H, every connected component H’[V C] is
contained in some connected component of H[V- C]. It follows that there must be a
connected component in H[V- C] containing two different connected components of
H[V- C]. This can only be the case if there is some edge between these components
in H[V- C] (which is not there in H’[V- C]). This proves the theorem.

DEFINITION 2.12. We call a triangulation whose existence is guaranteed by The-
orem 2.11 a minimal triangulation.

Let G (V, E) be a graph and let C be a minimal vertex separator. Let C1,..., Ct
be the connected components of G[V- C]. We denote by Ci (i 1,..., t) the graph
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obtained as follows. Take the induced subgraph G[C ( Ci] and add edges such that
the subgraph induced by C is complete. The following lemma easily follows from
Theorem 2.11 (a similar result appears in [2]).

LEMMA 2.13. A graph G with at least k + 2 vertices is a partial k-tree if and
only if there exists a minimal vertex separator C such that the graphs Ci are partial
k-trees 1,..., t).

In this paper, we show that the treewidth and pathwidth of a permutation graph
can be computed in polynomial time. We think of a permutation r of the numbers
1,..., n as the sequence r [rl,..., rn].

DEFINITION 2.14. Ifr is a permutation of the numbers 1,..., n, we can construct
a graph G[r] (V, E) with vertex set Y {1,..., n} and edge set E:

(i, j) e E (i- j)(r- -r) < O.

An undirected graph is a permutation graph if there is a permutation such that
G G[=].

The graph G[r] is sometimes called the inversion graph of . If the permutation is
not given, it can be computed in O(n2) time [17], [28]. In this paper, we assume that
the permutation is given and we identify the permutation graph with the inversion
graph. A permutation graph is an intersection graph, which is illustrated by the
matching diagram.

DEFINITION 2.15. Let r be a permutation of 1,...,n. The matching diagram
can be obtained as follows. Write the numbers 1,..., n horizontally from left to right.
Underneath, write the numbers r,..., rn, also horizontally from left to right. Draw
straight line segments joining the two 1 ’s, the two 2 ’s, etc.

Notice that two vertices and j of G[r] are adjacent if and only if the correspond-
ing line segments intersect. In Fig. 1 we give an example.

5 1 1 2 3 4 5

2 3 3 5 1 4 2

FIG. 1. Permutation graph and matching diagram.

3. Scanlines. In this section, we show that every minimal separator in a per-
mutation graph can be obtained by using a scanline. Recall the definition of the
matching diagram. It consists of two horizontal lines, one above the other, and a
number of straight line segments, one for each vertex, such that each line segment has
one end vertex on each horizontal line. Two vertices are adjacent if the corresponding
line segments intersect. We say that two line segments cross if they have a nonempty
intersection.

DEFINITION 3.1. A scanline in the diagram is any line segment with one end
vertex on each horizontal line. A scanline s is between two noncrossing line segments
x and y if the top point of s is in the open interval bordered by the top points of x and
y and the bottom point of s is in the open interval bordered by the bottom points of x
and y.

If a scanline s is between line segments x and y, then the intersection of each pair
of the three line segments is empty. Consider two nonadjacent vertices x and y. The
line segments in the diagram corresponding to x and y do not cross in the diagram.
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Hence we can find a scanline s between the lines x and y. Take out all the lines that
cross the scanline s. Clearly, this corresponds with an x, y-separator in the graph.
The next lemma shows that we can find all minimal x, y-separators in this way.

LEMMA 3.2. Let G be a permutation graph and x and y be nonadjacent vertices
in G. Every minimal x, y-separator consists of all line segments crossing a scanline
that lies between the line segments of x and y.

Proof. Let S be a minimal x, y-separator. Consider the connected components of
G[V-S]. Let Cx be the component containing x and Cy be the component containing
y. Clearly, these must also be "connected" parts in the diagram, and we may assume
without loss of generality that the component containing x is completely to the left of
the component containing y. Every vertex of S is adjacent to some vertex in Cx and
to some vertex in Cy (Lemma 2.10). Notice that we can choose a scanline s crossing
no line segment of G[V- S] and that is between x and y. Then all lines crossing
the scanline must be elements of S. But for all elements of S the corresponding line
segment must cross s, since it is intersecting with a line. segment of Cx, which is to
the left of s, and with a line segment of C, which is to the right of s.

COROLLARY 3.3. There are O(n2) minimal separators in a permutation graph
with n vertices.

If s is a scanline, then we denote by S the set of vertices of which the corresponding
line segments cross s. In the rest of this paper, we consider only scanlines of which
the endpoints do not coincide with endpoints of other line segments.

DEFINITION 3.4. Two scanlines sl and s2 are equivalent, sl =_ s2, if they have
the same position in the diagram relative to every line segment.

Hence, if Sl s2, then the set of line segments with the top (or bottom) endpoint
to the left of the top (or bottom) endpoint of the scanline is the same for s and s2.

We are only interested in scanlines that do not cross too many line segments,
since these correspond with suitable separators.

DEFINITION 3.5. A scanline s is k-small if it crosses with at most k / 1 line
segments.

LEMMA 3.6. There are O(nk) pairwise nonequivalent k-small scanlines.
Proof. Consider the matching diagram, with numbers 1,..., n written from left

to right and written r,..., rn Underneath. Consider a scanlie t and assume that
the top endpoint is between and / 1 and the bottom endpoint is between rj and
rj+. Assume that s line segments are such that the top endpoint is to the left of the
top of t and the bottom endpoint to the left of the bottom of t. Then the number
of line segments crossing t is i / j 2s. Since s <_ i and s <_ j, it follows that
i k- 1 _< j _< i + k / 1 must hold. This proves the lemma. [:]

4. Treewidth pathwidth. In this section, we show that a permutation graph
can be triangulated optimally such that the result is an interval graph.

THEOREM 4.1. Let G be a permutation graph and H be a minimal triangulation
of G. Then H is an interval graph.

Proof. Assume H has an astroidal triple x, y, z. Since x, y, and z are pairwise
nonadjacent, the corresponding line segments in the matching diagram pairwise do not
cross. We may assume without loss of generality that the line segment of y is between
those of x and z. Take a path p between x and z that avoids the neighborhood of y.
Then each line of the path lies totally to the left or totally to the right of y. It follows
that there are x to the left of y and z to the right of y such that x and z are adjacent
in H but neither x nor z is a neighbor of y in H. Let S be a minimal x, y-separator
in H. Since H is a minimal triangulation, S is also a minimal x, y-separator in G. By
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Lemma 3.2, S consists of all lines crossing some scanline s between x and y. Clearly,
the connected component of G[V- S] containing x lies totally to the left of s and the
connected component containing z in G[V- S] lies totally to the right of s (notice
that z S since z lies totally to the right of y). It follows that x and z must be in
different components of G[V- S]. Since H is minimal, by Theorem 2.11 they must
also be in different components of H[V- S]. But then x and z cannot be adjacent in
H. It follows that there cannot be an astroidal triple, and by the characterization of
Lekkerkerker and Boland ([26], stated in Lemma 2.7), H is an interval graph. [:]

COROLLARY 4.2. For a permutation graph G, the pathwidth of G is equal to the
treewidth of G.

5. Candidate components. Consider the matching diagram of G.
DEFINITION 5.1. Let Sl and s2 be two scanlines of which the intersection is either

empty or one of the endpoints of s and s2. A candidate component C C(sl, s2) is
a subgraph of G induced by the following sets of lines:

1. all lines that are between the scanlines (in case the scanlines have a common
endpoint, this set is empty);

2. all lines crossing at least one of the scanlines.
We identify the candidate component C -C(s, s2) with the diagram containing

Sl, s2 and the set of lines corresponding with vertices of C.
DEFINITION 5.2. Let k be an integer. A candidate component C C(s,s2) is

k-feasible if there is a triangulation H of C such that w(H) <_ k + 1 and such that for
each scanline si (i 1, 2) the set of lines crossing this scanline .forms a clique in H.

Notice that if a candidate component has at most k / 1 vertices, then it is k-
feasible.

DEFINITION 5.3. Let C :(Sl,S2) be a candidate component. We define the
realizer R(C) as the graph obtained from C by adding all edges between vertices of S
and between vertices of $2 (i.e., the two subgraphs of R(C) induced by S and by $2
are cliques).

A candidate component C C(sl, s2) is k-feasible if and only if the realizer R(C)
has treewidth at most k.

LEMMA 5.4. If C C(81,82) is a candidate component, then the realizer R(C)
is a permutation graph.

Proof. Consider the matching diagram. Assume s is to the left of s2. First
consider lines that cross only s and with top endpoints to the right of the top endpoint
of s. Let (a, bl),..., (at, br) be these line segments, with top endpoints al,..., at.
Assume al < a2 < < at. Change the order of bl,..., b such that bl > b2 > >
b. This is illustrated in Fig. 2. Now consider the line segments crossing s of which
the top endpoint is to the left of the top endpoint of Sl. Reorder in the same way the
top endpoints of these line segments. The lines crossing s2 are handled similarly. The
resulting diagram is a matching diagram for R(C).

Let C C(s, s2) be a candidate component such that C has at least k + 2
vertices. The realizer R(C) has treewidth at most k if and only if there is a minimal
vertex separator S with at most k vertices such that all components, with S added as
a clique, have treewidth at most k (see Lemma 2.13). Consider the diagram of R(C),
obtained from the diagram of C by the method described in the proof of Lemma 5.4.
By Lemma 3.2, a minimal separator can be found by a scanline. Let H be a minimal
triangulation of R(C) and let the scanline s represent a minimal vertex separator in H
for nonadjacent vertices a and b. The separator consists exactly of the lines crossing
this scanline s.
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81 al a2 82

bl b2 sl s2

81 al a2 82

b2 bl sl s2

FIG. 2. Diagrams of candidate component and realizer.

a s s b

81 a 8 b

assume s is not nice

a s p s(s*) b

Sl p a s(s*) b

S is not minimal

FIG. 3. There is an equivalent nice scanline.

DEFINITION 5.5. Let C --C(s, s2) be a candidate component with realizer R(C).
A scanline t is nice if the top point of t is in the closed interval between the top points
of S and s2 and the bottom point of t is in the closed interval between the bottom
points ors1 and s2.

LEMMA 5.6. There is a scanline s* =_ s such that s* is nice.

Proof. Consider the diagram of R(C) with the scanlines s, s2, and s. Without
loss of generality, we assume that s is to the left of s2. The scanline s separates
nonadjacent vertices a and b. Let the line segment of a be to the left of the line
segment of b. The scanline s lies between the line segments of a and b. Assume that
s is not nice. Without loss of generality, assume that it crosses Sl. Then a E S and
b $1, since a and b are not adjacent (see the left diagram in Fig. 3). Let s* be the
line segment with its top point at the top of s and its bottom point at the bottom of
s. We want to prove that s s*. This is clearly the case if there is no line segment
for which the top point is between the top points of s and s. Assume that there is
such a vertex p (see the right diagram in Fig. 3). Notice that, since p and a both
cross sl, they are adjacent. We claim that S* c S. Let x be a line segment crossing
s*. If the bottom end of x is to the left of the bottom end of s*, then the segment
x clearly also crosses s. Assume that the bottom vertex of x is to the right of the
bottom vertex of s*. Then the line segment also crosses s. But then x and a are
adjacent, hence the top vertex of x must be to the left of the top vertex of a. This
implies that x also crosses s. Clearly, S* is an a, b-separator in R(C). Since p E S\S*,
S cannot be a minimal a, b-separator in R(C) and since H is a minimal triangulation
ofR(C), it cannot be a minimal a, b-separator in H (Theorem 2.11). This, then, is a
contradiction.

This proves that all lines crossing the scanline s are in C, and the next lemma
follows.

LEMMA 5.7. Let C C(s,s2) be a candidate component with at least k + 2
vertices. Then C is k-feasible if and only if there is a nice scanline s such that the
two candidate components C C(s, s) and C2 C(s, s2) are both smaller than C
and are both k-feasible.
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DEFINITION 5.8. Two scanlines sl and s2 are neighbors if they have one endpoint
in common and in the interval determined by the other endpoints, lies exactly one
endpoint of a line segment.

We are now ready to prove our main theorem.
THEOREM 5.9. Let C C(sl,s2) be a candidate component with 82 to the

right of s. Then C is k-feasible if and only if there exists a sequence of scanlines
81 tl, t2,..., tr 82 such that the following conditions are satisfied:

1. The scanlines ti and ti+ are neighbors for i 1,..., r 1 and one endpoint
of ti+ lies to the right of the endpoint of ti.

2. Each C(ti, ti+) has at most k + 1 vertices (i 1,...,r- 1).
Proof. First, assume that such a .sequence exists. Let t1,..., tr be the sequence of

scanlines. If C has at most k / 1 vertices, then C is k-feasible. Hence, we may assume
that C has at least k + 2 vertices. Then r >_ 3. By induction, we show that C(t, ti) is
k-feasible for 2,..., r. If 2, then C(t, t2) has at most k + 1 vertices and hence
is k-feasible. Assume that C(tl,ti_) is k-feasible and C(tl,ti) C(tl, ti-1). Then
t-I is a nice scanline in C(ti, t). C(t, ti-) and C(t_i, t) are both k-feasible; hence,
by Lemma 5.7, C(t, ti) is also k-feasible.

Now assume that C is k-feasible. Consider the case that C has at most k + 1
vertices. In this case, it is easy to see that such a sequence of scanlines exists. If
and 82 have an endpoint in common, we can take r 2. If s and 82 do not have an
endpoint in common, take a scanline t that has one endpoint in common with 81 and
the other endpoint in common with 82. The sequence of scanlines s, t, 82 satisfies
these requirements. Assume that C has at least k + 2 vertices. Then by Lemma 5.7,
there is a nice scanline s* such that C(sl,s*) and C(s*,s2) are both k-feasible. The
theorem follows by induction on the number of vertices of C.

6. Algorithm. In this section, we show how to compute the treewidth (and
pathwidth) of a permutation graph G. Let k be an integer. The algorithm we present
checks whether the treewidth of the permutation graph does not exceed k.

Make a directed acyclic graph Wk(G) as follows. The vertices of the graph are
the pairwise nonequivalent k-small scanlines. Direct an arc from scanline s to t if the
following hold:

1. The scanlines s and t are neighbors such that one endpoint of t is to the right
of the corresponding endpoint of s.

2. The candidate component C(s, t) has at most k + 1 vertices.
We call this graph the scanline graph.

LEMMA 6.1. Let si be the scanline that lies totally to the left of all line segments
and sn be the scanline that lies totally to the right of all line segments. G has treewidth
at most k if and only if there is a directed path in the scanline graph from si to SR.

Proof. Clearly, si and sR are k-small. The result follows immediately from
Theorem 5.9.

LEMMA 6.2. The scanline graph has O(nk) vertices, and each vertex is incident
with at most 4 arcs.

Proof. The bound on the number of vertices is proved in Lemma 3.6. For each
scanline s there are at most 4 scanlines t such that s and t are neighbors. [:]

We now describe the algorithm which determines if the treewidth of G is at most
k.

Step 1. Make a maximal list L: of pairwise nonequivalent k-small scanlines.
Step 2. Construct the acyclic digraph Wk(G).
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Step 3. If there exists a path in Wk(G) from 8L to sR, then the treewidth of
G is at most k. If such a path does not exist, then the treewidth of G is
larger than k.

We now discuss the running time of the algorithm in more detail.
LEMMA 6.3. The algorithm can be implemented to run in O(nk) time.

Proof. By Lemma 3.6, each k-small scanline can be characterized by two indices
and 0, with 0 <_ <_ n and -(k + 1) <_ <_ k -t- 1. The scanline with these indices has

its top endpoint between and / 1 and its bottom endpoint between ri+e and ri+e+l
(with obvious boundary restrictions). Let A(i, ) be the number of line segments of
which the top endpoint is to the left of the top endpoint of this scanline and that
cross the scanline. Notice that A(0, ) 0 for 0,..., k -t- 1. The rest of the table
follows from:

A(i,O- 1) if ri+e >A(i, ) A(i, 0- 1)- 1 if ri+o _<
if 0 > -min(k -b 1, i)

A(i 1, 0 q-- 1) q- 1 if 71--1 > -[- 0
A(i, ) A(i 1, + 1) if r-1 _< i +

if >_ 1 and -min(k + 1, i).

The number of line segments crossing the scanline with indices and 0 is 2A(i, ) + .
It follows that the list of k-small scanlines can be made in O(nk) time.

We now show that the scanline graph Wk(G) can be constructed in O(nk) time.
Consider two k-small scanlines s and t that are neighbors and that have a top endpoint
in common, say between i and i + 1. Assume that the bottom endpoint of s is between
rj-1 and rj and the bottom endpoint of t is between rj and rj+l. According to
Lemma 6.2, we must have Im-jl _< k + 1, otherwise there cannot be an arc between s
and t. Assume without loss of generality that j < m. Now notice that the number of
vertices of C(s,t) is j + A(i,j i) + A(i,j i- 1). This shows that the adjacency
list for each k-small scanline can be computed in O(k) time. Computing a path in W
from si to SR, if it exists, clearly also takes O(nk) time. Hence the total algorithm
can be implemented to run in O(nk) time. [:]

THEOREM 6.4. Let G be a permutation graph. Then the pathwidth and treewidth
of G are the same, and there is an O(nk) algorithm that correctly determines whether
the treewidth of G is at most k.

We end this section by remarking that the algorithm can be adapted such that it
computes, within the same time bound, the pathwidth of a permutation graph (when
the matching diagram is given). This can be seen as follows. Let the treewidth of G
be k. First, compute a number L such that L <_ k <_ 2L. This can be done, using the
algorithm described above O(log k) times, in time O(nk) (execute this algorithm for
L 1,2, 4,...). Now construct the scanline graph W2L(G) and put weights on the
arcs that express how many vertices are in the corresponding candidate component.
Then search for a path from SL to sR such that the maximum over weights of arcs in
the path is minimized. This maximum weight minus one gives the exact treewidth k
of G.

7. Conclusions. In this paper, we described a very simple and efficient algo-
rithm to compute the treewidth and pathwidth of a permutation graph. In fact, we
have shown that, for any permutation graph, the pathwidth and treewidth are equal.
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Our results can easily be extended to complements of comparability graphs for which
the partial order dimension is bounded by some fixed constant d >_ 1 (so-called co-
comparability graphs of dimension d) using an intersection model that was introduced
in [18] (see also [24]). Then the algorithm computing the pathwidth (or treewidth) has
running time O(nkd-l). Furthermore, it can be shown that, for any cocomparability
graph, the pathwidth and treewidth are equal. (Notice that the problems PATH-
WIDTH and TREEWIDTH are both NP-complete when restricted to cocomparability
graphs [2].)

Our methods can also be applied to the minimum fill-in problem, which is equiv-
aleut to minimizing the number of edges over all triangulations of the given graph.
This leads to efficient algorithms computing a minimum fill-in, namely an O(n2) al-
gorithm for permutation graphs and an O(nd) algorithm for cocomparability graphs
of dimension d. It is important to mention that the algorithms on cocomparability
graphs of dimension d _> 3 usually require an intersection model as part of the input,
since their recognition problem is NP-complete [31]. Nevertheless, it has been shown
recently that, using a different approach, a polynomial-time algorithm computing
the pathwidth (or treewidth) for cocomparability graphs of dimension d _> 3 can be
designed that does not require an intersection model as part of the input [22], [24].

There are some other classes of graphs for which the exact pathwidth and treewidth
can be computed efficiently. For example, cographs [10], split graphs, and interval
graphs. The treewidth can also be computed efficiently for chordal graphs, circular
arc graphs [29], and chordal bipartite graphs [23]. In this respect, we would like to
mention the result of [19], which shows that the problem PATHWIDTH is NP-complete
when restricted to chordal graphs. Recently, polynomial-time algorithms comput-
ing the treewidth of circle graphs [20] and the minimum-fill-in of chordal bipartite
graphs [21] have been shown. For more details we refer to the monograph [22].
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SALVAGE-EMBEDDINGS OF COMPLETE TREES*

SANDEEP N. BHATTt, FAN R. K. CHUNG:, FRANK THOMSON LEIGHTON, AND

ARNOLD L. ROSENBERG

Abstract. A salvage-embedding (S-embedding) maps an M-leaf complete binary tree G into
an (N > M)-leaf complete binary tree T/, the fraction G of whose leaves have been labeled GOOD.
The S-embedding maps leaves of G one-to-one to GOOD leaves of 7; it may be many-to-one on

internal nodes. The quality of an S-embedding depends on its harvest, the ratio H de=_ M/GN,
and its congestion, the largest number of edges of G that get "routed" across the same edge of 7-/.
We study three scenarios. In the worst-case scenario, given any target harvest H

_
1/2, one can

S-embed a 2[lg(UGN)J-leaf in T/ with congestion log logN+ a constant depending only on G
and H, no matter how the GOOD leaves are distributed; this congestion cannot be lowered by more
than a small constant factor. In the expected-case scenario--where leaves of 7-/are labeled GOOD or

not, independently, with fixed probabilitywwith probability exceeding 1 N-(1), for any target
harvest H

_
1/8, one can S-embed a 2[HNJ-leaf G in T/ with congestion O(log log log N) In the

salvaging scenario, we present an algorithm that, in time O(CN(log N)3c+2), S-embeds in a given
a leaf-labeled T/ the largest possible G, subject to the prespecified bound C on congestion. This
work is inspired by the problem of salvaging a fault-free subnetwork of a leaf-tree machine--a tree
architecture whose leaves hold "full-power" processors and whose nonleaf nodes hold "rudimentary"
processors that route messages and perform simple combining tasks.

Key words, synchronization networks, fault tolerance, congestion, dilation

AMS subject classification. 6805C

1. Introduction. This paper studies salvage-embeddings (S-embeddings) of small
complete binary trees into large ones, inspired by the problem of tolerating faults in
a type of tree-structured parallel architecture that we call a leaf-tree machine. Our
study is among the first that obtains nontrivial bounds on the efficiency of embeddings
solely on the basis of congestion.

1.1. Basic notions.

1.1.1. Trees and forests. The height-n complete binary tree Tn is the graph
whose 2n+l 1 nodes comprise the set of all binary words of length at most n and
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whose edges connect each node x of length less than n with its children xO and xl.
For each t E {0, 1,..., n}, the 2 words/nodes of length t form level n of rn; the
unique node at level n is the root of :Yn, and the 2n nodes at level 0 are the leaves
of Tn. We say that node x is a (proper) ancestor of node y, or, equivalently, that
node y is a (proper) descendant of node x, just when the string x is a (proper) prefix2

of the string y. For each node x of q’n, the subtree of Tn rooted at x is the induced
subgraph of :Y on the nodes {xy 0 <_ lYl <- n- Ixl}, i.e., the set of descendants of
x. Henceforth, we refer to "complete binary trees" simply as "trees."

Finally, our study calls for a nonstandard notion of forest. For our purposes, a

forest is a nonempty sequence of trees of distinct sizes.

1.1.2. Salvage-embeddings. Let us be given a tree Tn, the fraction 0 < G <_ 1
of whose 2n leaves have been labeled (OOD; call the fraction G the yield of the labeling.
Let us further be given a tree Tk, where 2k

_
G2n. We wish to embed "/k into

using only the GOOD leaves of the latter; for mnemonic emphasis, we henceforth denote
by 6 (for guest) the copy of :Y and by 7-/ (for host) the (leaf-labeled) copy of

A salvage-embedding (S-embedding, for short) of Gk into ?-ln, where 2k _< G2n, is
given by the following:

an assignment a of the nodes of G to nodes of /n that
maps each leaf of Gk to a unique GOOD leaf of /n (and so is one-to-one
on the leaves of Gk), and
is progressive in that it preserves all ancestor-descendant relations among
nodes of Gk;3

a routing function p that assigns to each edge (x, y) of G the unique path in
T/n that connects nodes c(x) and c(y).

While our primary interest here is in S-embedding an individual tree Gk into
we usually will know the parameter k only implicitly: Gk will usually be defined as
the largest tree that can be S-embedded into ?-/n within a certain cost bound. Our S-
embedding algorithms therefore use the technical device of S-embedding entire forests
of trees into ’n; the largest tree in the S-embedded forest will be the sought one. By
extension of our definition of S-embedding trees, an S-embedding of a forest of trees
into n is a set of S-embeddings of the trees in the forest whose leaf assignments are
node disjoint. This node disjointness guarantees that if any subset of the trees in the
forest are grown and combined into a single tree, an S-embedding of that single tree
into 7-/n can use the leaf assignments of the S-embedding of the forest into 7-/n.

1.1.3. The costs of an S-embedding. Let us be given an S-embedding (a,
of the m-tree forest (l,k2,...,k./, where each4 kj < kj+l, into ?-/n. We are
interested in two costs of the S-embedding.

The harvest of the S-embedding is the ratio of the number of leaves in the largest
tree in the forest (namely, G.) to the number of GOOD leaves in 7-/n; symbolically,

Harvest((a, p}) G

For later notational convenience, we number tree levels from the leaves toward the root, rather
than in the more conventional opposite direction.

2 String x is a proper prefix of string y just when there is a nonnull string z such that y xz.
3 The algorithmic benefits of progressiveness are mentioned in 1.3, where the motivating machine

model is discussed.
4 We insist that the trees in a forest strictly increase in size because we always seek the largest

tree that can be S-embedded efficiently into T/n: equal-size trees can be combined into a bigger single
tree.
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This measure is of primary interest to us, because our algorithms are designed to
maximize the size of the largest tree that can be S-embedded efficiently into ’/n.

The simple congestion of the S-embedding is measured by focusing just on those
p-routing paths that are used to S-embed Gk. into ?-/: it is the maximum number
of such paths that cross any single edge of ?-/. Symbolically,

Congestion* (a, p)) max I{(u,v) e Edges(gk.)lp(u,v contains edge (x,y)} I.
(x,y)EEdges(7"ln

On the road to finding a small-congestion S-embedding of a large tree into 7-n, our
algorithms will want to keep track of the congestion of the current intermediate S-
embeddings of entire forests into 7-/, since trees from these intermediate forests will
ultimately be combined to form the sought large tree. This is the congestion measure
we focus on most of the time.

Congestion( (a, p>)

max
(x,y)EEdges(7"ln) U {(u, v) e Edges(k)]p(u, v) contains edge (x, y)}

l<im

1.2. Accomplishments. Throughout we consider the tree 7-/n with N 2
leaves. We denote the yield of 7-/n by G; i.e., we assume that the fraction 0 < G _< 1
of 7-/n’s leaves have been labeled (OOD.

1.2.1. The problems of interest.

THE CONGESTION-HARVEST TRADEOFF PROBLEMS. Given n, G, and the de-
sired harvest5 0 < H <_ 1/2, determine the smallest congestion C C(n, G,H) for
which there is a congestion-C S-embedding of [log(HC2)] into 7-ln"

(a) in the worst-case scenario, i.e., no matter how the GOOD leaves are distributed
in 7-ln

(b) in the expected scenario, i.e., with probability _>1 2-(n), when leaves of
7"ln are labeled GOOD or not, independently, with some fixed probability.

In-both of the congestion-harvest tradeoff problems, we assume that the harvest
fraction H O(1); i.e., we aim for a harvest that is a fixed fraction of the number of
GOOD leaves.

THE HARVEST-MAXIMIZATION PROBLEM. Given an allowable congestion (i.e.,
an integer) C < n, find the largest k for which there is an S-embedding ofk into -n
with congestion <_ C.

In this last problem, we insist that C < n, since the problem of S-embedding
trivializes when C > n.

1.2.2. The results obtained.

5 We cannot aim at harvests exceeding 1/2: the number of harvested leaves must be a power of
2, but the largest power of 2 not exceeding G2n, namely, 2 [lg(HG2n)j may be close to G2n-1.
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THE WORST-CASE CONGESTION-HARVEST TRADEOFF. For any yield 0 < G < 1
and harvest 0 < H < 1/2, one can S-embed [log(gc2)J into ’n with congestion6 7

log(2) N + a(G, H)

no matter how the GOOD leaves are distributed in ’n (Theorem 2.1). Moreover, in
general, this amount of congestion is necessary, to within a constant factor; i.e., there
exist yields G with associated patterns ofGN GOOD leaves for which any S-embedding
of G[log(HC2-)J into 7-ln has congestion a(G, H) log(2) N Theorem 2.2).

THE EXPECTED-CASE CONGESTION-HARVEST TRADEOFF. For any harvest 0 <
H < 1/8, if the leaves of 7"ln are labeled GOOD or not, independently, with probability
1/2 (an arbitrary fixed constant), then, with probability exceeding 1- N-(1), one can
embed [log(H2n)J into 7-l, with congestion

log(3) N + a(H)

Theorem 3.1).
It remains an inviting challenge to determine whether or not a smaller congestion

suffices.
THE HARVEST-MAXIMIZATION ALGORITHM. For any congestion bound C and

any labeling of the leaves of 7"ln, one can determine in time 0(Cn3C+22n) the largest
Gk that can be S-embedded into 7-ln with congestion < C (Theorem 4.1).

Note that this time is a low-degree polynomial in N 2n even when C is as large
as 1/2 log(N/log N).

We study the worst-ease congestion-harvest tradeoff problem in 2, the expected-
ease congestion-harvest tradeoff problem in 3, and the harvest-maximization problem
in 4. It is worth stressing here that our study focuses on developing algorithms that
effect S-embeddings with certain costs, rather thn merely on proving that such S-
embeddings exist. In other words, all of our upper-bound proofs are constructive.

1.3. The inspiration for our machine model. The idea of studying S-embed-
dings was suggested by the problem of tolerating faults in a genre of tree-machine
that has appeared several times in the literature. We wish to stress that, although
our combinatorial problem was inspired by this "real-life" problem, we do not insist
that our solution to the combinatorial problem is the definitive solution to the "real"
problem.

A leaf-tree machine (LTM for short) is a parallel architecture consisting of N
"full-power" processing elements (PEs), which do the "real" computing, and N- 1
"rudimentary" PEs, which do simple auxiliary tasks such as routing and broadcasting
messages and performing simple combining and accumulating tasks. The 2N- 1 PEs
are interconnected by a network having the topology of a complete binary tree: the
leaf nodes of the tree hold the "full-power" PEs of the LTM; the nonleaf nodes hold
the "rudimentary" PEs.

In our formal setting, the leaf nodes of ?’/n represent the "full-power" PEs of the
LTM; the nonleaf nodes represent the LTM’s "rudimentary" PEs.

6 All logarithms are to the base 2. The iterated logarithm log(k) is defined by:
log(1) N logN; log(k+l) N log log(k) N.

7 For given parameters A, B,..., Z, we denote by a(A, B,..., Z) a constant that depends only on
the parameters; instances of "a(A, B,..., Z)" in different expressions may denote different constants.
Thus, we use the a-notation in very much the same way as the big-O notation.
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While interconnection networks with the topology of a tree are inherently ineifi-
cient due to the presence of communication bottlenecks, research has shown that an
LTM can be a useful auxiliary network when adjoined to a processor network having a
richer topology (say, a mesh or hypercube). A variety of computations were shown in
[4] to yield to the simple, fast combining mechanism that is inherent in the structure of
trees; these abilities of trees are exploited in [3] and [11], where LTMs are adjoined to
data-processing machines for speedy searching, selection, and combining tasks; most
recently, in [5], [6], LTMs have been adjoined to multiple instruction multiple data
(MIMD) hypercubes with the end of using the trees’ fast combining and broadcast-
ing capabilities for processor synchronization, as well as other simple combining and
broadcasting tasks.

The problem we study here is inspired by the fault-tolerance problem for LTMs.
It is well known that aggressive very large scale integrated (VLSI) circuit designs are
vulnerable to fabrication defects which are likely to disable some positive fraction of
an architecture’s PEs. In the context of LTMs, the "full-power" PEs are going to be
much more vulnerable to such defects than are either the wires or the "rudimentary"
PEs because the latter two, being small and structurally simple, can be designed using
much more conservative design rules than the "full-power" PEs, and, hence, will be
commensurately less vulnerable to both defects and faults; cf. [12]. Our study of
S-embeddings abstracts one approach to the problem of rendering LTMs tolerant to
defects in their "full-power," leaf PEs. Although this problem is nominally subsumed
by studies of fault tolerance in tree architectures, such as [1], the special structure and
mode of use of LTMs opens avenues to fault tolerance in LTMs that are exponentially
more eificient than analogous techniques for general tree machines: we achieve the
desired tolerance to faults merely by adding small-capacity queues to the edges of the
LTM.

In our formal framework:

n is the physical LTM; its GOOD leaves are the leaf PEs that are free of defects.
The yield of the labeling is the yield of the leaf-PE fabrication process.

k is the logical, ideal. LTM we want to "salvage" from n.
The S-embedding is the salvage process; its congestion is the capacity of the

largest edge-queue; its progressiveness ensures that, as in the ideal LTM, messages
follow an up-then-down path in the salvaged LTM.

The dilation [8] of an S-embedding is not relevant here because of the assumed
speed of the ideal LTM relative to the speed of each individual PE; see, e.g., [5].

It is important to note that our abstraction deals only with the problem of tol-
erating defects in the LTM. We do not deal with the problem of tolerating defects in
any primary network that interconnects the "full-power" PEs of the LTM, should such
exist (say, as in the scenario in [5], [6]). There is abundant literature on techniques
for salvaging the latter network, e.g., [2], [7], [9], [13].

1.4. A fundamental observation. The algorithms we present here depend in
an essential way on a correspondence between the processes of adding binary repre-
sentations of numbers on the one hand and devising S-embeddings on the other.

For each node x of the leaf-labeled tree, define the yield at x, denoted Yield(x),
to be the number of GOOD leaves in the subtree rooted at x. Transparently, if x is a
leaf, then Yield(x) is either 0 or 1, and if x is not a leaf, then

Yield(x) Yield(xO) + Yield(xl).
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’Tree-nodo x

FIG. 1. Binary representations and S-embeddings: The typical picture.

The binary representation of the numbers Yield(x) play a fundamental role in our
study. The statement of the following lemma is depicted schematically in Fig. 1.

LEMMA 1.1. Let x be a node of n. The following conditions are equivalent:

(a) The binary representation of Yield(x) has 1 ’s precisely in bit positions 0
kl < k2 <... < kd.

(b) There is an S-embedding of the forest (Gkl, .,..., Gd} in ?-ln, with conges-
tion d on the edge leading from node x to its parent.

Proof. The lemma follows by induction on the level of x in

The lemma is obvious in the base case, when x is a leaf of T/z, for then Yield(x)
is either 0 because x is not GOOD or 1 because x is GOOD, hence admitting a unit-
congestion S-embedding of G0.

When x is not a leaf, it has two children, x0 and xl. We establish a correspondence
between the processes of adding the binary representations of Yield(x0) and Yield(xl)
to obtain Yield(x) on the one hand and of combining the forests F0 and F1 that are
S-embedded at x0 and xl, respectively, to obtain the forest F that is S-embedded at
x on the other hand. If we assume, by induction, that the lemma holds for x0 and xl,
then the correspondence will extend the induction to x, and the lemma will follow.
Figure 2 depicts the correspondence schematically.

Say that both Yield(x0) and Yield(xl) admit binary representations of length m,
so Yield(x) admits one of length m + 1. We construct the forest F from the forests
F0 and F1 in m + 1 stages, with the help of an auxiliary forest C (which corresponds
to the "carry bit" in binary addition). Initially, both F and C are empty. The m + 1
stages fall into three classes that are depicted in Tables 1 and 2.

TABLE
Stage O.

o E F0?
No

Yes
Yes

o EFt? Action

No No action
Yes Add Go to F
No Add G0 to F
Yes Add G1 to C
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FIG. 2. Binary representations and S-embeddings: Combining like-sized trees.

TABLE 2
Stages 1 <_

_
m.

e Fo? e FI? Action

No No No No action
No No Yes Move Gi from C to F
No Yes No Add Gi to F
Yes No No Add Gi to F
No Yes Yes Remove Gi from C; add Gi+l to F
Yes No Yes Remove Gi from C; add Gi+l to F
Yes Yes No Add Gi+l to C
Yes’ Yes Yes Add Gi to F, Gi+l to C

Stage rn + 1. If G,+I E C, then add it to F.
The reader should easily recognize the correspondence between the two processes

of interest.

2. Optimizing worst-case congestion. Given the leaf-labeled tree T/n, the
yield 0 < G _< 1, and a target harvest 0 < H _< 1/2, we wish to find an S-embedding
of the tree [log(HG2,)] in the tree :Hn that incurs as small congestion as possible (as
a function of n, G, and H). This section is devoted to deriving both upper and lower
bounds on the amount of congestion Cmin that we must suffer in order to accomplish
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this task no matter how the GOOD leaves are distributed among the leaves of 7-/.

2.1. An upper bound on worst-case behavior. We formulate and analyze a
"greedy" S-embedding algorithm which yields an upper bound on the quantity Cmin,
which is optimal to within constant factors.

2.1.1. The algorithm.

2.1.1.1. Overview. The algorithm proceeds from level 0 to level n in 7-/ (i.e.,
from the leaves toward the root), processing each node at level t before proceeding
to level g + 1. As each level-t node x is encountered, the algorithm assigns the node
a label A(x), which is the length-(n / 1) binary representation of the level-t interim
assessment of how many GOOD leaves can be harvested from the subtree rooted at x;
we call this quantity the level-g potential of x, denoted Pot(x). Thus, if

then
n

Pot(x) E A(x)2"
i--0

The following features of the string A(x) are germane to our algorithm.
Ones(A(x)) {i A(x) - 0} the set of nonzero bit positions in A(x);
Wgt(A(x))= IOnes(A(x)) the weight, or number, of nonzero bit positions
in A(x).

By Lemma 1.1, if node x of 7-/ receives label A(x), then there is an S-embedding of
the forest {Gk IXS k E Ones(A(x))} in the subtree of 7-/n rooted at x, with congestion
Wgt(A(x)). Note that the progressiveness of S-embeddings implies that Ak(x) 0 for
all k > level(x). Because of Lemma 1.1, our S-embedding algorithm is fundamentally
a labeling algorithm.

2.1.1.2. The labeling/embedding procedure. Say that C is the maximum
congestion we are willing to allow in any S-embedding. We exploit the fact that all
labels have the same length (namely, n / 1) by specifying each label A(x) implicitly
via the integer Pot(A(x)). In overview, our labeling/embedding algorithm proceeds
from level 0 to level n in , labeling each node at level g before any node at level
t / 1. A node’s label is chosen as follows.

1. If node v is a GOOD leaf, then Label(v) - 1.
2. If node v is a nonGOOD leaf, then Label(v) -- 0.
3. If node v is a nonleaf, then

(a) Add the labels of v’s children.
(b) "Prune" the sum: keep only the C highest-order l’s.
(c) Perform the S-embeddings mandated by the carries in the label additions

at the nodes.
The detailed version of our labeling/embedding algorithm is called Algorithm WORST-
CASE.

ALGORITHM WORST-CASE
Step 0. {Label nodes on level 0 of 7-/n}

Scan the leaves of 7-/, assigning each leaf x a label A(x) as follows.

1 ifxisGOOD
Pot(A(x)) 0 if x is not GOOD
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Step g > 0. {Label nodes on level I > 0 of :Hn}
Scan the nodes at level
Substep g.a {Assign the string label}

Assign each level-t node x a label A(x) as follows.

Pot(A(x)) Pot(A(x0)) + Pot(A(xl))

Substep t.b {Combine small embedded trees}
if there was a chain of carries from bit positions k i, k i + 1,..., k 1
of A(x0) and A(xl) into bit position k of A(x)
then embed the roots of copies of Gk-i+l,..., Gk in node x, and route
edges from those roots, along shortest paths, to the roots of two copies
each of Gk_i,... ,G-I that are embedded in proper descendants of x
endif

Substep g.c (Honor the congestion bound C}
for k 0 to [log eot(A(x)) C
if Wgt((x)) > C then k(X) +-- 0 endif
endfor

2.1.2. Worst-case behavior of Algorithm WORST-CASE.
THEOREM 2.1. Let some GN leaves of Tin be labeled GOOD, in any way, for

some 0 < G <_ 1. For any rational 0 < H <_ 1/2, Algorithm WORST-CASE finds an
S-embedding of LIog(HGN)J in Tin, with congestion

C _< log(2) N- log((1 H)G) + 1.

Proof. It is clear that, for each node x of 7-/n, Algorithm WORST-CASE S-embeds
[logPot(A(x))j in the subtree of 7-/n rooted at node x; hence, overall, the algorithm
S-embeds the tree [logPot(A(r))J in 7-/n, where r is the root of 7-/. We need only
verify that the salvaged tree represents a big enough harvest when C is as big as the
bound in inequality (2.1).

Note first that Algorithm WORST-CASE never requires us to abandon any GOOD
leaves as we work up from level 0 through level C- 1 of 7n, because the high-order
bit of Pot(A(x)) can be no greater than the level of x in 7-/. To see what happens
above this level, focus on a specific (but arbitrary) node x at a specific (but arbitrary)
level g _> C of 7n. The congestion bound may require us, in Substep g.c of the
algorithm, to abandon one bit in each position k _< g- C of A(x). This is equivalent
to abandoning one GOOD-leafed copy of each tree Gk with k _< g- C; however, at
most one tree of each size is abandoned because any two trees of the same size would
have been coalesced (by embedding a new root) at this step, if not earlier. It follows
that, when the algorithm processes node x, it abandons no more than

2 < 2-C+1

i=0

GOOD leaves; hence, at the entire level t, strictly fewer than

2-c+12-N 2-c+1N
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previously unabandoned GOOD leaves are abandoned. Thus, the entire salvage proce-
dure abandons fewer than

(n + 1 C)2-C+IN

GOOD leaves due to congestion. Since there are GN GOOD leaves in all, we see that
more than

(G- (n + 1 -C)21-C)N

GOOD leaves are not abandoned due to congestion. Now, at the end of the algorithm,
we may have to abandon almost half of these unabandoned GOOD leavesmbecause
the number of GOOD leaves we finally use in the S-embedding must be a power of 2.
The algorithm will have succeeded in harvesting the desired fraction of GOOD leaves
as long as the number of salvaged GOOD leaves, which we now see to be no fewer than

2 Llog([a- (n+1-C)21-C]N)J

is at least as large as the number of GOOD leaves we want to harvest from ?-/n, which
is

2[log(HGN)J

Elementary estimates show that if we allow our S-embedding to have congestion C as

large as bound (2.1), then we shall have accomplished this task.

2.2. A lower bound on worst-case behavior.
THEOREM 2.2. Let G and H be rationals with 0 < G < 1 and 0 < H <_ 1/2.

For infinitely many n, there exists a way of labeling some GN leaves ofn GOOD

such that every S-embedding of some m in n, where 2m >_ HGN, has congestion
C > a(G, H) log(2) N.

Proof. Let us be given an algorithm, call it Algorithm A, that solves the worst-case
congestion-harvest tradeoff problem. By 2.1, we know that the congestion incurred
by Algorithm A for any labeling of the leaves of 7-/, in particular for the advertised
malicious labeling, is C _< a(G, H)log(2) N.

2.2.1. The bad labeling. The labeling of that we claim defies efficient
salvage is achieved via the following algorithm, wherein L is a parameter we choose
later. Once we choose L, let us restrict attention to values of n that are multiples of
L. (Clerical modifications accommodate all other values of n.)
ALGORITHM BAD-LABEL

Step 1. {Mark leaves that will not be labeled GOOD}
for each level t from 0 to n in steps of L
Proceed left to right along the level-t nodes of n, marking all of the leaves
in the subtree rooted at every 2Lth node encountered.
endfor

Step 2. {Label the GOOD leaves}
Label GOOD all leaves that .are not marked in Step 1.

This labeling scheme can be viewed as turning 7-/n into a complete (2L 1)-ary
tree, all of whose leaves are labeled GOOD, providing that we look only at levels whose
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level-numbers are divisible by L. Therefore, our S-embedding problem now assumes
some of the flavor of the problem of efficiently embedding a complete binary tree into
a complete (2L 1)-cry tree that is only slightly larger (by roughly the factor l/H).
The results in [8] about a similar problem lead us to expect the large congestion that
we now show is inevitable.

2.2.2. Bounds on L and C. Before considering our S-embedding problem, we
must settle on a value for the parameter L. Our labeling of ln has left the tree
with (2L 1)n/L GOOD leaves. The worst-case congestion-harvest tradeoff problem
assumes that the number of GOOD leaves in 7-/n is a positive fraction G2n of the
total number of leaves. Elementary estimates show that this assumption implies that
L >_ log n- log(2)n- n(G). In fact, it will simplify our analysis to make an even
stronger bound on L; namely, we assume henceforth that 2L- 1 _> n. In analyzing
our putative Algorithm A, it is convenient to assume additionally that we are dealing
with S-embeddings whose congestions satisfy C < 1/2(L- 1) (or else, we have nothing
to prove),s

2.2.3. The analysis. For each t E {0, 1,..., n/L}, establish the following nota-
tion.

N(t) denotes the number of leaves in the largest GOOD-leafed forest that can
be S-embedded at a level-tL node of 7-/n, independent of the congestion-bound C. As
noted earlier,

N(e) (2L 1).
M(g; C) denotes the number of leaves in the largest cOoD-leafed forest that

Algorithm A S-embeds at a level-tL node of 7-/n, given the congestion-bound C.
Our overall strategy will be to estimate, as a function of C, the rate of change of

the ratio

A(; C) de..__f M(e; c)
N(e)

as g increases; we thereby convert our graph-theoretic problem into a number-theoretic
one. We obtain the sought bound on C by showing that C must be "big" if the ratio
A(t; C) is to remain >_ H even when t achieves its upper limit niL.

Note first that, even if there were no bound on congestion, the similarity of the
labeled version of 7-/n and a complete (2L 1)-cry tree would guarantee that, for
0 < < n/L,

M(e + ; C) <_ (2 )M(e; C).

In order to appreciate the effect of the congestion-bound C, note that, when the
S-embedding of Algorithm A has congestion <_ C, each number M(t; C) must be
representable as the sum of no more than C powers of 2; in other words, the binary
representation of M(t; C) can have weight no greater than C.9

s This assumption about C simplifies the estimates in the upcoming argument.
9 This is true because we focus on progressive S-embeddings. If we allowed arbitrary S-

embeddings, then M(t; C) would be the algebraic sum--i.e., the sum/difference--of at most C powers
of 2. The added generality of arbitrary S-embeddings would influence only constant factors in our
bounds.
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Our discussion of the weights of the binary representations of the numbers M(t; C)
implies, in particular, that

(2.2) M(1; C) < 2L 2L-C (26 1)2L-C.

Starting from this upper bound on M(1; C), we derive upper bounds on a subset of
the other numbers M(t; C). Specifically, we find an integer t* > 0 such that

(2.3) M(kg* + 1; C) (2C- 1)2L-C2k(*L-1)

for all integers

If we restrict attention, therefore, to values of n such that t* divides (n/L) li, we
find, via the family of equations (2.3), that the harvest of Algorithm A can be no
greater than

( 1)((2.4) A -;C N(n/n)
1- 1 - 2L- 1

2(L-n)/@*L)

(after some simplification). The import of expression (2.4) will become clear only
when we have obtained our bound on the integer t*. We turn now to the task of
deriving this bound.

It will become clear as we proceed that we need focus only on the L high-order
bit positions of the shortest binary representations of the numbers M(t; C); therefore,
we henceforth number the bit positions of the representations from left to right, i.e.,
high order to low order, and we focus only on bit positions 1, 2,..., L.

Consider now a specific E {0, 1,..., n/L-1} and its associated M(; C), defining
M(0; C) 1 by convention. Note the effect of proceeding from M(t; C) to M(g+ 1; C),
thence to M(g + 2; C), and so on. Each step in this progression, say proceeding
from M(t + i; C) to M(t + + 1; C), consists of multiplying the "current" number,
M(t+i; C), by 2L- 1 (thereby going up L levels in 7-/n), followed by "pruning" all but
the C highest-order l’s in the product. Note that the multiplication part of this step
affects only the rightmost 1 in bit positions 1, 2,..., L of M(t + i; C). Specifically,
the effect of the multiply-then-"prune" step is as follows. Say that the rightmost
1 of M(t + i; C) appears in bit position k. Then the L high-order bit positions of
M( / i; C) form a string

(2.5)

whose weight is

(2.6) Wgt(l2... k-1100... 0) w < C

and whose terminal string of O’s has length L- k. The multiplication replaces this
string with the like-length string

i0 This is the condition that implicitly defines the promised "infinitely many n" of the theorem.
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When this product-string has weight exceeding C, the subsequent "pruning" replaces
it by the like-length, weight-C string

Note that the rightmost 1 in the resulting bit string has moved to a bit position
> k. The reader can verify easily that in subsequent multiply-then-"prune" steps,
the rightmost 1 continues to "migrate" rightward, in the sense illustrated in Fig. 3.
The important thing to note in the figure is that eventually the 1 that started in bit
position k is annihilated, in the sense that it, and all l’s "spawned" by it in the course
of the successive multiply-then-"prune" steps, disappear from the L high-order bit
positions of the sequence of numbers M(t; C), to the detriment of the harvest-ratio
(e; c).

12.. "k-ilOL-k
MULTIPLY by 2L- 1

12"" "k-lO1L-k
PRUNE

12 k-lOlC-WlOL-C-k+w-1
MULTIPLY by 2L- 1

2 k-O1C-wo1L-C-k+w-1
PRUNE

12""" k-lO1C-wOlOL-C-k+w-2

MULTIPLY-and-PRUNE

MULTIPLY-and-PRUNE
12"" k-10L-k-k

FIG. 3. The "migration" of the rightmost 1.

We discover the sought integer t* by analyzing the rate of "migration" of l’s in the
binary representations of the numbers M(t; C) as we perform multiply-then-"prune"
steps. Specifically, we bound the number of multiply-then-"prune" steps it takes to
annihilate a 1 that began in bit position k E {2, 3,..., C} of M(1; C). Since each such
annihilation loses us a significant fraction of the GOOD leaves, we wish to maximize the
stretches of time between annihilations. We accomplish this first by having M(1; C)
assume its maximum possible value (cf. bound (2.2)), and second by "pruning" as
few leaves as possible after each multiplication. A corollary of this strategy is that we
always strive to have the bit string in positions 1, 2,..., L of our expression for the
values M(t; C) have maximum possible weightmbut, of course, never more than C.

Let us focus on the 1 in bit position k of M(/+ i; C); cf. equations (2.5, 2.6).
Once this 1 begins to "migrate"mwhich occurs when it becomes the rightmost 1 in
the surviving L high-order bitsmand until it is annihilated, the configuration of the
L high-order bits of M(g + i; C) has the form

where the bit string x in bit positions k + 1, k + 2,..., L has weight _< C w + 1
(by equation (2.6)). Clearly, in the course of subsequent multiply-then-"prune" steps,
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while the initial bit string 12"’" k-10 remains intact, no terminal bit string x recurs.

(In fact, the numerical value of x decreases monotonically during this phase of the
migration.) It follows that the number of multiply-then-"prune" steps required to
annihilate a 1 that resides in bit position k, when that 1 is the rightmost in the
then-current L high-order bits, cannot exceed

i=0

since the summation yields the number of length-(L- k) bit strings whose weights
do not exceed C- w + 1 and the terminal bit strings that replace x will always have
such length and weight. The notation T(w, k) is appropriate here, since the number
of steps depends only on the weight and length of the bit string 12

We are now ready to derive a bound on the value of t*. To this end, let us
consider a sequence of multiply-then-"prune" steps, starting with any M(a; C) whose
L high-order bits have the same form as those of M(1; C), namely,

(2.8) 1Co-C.

Say that we first perform enough multiply-then-"prune" steps to annihilate the 1 that
resides in bit position C of M(a; C), so that the L high-order bits of the then-current
M(; C) have the form

1C-oL-C+I.

The reasoning that leads to expression (2.7) says that this occurs after no more than
T(C, C) steps. Say next that we continue our series of multiply-then-"prune" steps
until we have annihilated the 1 that resides in bit position C- 1 of M(a; C), so that
the L high-order bits of the then-current M(t; C) have the form

1C-20L-C+2"

Again invoking the reasoning that leads to (2.7), this requires at most an additional
T(C- 1, C- 1) steps. Continuing this reasoning, at most another T(C- 2, C- 2)
steps will allow us to annihilate the 1 that resides in bit position C- 2 of M(a; C),
to arrive at L high-order bits of the form

1C-30L-C+3"

Finally, it is clear that, by the end of no more than

(2.9)
=o =o =o 2

multiply-then-"prune" steps (starting with M(a; C)), we shall have annihilated every
1 that began in bit positions 2, 3,..., C of M(a; C). At this point, the L high-order
bits of the then-current M(g; C) will have the form

10L-1.

Let us now perform one additional multiply-then-"prune" step. We claim that, start-
ing from M(a; C), we have performed the sought number of steps that we are seeking,
namely, t*. To see this, note that in the current M(a + t*; C)"
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the L high-order bits again have the form (2.8), as they did with M(a; C); and
since these L high-order bits have weight C, we know that all other bits of the

M(a + t*; C) must be 0.
These two facts mean that

(2.10) M(a + e*; C) 2*L-1M(a; C).

(The term -1 in the exponent of 2*L-1 reflects the "loss" of the high-order bit in the
last multiplication.) The reader can easily replicate the reasoning leading to equation
(2.10) to verify that the claimed value of t* in fact satisfies the family of equations
(2.3) that define the sought parameter t*.

It follows via the preceding reasoning (cf. expression (2.9)) that

(2.11) 2id-1 (L-Cr-i)
=0 j=0 2

We can derive a more perspicuous and useful bound on t* via the following easily
verified fact about binomial coefficients.

LEMMA 2.3. For all integers R and S satisfying R > 3S + 2,

)< S+I
i--0

I(L- 1) (by hypothesis) Lemma 2.3 allows us to replace inequalityBecause C <
(2.11) by the simpler

(2.12) (n- 1)e*<2 L-C+i
=2 -2 <2

=0
i+1 :

At this point, we can return our attention to the bound (2.4) on the harvest of
Algorithm A, evaluating that bound in the light of bound (2.12) on g*.

We are now prepared to investigate in detail the implications of our bound on
on the harvest A(n/L; C) of Algorithm A, as presented in (2.4). We begin by finding
simple upper bounds on the expression (2.4), which will simplify our argument. These
bounds rely on the following elementary facts:

2L- 1 _> n,
1--2-C <1,

(1 + l/n)n <_ e,
e1/L < 3.

Applying these bounds to expression (2.4), we infer that

(2.13) C < F -; C 3.2(L-n)/(*

Now, note that Algorithm A must have harvest _> H. It follows, therefore, that
we must have F(n/L; C) > H. This means, by manipulating expression (2.13), that

g*L > ,,;(H)(n- L).
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By bound (2.12), this means that

(C -1) log ( (L -1)e)C 1
> n(g)log(n L).

The reader can easily verify that this last inequality implies that C > n(H)logn,
thereby completing the proof.

3. Optimizing expected congestion. This section is devoted to deriving an
analog of the development in 2 that exposes the amount of congestion one must incur
in order to survive "random" faults in ?-/n. In order to discuss random faults and the
expected behavior of a salvage algorithm, we must have a fault model in mind. We
adopt the model that predominates in the literature by assuming that the leaves of
our trees ?-/n fail to be GOOD independently, with probability 1/2.11 We turn now
to the task of deriving an upper bound on Cmin for random faults. We have not yet
settled whether or not our bound on Cmin can be lowered; this question presents an
inviting challenge.

3.1. An algorithm with good expected behavior. Using the simple fault
model just described, we find that a modified version of Algorithm WORST-CASE of
2 produces S-embeddings which incur congestion that is only triply logarithmic in
the size of the harvested ,, with extremely high probability, providing that we lower
our demands a bit. Specifically, we reduce our demand that our algorithm be able
to harvest any fraction H _< 1/2 of the GOOD leaves of 7-/n to the demand that our
algorithm be able to harvest any fraction H _< 1/8 of the GOOD leaves of

THEOREM 3.1. Let the leaves of Tln be labeled GOOD or not, independently, with
probability 1/2. For any rational 0 < H <_ 1/8, with probability _> 1- 2-a(n), a

modification of Algorithm WORST-CASE will find an S-embedding having congestion

(3.1) C _< log(3) N- log
1 -44H +1

of some , in , where 2m >_ HN.
Proof. The major insight leading to the desired modification, of Algorithm WORST-

CASE resides in the following combinatorial fact.
LEMMA 3.2. Let the leaves of 7-ln be labeled GOOD or not, independently, with

probability 1/2. If we partition the leaves ofn into blocks of size 10n in any way,
then with probability _> 1 2-a(n), at least 2.5n leaves in each block are GOOD.

Proof. The proof proceeds by a series of transformations and estimates. Focus
first on a single block of 10n leaves.

Pr(< 2.5n GOOD leaves) Pr(> 7.5n not-GOOD leaves)
10n

2-10n

k-----7.5nq-1

This last sum is readily transformed to

1
2-ln _< 2\2.5n]2-1n _< 2 \k---0

(number of ways to choose k not-GOOD leaves).

)2.5n ( ) n2-10n 2

11 Changing the probability 1/2 to any other fixed probability p merely changes the constants in
our results.
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for some e < 1. It follows that

( 1
Pr(> 2.5n GOOD leaves) > 1 2 > exp(--Clen/n) > 1

n2c.n

for some constants Cl, C2 > 0.
Lemma 3.2 tells us that when we look at the labels assigned by our greedy al-

gorithm to nodes at or above level log 10n] of a randomly labeled instance of
then, with very high probability, we find every node having a label A(x) for which
Pot(A(x)) _> 2.5n. This suggests that the following (informally stated) S-embedding
algorithm achieves the goals of the theorem with the indicated high probability. The
reader should note that only Step 0 of the algorithm is not guaranteed to work as
desired. To simplify exposition, we assume that 10n divides 2n and that 2.5n is a
power of 2; removing these assumptions is merely a clerical task.

ALGORITHM EXPECTED-CASE
Step 0. {Select (OOD leaves of -/n for salvage}

Scan the leaves of ?-/ in blocks of 10n leaves; within each block, select 2.5n
to be salvaged; remove the label aOOD from all unselected leaves.

Step 1. {Salvage smll trees within each block}
Invoke Algorithm WORST-CASE within each block, with harvest fraction 1/2.

Step 2. {Hook ,up all the small salvaged trees}
Embed the "top" of a complete binary tree to hook together the 2/10n small,
21"25-leaf trees salvaged in Step 1.

By Lemma 3.2, Step 0 of Algorithm EXPECTED-CASE succeeds, with high prob-
ability, to collect the desired number of (OOD leaves within each block. By Theorem
2.1, the congestion incurred by Algorithm WORST-CASE when salvaging the small
trees as mandated in Step 1 is no greater than the bound (3.1). Since Step 1 salvages
just one tree from ech block, the embedding of Step 2 incurs no further congestion.
This completes the proof of Theorem 3.1; modulo details are left to the reader.

4. Optimizing worst-case harvest. Algorithm WORST-CASE of 2.1 is guar-
anteed to be efficient, both in running time--it operates in time O(2), which is linear
in the size of /nmand in harvestmit harvests the desired fraction H of the (OOD

leaves. But, it is easy to find examples where a nongreedy strategy allows one to har-
vest a much larger fraction of the GOOD leaves. In particular, when the GOOD leaves
are spread out sparsely, any greedy approach abandons many more GOOD leaves than
it has to. One finds an analogous deficiency in a "lazy" salvage strategy, one that
coalesces small trees as late as possible rather than as early as possible; lazy strate-
gies abandon too many GOOD leaves when the leaves are packed densely, in clumps.
It might be of practical interest, therefore, to find a computationally efficient algo-
rithm that harvests optimally many (OOD leaves while honoring a prespecified limit
on congestion. This section presents such an algorithm.

4.1. The algorithm.

4.1.1. Overview of the algorithm. Our salvage algorithm keeps a record of
all possible salvage decisions that are consistent with the bound on congestion (which
we denote by C). It then selects as its harvest the largest of the trees in the record.
It follows that the harvested tree has optimal size (given the bound C).

Our algorithm’s record keeping consists of labeling each node x at each level t of
?-/n with a set A(x) of length-(t + 1) vectors of nonnegative integers. The set A(x)
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records all possible salvage options available at x, given the bound C, with each vector
ff E A(x) indicating one option. Specifically, say that - (0,1,..., /; then:

for all 0

_
k _< g, there is an S-embedding in the subtree of ?’/n rooted at x of

a GOOD-leafed forest 9v containing k disjoint copies of k; and

=0k _< C, so that the bound on congestion is always honored.
When we get to the root r of ?-/n (where t n), the algorithm selects the largest m
for which some vector E A(r) has ,. > 0. Our harvest, then, is a C:OOD-leafed copy
of

4.1.2. Details of the algorithm. We associate each level-g node x of 7-/n with
a trie (i.e., a digital search tree [10]) of height g- 1. This trie will store the labeling-
set A(x) in the obvious way. We now present the details of Algorithm OPTIMAL-
HARVEST.

ALGORITHM OPTIMAL-HARVEST
Step 0. {Label nodes on level 0 of 7-/n}

Assign each leaf x a labeling set A(x), as follows.

{(i}} ifxisGoOD
A(x) {(0}} if x is not GOOD

Step t > 0. {Label nodes on level t > 0 of 7-/}
Assign each level-g node x a labeling set A(x), as follows.
Substep t.a {Assemble the base-labeling vector sets}

If both A(x0) and A(xl) are nonempty, then
for each pair of length-g vectors A e h(x0) and fie A(xl),
place the length-(t + 1) vector ff in A(x), where

0 ifk=

endfor
else if precisely one of A(x0) and A(xl) is nonempty, then
set A(x) equal to that nonempty set
else set A(x) 0

Substep t.b {Refine the base-labeling vector sets in all ways}
Repeat the following process for each vector A(x), until no new
vectors are produced:
for each k 0, 1,..., t- 1, in turn
place the vectors ,..1/2kj {if(l) if(2) .,ff([k/2J)} in h(x), where each
vector if(i) agrees with except in positions k, k + 1, and in those posi-
tions:

k(i) 2i

+1 k+l +
endfor

Substep g.b {Honor the congestion bound C in all ways}
for each vector P A(x)
if -’=0 k > C
then replace in A(x) by all possible vectors ff such that
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uc<uaforallO_<k_<g
-< c

endif
endfor

Step n + I. {Harvest a mximum size tree}
Use the labeling sets o embed a copy of gm in n, where m is the largest
integer such that some vector in the labeling set A(r) of the root ofn h
um > 0. Specifically:
Subsep n + 1.a {Embed he roo of a copy of

Embed the root of gm at a node of n with the highest level-number,
whose labeling set contains a vector with um> 0.12

Substep n + l.b {The recursive step}
Sy that we have jus embedded node of gm t level g of n, nd
say tha node is he roo of a subree g} of
Then embed the children of at (not necessarily distinct) nodes of
with the highest level-number g, that have labeling sets containing
vectors fi and g with k + uk 2.

4.2. Timing analysis.
THEOREM 4.1. Let the leaves of Tin be labeled GOOD or not, in any way, and let

1 < C <_ n. Algorithm OPTIMAL-HARVEST finds, in time

TIME(n) 0(Cn3C+22"),

an S-embedding of some Gm in 7"in, having congestion < C and having optimal harvest
among embeddings with congestion C.

Proof. The correctness and the quality of the output of Algorithm OPTIMAL-
HARVEST being obvious, we concentrate on the timing analysis. The number of
vectors in the set A(x) for a level-g node x of 7-/ can be no greater than

This bound is verified by analogy with the problem of assigning < C balls to g + 1
urns. (We are selecting < C trees, each having one of g + 1 heights, to be carried
along to the next step of the algorithm.)

At each level-g node x, we pair the length-g vectors from the label sets of its
children x 0 and xl, in all possible ways. We then add each pair together componen-
twise, and we append a 0 (at the "high-order" end) of each sum vector (to increase
its length). The pairing operation leads to fewer than g2c pairs of vectors, so the
addition step produces fewer than g2c sum vectors. Producing a sum vector takes
O(g) steps. Hence, this part of the processing of node x takes time O(g2c-k-l).

Next, we adjust each sum vector in order to produce all possible salvage options.
This involves selecting, in all possible ways, one level k such that we can combine
paired level-k trees into single level-(k + 1) trees. This level can be selected in at
most g ways, and the combination process requires no more than O(1) operations

12 Our insistence on the highest level-number in Step n + 1 serves to keep the dilation of the
S-embedding low, while neither decreasing the harvest nor violating the congestion bound. Note,
however, that this insistence could increase the actual congestion incurred by the embedding.
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per pair. Since the set A(x) initially contains fewer than g2c vectors, and since (by
induction) no entry in any vector in either A(x0) or A(xl) can exceed C, this part of
the processing of node x takes time 0(c2C+1).

Finally, we "prune" the vectors in A(x) in order to honor the bound on congestion.
Since each vector (uo, ul,..., ) at a level-I node is in the worst case (before pruning)
the sum of two vectors from level-(- 1) nodes, it is possible that :’k=o k 2C.
Hence, when we prune a vector in all possible ways, we may be adjusting it by adding
as many as

+ C + 1) < (const)iCC

"correction vectors." Each correction is a vector addition requiring O(t) steps. Since
A(x) may have grown as large as O(tTM) by this time (due to its expansion during
the embedding of new roots), the time required for pruning A(x) may be as much as
(but can be no more than)

O(e)" o(eC) O(e2C+1) 0(e3C+2).

Since g _< n in this timing analysis, and since the processing we are analyzing
takes place at every node of 7-/ (although the processing at lower-level nodes is
simpler because they require no pruning), it follows that the time required for this
algorithm is

TIME(n) 0(Cn3C+22).

This is certainly within the realm of computational feasibility even when C is as big
as, say,

1(o 3),C=51 n

which makes TIME(n) quadratic in the size of 7-/, and all the more so when C is
more modest in size. []

5. Conclusion. Our focus on complete binary trees throughout this study sim-
plifies notation and calculations. The ideas in our study translate readily to complete
trees of any fixed, uniform degree.

Acknowledgments. The authors thank Don Coppersmith for suggestions that
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ALPHABETIC BINARY TREES*

MARIA KLAWEt AND BRENDAN MUMEY:

Abstract. This paper studies the long-standing open question of whether optimal alphabetic
binary trees can be constructed in o(n lgn) time. We show that a class of techniques for finding
optimal alphabetic trees which includes all current methods yielding O(n lgn)-time algorithms are
at least as hard as sorting in whatever model of computation is used. We also give O(n)-time
algorithms for the case where all the input weights are within a constant factor of one another and
when they are exponentially separated.

Key words, alphabetic binary trees, data structures, algorithms
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1. Overview. The problem of finding optimal alphabetic binary trees can be
stated as follows: Given a sequence of n positive weights wl,..., wn, construct a
binary tree whose leaves have these weights, such that the tree is optimal with respect
to some cost function and also has the property that the weights on the leaves occur
in order as the tree is traversed from left to right. A tree that satisfies this last
requirement is said to be alphabetic. Although more general cost functions can be
considered (as is done in [4] and [7]), we concentrate here on the usual function,
namely wili, where li is the level of the ith leaf from the left in the tree. The first
O(n lg n)-time solution was given in Hu and Tucker [5] in 1971, following algorithms
with higher complexity in [3] and [6]. If we remove the restriction that the tree
must be alphabetic, then the problem becomes the well-known problem of building
Huffman trees, which is known to have O(n lg n)-time complexity in the comparison
model. Modifications of the Hu-Tucker algorithm also running in O(n lg n) time but
with simpler proofs are given in [2] and [4]. The only recent progress on this problem
has been made by Ramanan [8], who showed that it is possible to verify that a given
alphabetic tree on a sequence of weights is optimal in O(n) time when the weights in
the sequence are either within a constant factor or exponentially separated (notions
we define precisely later). However, it seems substantially more difficult to actually
construct the optimal tree in linear time in the constant factor case.

The next section summarizes current methods and introduces the concepts needed
to frame our results. In 3, we introduce a technique, region processing, which forms
the basis of our linear-time algorithms. We start with a fairly simple O(n)-time al-
gorithm for finding the optimal alphabetic tree when the weights are within a factor
of two. We also observe that the basic region-processing method solves the case
where the input weights are exponentially separated in O(n) time. We generalize
this technique in 4 to the case where all the weights are within a constant factor of
one another. The generalization depends on solving a new generalized selection prob-
lem, which may be of interest in its own right. In 5, we give reductions of sorting
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problems to Hu-Tucker-based algorithms and region-processing methods. This pro-
vides fl(n lg n)-time lower bounds for Hu-Tucker-based algorithms in the comparison
model and indicates that region-processing methods are unlikely to yield an o(n lg n)
algorithm.

2. Current methods. We give a brief description of the Hu-Tucker algorithm
to the extent necessary to explain our results. Complete descriptions and explanations
can be found in [5], [4], [7]. All Su-Tucker-based methods begin by building an
intermediate tree, called the lracp tree, whose leaves hold the given set of input weights,
though not necessarily in the correct order. The levels of the input weights in the
lmcp tree are recorded, and this information is used to build an alphabetic tree on the
input weights, with each input weight occurring at the same level as in the lmcp tree.
Constructing this alphabetic tree can easily be done in O(n) time, as shown in [5].
Since the cost function depends only on the levels of the leaf nodes, the cost of the
alphabetic tree is the same as the cost of the lmcp tree. Hu and Tucker proved that
the lmcp tree has optimal cost in a class of trees that contains all alphabetic trees,
and hence it follows that the alphabetic tree constructed is optimal. We are able to
prove that, in the comparison model, constructing the lmcp tree requires (n lgn)
time in the worst case, but since it suffices to know only the levels of the leaf weights
in the lmcp tree and not its full structure, we can improve on the performance of the
Hu-Tucker algorithm in a number of cases.

The Hu-Tucker algorithm maintains a worklist of weighted nodes in the lmcp
tree that have not yet been assigned their sibling and parent. The basic step in the
algorithm consists of selecting two nodes from the worklist to be paired off as siblings
in the lmcp tree, removing these nodes from the worklist, and inserting a new node
(their parent) in the position of the leftmost replaced node with weight equal to the
sum of the two removed nodes. Initially the worklist is the list of leaf nodes with the
weights wl,..., w, in order. Nodes in the worklist are designated either crossable or
noncrossable. Initially all nodes are noncrossable. When any two nodes are paired
off, the resulting parent node is designated crossable. Two nodes in the worklist are
compatible if they are adjacent, or if all the nodes which separate them are crossable.
The symbol v will refer to a node in the worklist and w(v) will refer to its weight.
The level of a node v in the tree is denoted by l(v). Define an order on the nodes in
the worklist by vx < Vy if w(vx) < w(vy) or if w(vx) W(Vy) and v is to the left
of vy in the list. A pair of compatible nodes (Va, Vb) is said to be a local minimum
compatible pair (lmcp) if and only if the following two conditions hold:

1. Vb <_ v for all nodes vx compatible with node va.
2. Va <_ Vy for all nodes Vy compatible with node Vb.

We note that the order relationship given captures the tie-breaking rules of [5] and

The lmcp tree is constructed by repeatedly combining lmcps from the worklist
until a single node remains which will be the root of the lmcp tree. This is usually
implemented by a stack-based algorithm that starts at the beginning of the worklist
and moves a pointer along the worklist until an lmcp is found. After removing the
nodes in the lmcp and inserting the new parent node, the pointer is moved back
one node and the search for lmcps resumes. To check whether an lmcp has been
found, the algorithm compares the smallest node x before the pointer node y that is
compatible with y with the smallest node z after y that is compatible with y. If x < z,
the algorithm concludes that x and y form an lmcp; otherwise, it moves the pointer
forward one node. The total number of pointer moves is O(n), since O(n) nodes are
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placed in the worklist in total, and the number of backward moves is bounded by the
number of lmcps found, which is also O(n). Hu-Tucker methods take O(n lg n) time
because they maintain information on which node has the minimum weight in intervMs
of crossable nodes in order to find the nodes x and z. Updating this information when
an lmcp is found can take O(lg n) time. In general, the construction of the lmcp tree
is not unique, since the lmcps may be combined in different orders, but, as proved in
[5], the resulting tree is unique. Thus, for any node v in the worklist, we can define
the Imcp partner of v to be the node that is the sibling of v in the lmcp tree.

3. Region-based methods. We present a new approach for finding optimal
alphabetic binary trees based on partitioning nodes in the worklist in consecutive
runs. Define the category of weight w to be [lg (W/Wmin)J, where Wmin is the smallest
of the initial weights. A maximal-length sequence of nodes with the same category
is called a region. In our presentation, we assume that we explicitly compute the
category of each weight, since this simplifies the description and explanation of our
approach. However, it is possible to avoid the possibly nonunit cost of the lg operations
needed to determine the categories explicitly by modifying the lgorithm to treat the
category numbers of weights as unknowns that can be compared at unit cost. We
omit the details of this modification, as they are not crucial to the understanding of
the main algorithm.

By keeping a stack of regions and considering only regions whose adjacent regions
have higher category, we can restrict most of our attention to the pairings occurring
within these regions. We call this region processing. This is motivated by the situation
where all input weights are within a factor of two. If this is the case, it is easy to
determine the leaf levels in the lmcp tree using Theorem 3.1.

THEOREM 3.1. Given a sequence of n crossable nodes that are within a factor
of two, after the first [(n + 1)/2J lmcps have been found and combined, the new
sequence will consist of [n/2J nodes whose weights are again within a factor of two.
Furthermore, if we keep combining lmcps, the resulting lmcp tree will be balanced, with
the leaves differing in level by at most one. Specifically, the 2(n- 2 [lgnj smallest
weights will be at level [lg nj + 1 and the others will be at level [lg nJ.

Proof. We note that, since all the nodes are crossable, this reduces the problem
to building a Huffman tree, where the result is known. We present a new proof, which
provides insight to the actual behavior of the algorithm and motivates our results to
follow.

Let the initial sequence of nodes in the worklist be v,...,v and let c be a real
number such that c <_ w(v) < 2c for 1 to n. Whenever two nodes form an lmcp
and combine, the weight of the new node is greater than 2c, so it will not be involved
in another lmcp until there are less than two nodes smaller than 2c. When n is odd,
after (n- 1)/2 pairings have occurred, the worklist contains only one node of weight
less than 2c, namely the largest-weight node present in the original sequence. We
call this node the wallflower. The wallflower forms an lmcp with the smallest-weight
newly formed node. When n is even, the largest-weight node present in the original
sequence merges with another original node. Thus, regardless of whether n is odd
or even, the rightmost (there may be more than one) largest-weight node will merge
during the [(n / 1)/2Jth lmcp pairing. At this stage, the worklist will contain exactly
[n/2J nodes, none of which re original nodes, and their weights will be within a
factor of two, as we show below.

This is obvious if n is even, so suppose n is odd, and let v be the node with the
smallest weight, w(v) w(v)/ w(vy), among the first (n- 1)/2 newly formed nodes.
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Clearly, the rest of the first (n- 1)/2 newly formed nodes have weights less than
2w(v). Let vk be the wallflower. The next node formed is the parent of v and vk and
has weight w(vk)/ w(vi)/ w(vj). Now, since the original weight sequence was within
a factor of two, w(vk) < w(vi) + w(vj) w(v), so W(Vk) + W(Vi) + W(V) < 2W(V),
which completes the proof. One further observation that will be important is that the
weight of the parent of the wallflower is strictly greater than the weight of the other
(n- 1)/2 nodes in the current worklist.

Let us call the pairings up to this point a phase of the algorithm and consider
how the phase affects the levels of the leaves in the lmcp tree. Obviously, the phase
contributes one to the level of each leaf in the lmcp tree if n is even. When n is
odd, this is true for all the leaves except for the two whose parent was paired with
the wallflower. These two, which we call the wallflower’s stepchildren, have had their
level increase by exactly two. Since the wallflower’s parent has the unique largest
weight in the worklist at the end of the phase, at the end of each later phase this
node’s ancestor always has the unique largest weight in the worklist. Thus each later
phase contributes exactly one to the level of the wallflower’s stepchildren. Applying
this argument to the stepchildren of wallflowers from later phases proves that the
level of any two leaves in the lmcp tree differs by at most one. Since the lmcp tree
has optimal cost, the smallest-weight original nodes must be at the bottom level, i.e.,
the largest-numbered level. Thus for some integer x, we have the 2x smallest-weight
original nodes on level lg nJ + 1 and the remaining n- 2x original nodes on level
lgnJ. We require x + n 2x 2 [lgnj so x n 2 [lgnj

Based on this theorem, it is easy to give a simple linear-time algorithm for finding
an optimal alphabetic binary tree on a sequence of input weights which differ at most
by a factor of two. (Garcia and Wachs also give a linear-time method for this case in
[2].) In point form, the algorithm for finding the levels of the leaves in the alphabetic
tree is:

1. Initialize the worklist to contain the original input sequence. Note that all
nodes are noncrossable.

2. Use a stack-based method to find lmcps and pair them off, removing each
pair of nodes from the worklist and placing the parent in a temporary list
but not in the worklist. These newly formed nodes can be left out of the
worklist because their weights are greater than any of the original weights, and
hence need not be considered in the search for lmcps. This process continues
until there are zero or one nodes left in the worklist, and as discussed in the
remarks on stack-based algorithms in 2, requires only. O(n) time because of
the absence of crossable nodes in the worklist. If a single node x remains
(n is odd and x is the wallflower), scan through the temporary list of newly
formed crossable nodes to find the smallest node y. Pair x with y and replace
y in the temporary list by its parent.

3. At this stage we have rn [n/2] crossable nodes in the temporary list.
Moreover, the new nodes are still within a factor of two, by the same argument
as in the proof of the preceding theorem.

4. We can now, by the preceding theorem, directly find the levels of every leaf
in the lmcp tree for the remaining m crossable nodes in O(n) time, using
a linear-time selection algorithm [1] to find the 2(m- 2[lgmJ)th weight in
the temporary list. This node and nodes with smaller weights have level
[lg rnJ + 1, and the remaining nodes are assigned level Llg mJ. Given this, it
is trivial to compute the levels of the nodes in the original input sequence in
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an additional O(n) time.
5. With knowledge of the leaf levels, we can construct the optimal alphabetic

tree for the input sequence in O(n) time, using the technique in [5].

A similar technique can be applied to predict how nodes in a region R with
lowest category number combine to form nodes in a region with the next category
number. Notice that when the number of nodes in R is odd, its wallflower will pair
with the smallest-weight node in the set consisting of the lmcps formed out of R
and the compatible nodes from the two regions adjacent to R. When the gap in
category number between adjacent regions is large enough, this method yields faster
performance than the Hu-Tucker algorithm. The complete algorithm is described
in [7]. Its basic idea is to maintain a stack of the current regions in the worklist
and process the region at the top of the stack if its adjacent regions have greater
category. If not, the stack pointer is advanced. The cost of processing a region of
size r is O(r lg r). Since processing a region yields a new region of half the size, it is
easy to verify that this method has O(n lg n) running time. If the input weights {wi }
are exponentially separated, i.e., if there is a constant C such that for all integers
k, I{i: Llg wJ k}l < C, then it is also easy to verify that this method yields an
O(n)-time algorithm, since each region can be processed in constant time as the size
is bounded by 2C. The ideas in Theorem 3.1 can also be used to reduce the cost
of processing a region of size r to below O(r lg r) when the difference in category
numbers is great enough, which may be useful in implementations. Details are given
in [7].

4. The constant factor case. We now describe the linear-time algorithm for
weights within a constant factor, i.e., such that max{wi/wj} < a for some constant
a. As before, it suffices to determine the levels of the leaf nodes in the lmcp tree.
We use a region-based method to process the weights region by region in increasing
order by category number until we are left with a single region of crossable nodes.
We then apply Theorem 3.1 to determine the lmcp tree levels of the nodes in this
final region and work backwards to find the lmcp tree levels of the original weights.
In order to achieve the linear-time bound, when processing a region, we cannot afford
to determine which nodes pair together in lmcps or the weights of the lmcps formed.
Instead, we work with coarser information about the structure of the lmcp tree. An
interval of nodes in a region’s worklist is lmcp-closed if the lmcp partner of each node
in the interval is also in the interval. Our algorithm works by partitioning the region’s
worklist into lmcp-closed intervals and replacing each lmcp-closed interval by a node
group representing the lmcps formed out of that interval. From the definition of the
lmcp, it is easy to see that moving an interval of larger crossable nodes to the right
of an interval of smaller crossable nodes or pushing a larger crossable node to the
right of a smaller noncrossable node does not affect the construction of the lmcp tree.
Our algorithm uses such rearrangements of the worklist in finding the partition into
lmcp-closed intervals.

The worklist thus is now an ordered list of node groups in which each noncrossable
node appears as a singleton node group but intervals of crossable nodeswithin a region
may appear in groups of arbitrary size. A set of nodes in the worklist is realizable if it is
the union of a set of node groups in the worklist. The algorithm performs certain types
of selection operations on realizable sets of nodes in the worklist. For example, when
the worklist consists of crossable nodes whose weights are within a factor of two, the
algorithm determines the smallest k of these nodes in order to apply Theorem 3.1.
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Since we will generally not have an explicit list of the weights of the nodes in the
realizable set on which we wish to perform selection, we will introduce the concept of
a coarse-selection system, namely a structure for (nonexplicitly) representing a set of
elements, together with a particular set of selection operations that can be performed
efficiently on the set. We will then show that each realizable set has a coarse-selection
system. Performing a selection operation on a realizable set may require that some
of the node groups in the realizable set be refined, in order that the result be in the
form of realizable sets. For example, suppose N is a realizable set of nodes in the
worklist. Determining the largest (smallest) node v in N requires replacing the node
group containing v by a node group list in which v is a singleton node group, unless
v is already a singleton. Similarly, determining the k smallest nodes in N requires a
node-group list in which the desired set is the union of a set of n0de-groups in the
refined list. Thus we will ensure that the selection operations we provide for realizable
sets determine the appropriate refinements. We now define coarse-selection systems.

DEFINITION 4.1. For any A >_ 1, we say a (multi) set S has a A coarse-selection
system if:

1. Va e [0, 1], in AIS time we can produce two disjoint sets S and S+, each
with A coarse-selection systems such that S S S+, Vx S and Vy
S+, x <_ y, and ISI [alSIJ. (We call this an a-partition of S.)

2. Vx >_ O, in AIS time, we can compute the rank of x in S, denoted by rs(x),
and produce two sets S<-x and S>, each with A coarse-selection systems such
that S<- {y S y <_ x} and S> {y S y > x}. (The rank of x in S
is the number of elements in S less than or equal to x.)

3. In AIS time we can compute ISI.
4. If ISI 1 we can determine the unique element of S explicitly in A time.

In addition, when interpreted in the context of node-group lists, we require that
the sets S, S+, S<, S> be realizable. Note that the definition of a coarse-selection
system implies that, given a A coarse-selection system for S, we can explicitly de-
termine the largest (smallest) element of S in 2AIS time. We use the term layer h
for the regions in the worklist with category number h and process the regions in the
worklist a layer at a time beginning with the smallest numbered layer. Processing
layer h consists of creating node-group lists representing the new nodes formed in
layer h / 1. Consider the question of creating a node-group list representing the new
nodes, T, formed from a single region R of r nodes. If r is even, because the regions
adjacent to R in the worklist have higher category numbers, R is lmcp-closed and the
node-group list for T is a single node group. If r is odd, then the only node of R
whose lmcp partner is not in R is its wallflower z. It is straightforward to prove that
z is the largest node in the subset {y R" y is crossable or y is noncrossable and is
in an odd-numbered position from an end of R}. Note that this subset is realizable
and that z can be identified by coarse selection. Thus we create a node group, gt,
representing the lmcps formed from the nodes on the left of z, and another one, g,
for those from the right, respectively. To determine the lmcp partner of z, we need
to know the smallest node v in gt g, which again is realizable. We complete the
processing of z by comparing v with the smallest compatible nodes on either side of
gt,g in the worklist (found using selection on realizable sets), and we replace z and
its partner by a singleton node group representing this lmcp. This singleton node
group may be in layer h + 2, in which case we place it as far to the right as possible
(in front of the first node to the right that is in layer h + 2 or higher). The remaining
challenge is to construct the coarse-selection systems for realizable sets, which is done
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by induction on layer number.
Our inductive hypothesis will be that, for any node-group list representing the

nodes in a region of layer h, and any set of nodes, A, that is realizable with respect
to that node-group list, there is a coarse-selection system for A. The base case is
covered by the usual linear-time selection algorithm, since all nodes in the bottom
layer are noncrossable. Thus the only possible node-group list for the bottom layer is
the standard list of single nodes, so all the weights of the nodes in the list are known
explicitly. A key tool is the construction of a coarse-selection system for the union of
sets with coarse-selection systems. This is provided by the following theorem.

THEOREM 4.2. Let A LJn__A, where the A .are disjoint and nonempty and
each A has a A coarse-selection system. Then A has a 36A coarse-selection system.

Proof. Let x be any value. We can compute the rank of x in A easily, since
n n <x A>x n nrA (x) i=l rA (x). Moreover, A<x Ui=1A- and t2= The time

cost for this is the cost of finding rA(x) plus the cost of constructing the A and

Ax. This is n=l AIA + =1 A]Ail 2AIAI"
For a [0, 1], we construct A and Aa+ as follows. For each i, compute A/,

A.+/, and m min A/. This can all be done in 2AIA time. We now compute
the median m of the multiset M t_J=lM, where M contains exactly IAI copies
of mi, by using a standard selection algorithm. This can be done in 61A time using
the selection algorithm of Blum et al. [1]. Now compute rA(m) as above, in AIA
time. If rA(m) LalAIJ, we are done, as we can take A A<-m and A+ A>’. If
not, we may assume rA (m) > LalAIJ, since a symmetric argument handles the other

+ and note that every element incase. Let J {i m >_ m}, let B A- [_JejA/
A- B is at least m. If IBI < LalAlJ, since rA(m) > LalAIJ, there must be at least

LalAIJ -IBI elements in A- B that equal m. Thus, it suffices to identify a subset D
of these elements, with ID] LalAIJ -IBI, and take A B LJ D. To find D, we first
find (A+/)<m for each/in J. Every element in LJiej(A+/)<m must equal m, and

thus it suffices to take D to be any subset of t2ej(A/)<-m of the appropriate size.

Such a subset can easily be obtained by taking each (A+/)<-m until adding another

set will result in more than Lc[AIJ -IB[. At this point, coarse selection can be used
on this (A+/)<m to obtain a subset that will bring the total number of elements to

exactly [a[AIJ -IBI. Thus, in this case, we will have obtained A and A+ in at most
(6 + 5A)[A time. If IBI >_ LalAIJ, we may take (A- B) C A+, since every element
in A- B is at least m. Note that -iej ]A >_ 1/2[A by the definition of M. Hence
A BI WeJ A+ > 1/4 IAI and so we reduce the problem to finding a fl-partition

/2
+ tJB In this case, wein B, where 3 asA We set A B and A+ U,ejA,1/2

reduce the problem to one at most 3/4 of the original size in (6 + 3A)IA time. Since
B is a union of sets with A coarse-selection systems, an easy inductive argument on
the size of A shows that we can produce A and A+ in (6 + 3A)IA < 36AIA1--3/4
time.

The fact that A<, A>x, A, and A+ each have 36A coarse-selection systems
again follows easily by induction on IAI since they are unions of sets with A coarse-
selection systems. FI

We are now ready to begin the inductive proof of the existence of coarse-selection
systems. We assume that, given any node-group list representing the nodes in a
region of layer h and a set of nodes that is realizable with respect to that node-group
list, the set has a A coarse-selection system. Given this assumption, we show how
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to construct a DA coarse-selection system for any set S of nodes in a region X of
layer h / 1 such that S is realizable with respect to a node-group list for X. The
value of D is a constant independent of h. By the definition of a node-group list, it
is clear that any node-group list for X inherently provides node-group lists for the
regions in layer h that contain the children of nodes in X. By the preceding theorem,
we may assume that there are no singleton node groups in the representation of S,
since otherwise we can use the usual linear-time selection algorithm for the set S* of
nodes in S occurring as singletons, and we can use the selection systems for S* and
S- S* to get a selection system for S. This assumption says that there is a set (Ri}
of disjoint lmcp-closed realizable intervals in layer h such that S is the lmcps formed
from V UiR. We first show how to find the smallest-weight node in S by proving
that, in O(AISI) time, we can reduce the problem to finding the smallest-weight node
in a realizable subset S’ of S, where IS’I <_ ISI/2. This reduction process may involve
refining some node-group lists for regions in layer h, and such refinements increase the
number of realizable sets. This is why our inductive assumption ensures the existence
of A coarse-selection systems for realizable sets, independent of which node-group
list is used in the definition of realizability. Finding the smallest node is a special
case of finding an s-partition, but the algorithm is slightly simpler. Moreover, since
it is a subroutine used in finding general s-partitions, presenting it first clarifies the
exposition.

The set V is realizable, so, in AIV time, we can find the 1/2-partitio.n V

V2 U V2. For each R, we write R- R V2 and R+ R N V2. We assume,
by reordering if necessary, that for each interval C of crossable nodes in R, we have
C N R- preceding C N R+.

We now describe an algorithm which we will run on R to partition its nodes into
three lmcp-closed sets, R R-- U R++ U R-+, according to whether the node and
its lmcp partner are in the same class in the partition R R- U R+. The set R--
is the set of nodes x such that both x and its lmcp partner, p(x), are in R-. The sets

R++ and R-+ are defined analogously. For each node x in R-+ (the set in which x
and p(x) are in different classes), the algorithm explicitly determines x and p(x) and
hence can create a singleton node group for the lmcp of x and p(x).

We use the terms -interval [+interval] to refer to a maximal interval of nodes
in R which lies entirely in R- [R+]. Obviously, R is an alternating sequence of
-intervals and +intervals. Also, -intervals and +intervals are realizable sets. We
first note that, if any two consecutive-intervals are separated by a +interval that
does not contain noncrossable nodes, we may push the +interval to the right of the
right-hand -interval without affecting the formation of lmcps. Thus, in linear time,
we can rearrange each R so that there is at least one noncrossable node in each
+interval, except for possibly one on the right end of R. If the number of nodes in
a-interval, I, is even, then for each x E I we have p(x) I. This follows from the
fact that S is realizable and that each node group of S represents the lmcps formed
out of a consecutive interval in layer h. Next, for each-interval, I, with an odd
number of nodes, we use the zk coarse-selection system to find its local wallflower,
i.e., the largest node in I which either is crossable or is noncrossable and in an odd-
numbered position relative to I. Note that each local wallflower x is now represented
by a singleton node group, and we know its weight. Let I be the set resulting from
removing the local wallflower from I, if it has one. It is not hard to prove that, for
each x I, we have p(x) I’, so we set R-- to be the union of the It. We now
remove the node groups representing the nodes in R-- from the node-group list of R.
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We will process the list of node groups that remain in O(AIRi]) time to determine the
lmcp partner of each local wallflower and define R-+ as the set of local wallflowers
(i.e., the nodes in R- which still remain in the list) together vith their lmcp partners.
R++ is Ri (R-- t2 R-+).

In order to determine the lmcp partner of each local wallflower, we first identify,
for each end of a +interval, the smallest-weight node in the +interval compatible from
that end of the interval. For each +interval that contains at most one noncrossable
node, we also identify its smallest-weight crossable node, if one exists. This can be
done in O(A]RI) time using coarse-selection systems. We now use the standard
stack-based method described at the end of 2, where the worklist consists of the
local wallflowers surrounded by the identified neighboring nodes from the +intervals,
in order. The stack pointer is initially placed on the leftmost local wallflower. We
stop when all the local wallflowers have been paired off, i.e., when their lmcp partners
have been determined. It is straightforward to check that, upon removal of an lmcp
involving a local wallflower, x, the necessary information on the affected +intervals
can be updated in constant time, and this guarantees the.linear-time bound.

For j --, ++,-+, let VJ be the union of’the nodes in the Rj, and let Sj be
the nodes formed from Vj. We note that all the nodes in S-- are less than or equal
to the nodes in S++, though it is possible that there are nodes in S-+ that are smaller
than some in S-- and others in S-+ that are greater than some in S++. In addition,
we know that both IS--I and IS++I are less than ISI/2 since IS--] IS++I. We
also know all the nodes (and their weights) explicitly in V-+ and hence can find the
smallest node in S-+ in O(IS-+I) time. Thus, it suffices to find the smallest node
in S--, and taking S’ S-- completes the proof. The analogous technique works
to find the largest node in S or the rank of a node x and the sets S<x and S>x in
O(AISI) time. We will call the process of determining the sets S--, S-+, S++ sifting.

Now suppose we wish to find S and S+ for some a E [0, 1]. We assume a _< 1/2,
since the case a > 1/2 is analogous. Let max(a, 3/7). We repeat the sifting
process as before, except that we find the -partition V V- t2 V+. For each set R,
we now set R- R{ N V- and R+ R N V+ and define the sets Ry, Vj, Sy as before
for j= -,++.

Let -y IY--[/IYl IS--IllS I. For the sake of simplicity, we ignore floors and
ceilings for the moment. It is not hard to see that we have IY-+l- 2(- )IV and
IV++[ (’ + 1 2)[Y[. Thus IS-+[ 2(3 9’)[S] and IS++[ (- + 1 23)]S[.
Using the algorithm described above, we find, in O(AISI) time, the largest node s- in
S-- and the smallest node s+ in S++, respectively. Let S-+ $1 U $2 U $3, where
S1 contains the nodes in S-+ less than or equal to s- and $3 contains the nodes in
S-+ greater than or equal to s+. We can find these sets using the Blum et al. [1]
linear-time selection algorithm because the nodes (and their associated weights) in
S-+ are known explicitly.

Let A S--tA S,, 5 ]AI, and Z S-+. If [Z >_ alS[, we set p a]S[/]Z[, and
using the standard linear-time selection algorithm, we find a p-partition Z Z-t2Zp+.
We now prove that there is always one of the sets A, S- A, Zp+ whose nodes we can
remove from S, because we can assume that they are in one of the sets of the a-
partition. Moreover, we prove that the set we remove contains at least 1/Tth of the
nodes in S.

First, note that each node in S-A has weight at least as large as any node in A, so
if [A >_ alS[, then we place the nodes in S-A in S+ and reduce the problem to finding
the a([S[/[A[)-partition of A. Symmetrically, if [A[ _< a[S[, we place the nodes in A in
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Sj and reduce the problem to finding the (1 a)(ISI/(IS -IAI))-partition of S A.
A similar argument applies to removing the nodes in Zp+ when we have IZI >_ alSI,
and we reduce the problem to finding the a(ISI/(ISI- IZp+l))-partition of S- Zp+. We
now consider the sizes of the sets involved. If , <_//3, we have IZI >_ 41SI/3 >_ alSI
and [Zp+[ (2(3- 3’)- a)lS[ >- (- 2’)1S[ >_ [SI/3 >_ [SI/7, since >_ a and

>_ 3/7. Now suppose >_ /3. We have 3’ _> 1/7, so [A _> IS--[ >_ [S[/7 and
IS- A[ >_ IS++[ >_ [S--[. Thus, in all cases, there is a set of size at least [S[/7 that
can be removed, and we have reduced the problem to a realizable set of size at most
6[S[/7 in O(A[S[) time.

It is easy to use the above ideas to compute, in O(A[S[) time, the rank in S of
any node x, as well as find S< and S>. Moreover, computing IS[ is trivial from
the node-group list for S. Combining these observations yields a DA coarse-selection
system for any realizable set in layer h q- 1, where the constant D is independent
of h. It is interesting to note that the largest portion of D is a result of applying
Theorem 4.2 to merge the selection system for the singleton node groups with the
selection system for the larger node groups.

The arguments above yield an O(Dh) coarse-selection system for realizable sets
in layer h. By dividing all the original weights by the smallest weight, we may assume
that they lie between 1 and a, and hence we must process at most [lg a q- 1 layers
before reaching the point where the worklist contains only crossable nodes. At this
point the weights are within a factor of two, we have an O(Dg]S[) O(n) coarse-
selection system, and we can apply Theorem 3.1 to determine the levels of these nodes,
which we then use to determine the levels of the original weights.

5. Hardness results. We begin with a simple hardness result that shows that
constructing the intermediate lmcp tree produced by Hu-Tucker-based algorithms in
any model of computation is at least as difficult as sorting in that model. We also give
a more complicated reduction from sorting to any algorithm which computes enough
partial information about the lmcp tree. This partial information is something we
expect any region-based method must compute.

5.1. Finding the lmcp tree. We will need the following simple lemma, whose
proof we omit since it follows immediately from the observations made at the begin-
ning of the proof of Theorem 3.1.

LEMMA 5.1. Let xl,x2,...,Xn be distinct real numbers drawn from [2,4). Let
Yi 1/2x[i/2], for 1...2n. If (yl,... ,Y2n) is given as input to any lmcp-finding
algorithm, the set of the first n lmcps found, disregarding order, will be

{(Yl, Y2), (Y3, Y4),-’’, (Y2n--1, Y2n)}.

THEOREM 5.2. We can reduce sorting sequences of size n to finding the lmcp tree
in O(n) time.

Proof. Assume n is even. Let Xl,X2,... ,Xn be drawn from [2,4). Define the yi

as above and consider the behavior of some lmcp-combining algorithm on the input
sequence y,..., Y2n. According to Lemma 5.1, after n lmcps have been combined,
there will be n crossable nodes in the worklist with the weights x1,..., Xn. The only
lmcp in the list is the smallest pair of nodes in {Xl,... ,Xn} that combine to form a
new node with weight at least 4. The next lmcp will be the second smallest pair of
nodes from {xl,... ,Xn} and so on. Hence the next n/2 lmcps found sort {xl,... ,Xn}
by pairs. Moreover, the fully sorted order of the xi can be recovered from the lmcp tree
(independent of how it was constructed) by searching the tree depth first and always
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searching the least-weight subtree first, since the nodes corresponding to {x1,..., xn}
will be encountered in sorted order. This shows that sorting can be reduced to finding
the lmcp tree in O(n) time.

5.2. Region-based methods. In light of the linear-time algorithm for the con-
stant factor case, it is natural to look for an o(n lgn)-time method based on region
processing. As before, we would hope to avoid determining all the lmcps but still
determine the leaf levels in the lmcp tree. The wallflower is the difficult case to ham
dle because it seems necessary to know explicitly which node it pairs with (as this
increases the level of the leaves of this node by one). In particular, the wallflower may
pair with the lmcp formed from the two smallest nodes in its region, and so it seems
necessary that this information be easy to find for every region considered. We will
say that an alphabetic tree-finding algorithm is region based if, from the information
it computes, it is possible in O(n) time to determine, for the smallest two nodes at
each level, the set of leaves in the subtree of the lmcp tree rooted by each of these
nodes. Note that this information is easy to compute if regions in the worklist are
processed by increasing category order and the smallest two nodes are explicitly found
in every region processed. This is because the smallest two nodes at each level in the
lmcp tree are the smallest two nodes for some region, and we can easily keep track of
the eventual level of the pair of smallest nodes for every region and pick the smallest
pair at every level. The following theorem provides an gt(n lgn) loWer bound in all
models of computation for which an information-theoretic argument can be applied.

THEOREM 5.3. Any region-based algorithm for finding alphabetic trees can be
used, with O(n) additional work, to sort sequences possessing a particular structure.
Moreover, the number of distinct orderings among sequences with this structure is
2a(ng).

Proof. We show the existence of a sufficently large class of input sequences, such
that for any sequence in the class, a region-based algorithm determines the structure
of the lmcp tree. The proof is completed by showing that, for these sequences, the
sorted order can be determined from the lmcp tree in O(n) time.

The input sequences we consider consist of approximately regions, each con-
taining about r nodes and such that the category of a given region is one more
than the region on its left. We assume n k2 + 3k + 4, where k is a positive integer.
The first region will contain weights with values in [1,2), the next [2, 4), then [4, 8),
etc. Denote the jth value in the ith region by yi,j. The first region will have 4k / 4
weights; the remaining have 2(k- 1),2(k- 2),2(k- 3),... ,2 weights, respectively.
Note that 4k+4+2(k-1)+2(k-2)+...+2 k2+3k+4. Let Xl < X2 < < X2+
be real numbers in [2,4). The values for the {yi,j} will be determined from the {xi}.
As the proof depends on the crossability of nodes, the values come in pairs so that
the leaf nodes initially combine in pairs (this will be proved in Lemma 5.4).

Con.sider the following recursively generated binary tree built from the {xi}. If
internal nodes are assigned the sum of the weights of their children, then it has the
property that the left child of any node is always less than the right.

Figure 1 shows the tree built for k 3. The tree built for k 2 is the subtree
rooted at the left child of the root. The tree for k 4 has this tree as the left child
of its root, with the right child of the root consisting of an arm with leaf weights
X17 "-"""-- X24, X25 "-"""-" X28, X29 -- X30,X31,X32 from left to right.

The purpose of this tree is to assign values to the {yi,j }. Randomly distribute
consecutive pairs (y,y, yl,i+), j 1, 3,..., 4k / 3, among the 2k + 2 lowest terminal
leaves in this tree. For j 1,..., 4k + 4, let Yl,j be half the weight of the leaf that
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x9+x10+x11+x12
,/ ,

x5+x6 / x13+x14
,

x1 x2 x3 x4 x7 x8 Xl5Xl6

FIG. 1. Tree generated from {xi}.

it is associated with. Then assign values to consecutive pairs of the 2(k- 1){y2,j } by
distributing them among the next lowest terminal leaves and so on. This new tree
is called the ordering tree and is shown in Fig. 2. It records how the weights were
assigned, and also their, sorted order.

Yl,7 Yl,8Yl,13Yl,14Yl,llYl,12Yl,1 Yl,2 Yl,15Yl,16Yl,5 Yl,6 Yl,3 Yl,4 Yl,9 Yl,IO

FIG. 2. The ordering tree.

The input weight list is as follows, with regions distinguished by height.

Y3,1 Y3,2
Y2,1 Y2,2 Y2,3 Y2,4

Yl,I Yl,2 Yl,15 Yl,16

With an additional O(n) time, we can determine the smallest two nodes at each
level of the lmcp tree from the information computed by any region-based algorithm.
To finish the proof, we first need a lemma.

LEMMA 5.4. If the children in the lmcp tree are ordered according to weight, then
the lmcp tree is isomorphic to the ordering tree.

Proof. We may assume that we begin by combining all the lmcps in the lowest
(largest-level) region. From Lemma 5.1 we know that since the weights come in
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consecutive pairs of the same weight, these pairs will eventually form lmcps and
combine, in agreement with the ordering tree. At this stage, the lowest region in the
worklist consists of crossable nodes interspersed with some noncrossable ones, which
again come in pairs. It is easily seen from the ordering tree that there is always an
even number of crossable nodes smaller than the consecutive pairs of noncrossable
nodes in the lowest region. Thus, we know that these crossable nodes will pair off
first, and then the consecutive pairs of noncrossable leaf nodes will pair off as is shown
in the ordering tree. It is clear from the ordering tree that this process continues and
the lmcp tree, with every internal node’s children ordered by increasing weight, is
isomorphic to the ordering tree. Lemma 5.4 is proven, i’1

Consider the children of the root of the lmcp tree. By assumption, we know their
weights and which leaves each child roots. By the lemma, the smallest node roots
all the leaves on the left branch of the ordering tree, while the second smallest node
will root all the leaves on the right branch. In time proportional to the number of
leaves we find, we can traverse the right branch of our tree and find all the leaves
and hence weights {yi,j} that are on the right branch of the ordering tree. Since
there are only a constant number of leaves per level, we can afford to sort each level,
and hence we begin sorting each of the regions in the initial input list. We now use
this idea recursively on the subtree rooted at the smallest node of the root. This
lets us find all the leaves in the right branch of the left branch from the root in
the ordering tree. Again, we may sort the weights present at each level and append
them to the beginning of the sorted region lists created previously. This will take
time proportional to the number of nodes in this branch. By repeating this process,
we will completely determine every input weight’s location in the ordering tree, and,
from this information, we can produce sorted lists of the weights in each region in the
input. All this takes only O(n) time to do.

The input sequences that we consider are subject to the restriction that the first
4k 4-4 weights come before the next 2(k- 1), which come before the next 2(k- 2),
and so on. The total number of different orderings of these sequences is

(2k + 2)!(k- 1)!(k- 2)!..-(2)!
> ([k/el !)
> Lk/4J Lk/4J Lk/2J

Since k O(n1/2), this number is (n(n)) 2a(nlgn). Theorem 5.3 is proven. 13

6. Conclusions. In this paper, we have extended the ideas of Hu and Tucker
for constructing optimal alphabetic binary trees. In particular, we have used their
basic idea of lmcp-tree construction together with the new idea of region processing
to give O(n)-time algorithms to solve the cases where the input weights are within a
constant factor, or exponentially separated. The constant factor case makes use of a
new technique for doing generalized selection in O(n) time. We show that any natural
method employing either the idea of lmcpotree construction or the idea of region
processing may force us to sort a substantial amount of the input. The basic question
of whether there is a general o(n lg n)-time algorithm for finding optimal alphabetic
binary trees for this problem remains open. In fact, this question is open even for the
highly restricted case where no wallflowers are encountered in the construction of the
lmcp tree before the point where the worklist contains only crossable nodes.
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ON FAMILIES OF SETS OF INTEGRAL VECTORS WHOSE
REPRESENTATIVES FORM SUM-DISTINCT SETS*
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Abstract. We study the size of a collection (I,...,:T} whose members Pi, 1,...,T,
T

are disjoint sets of integral vectors such that __-i=1 i are all distinct and each n-tuple comes

from a different set i. In particular, if i {n,i}, we have a well-known problem on maximum

cardinality of sum-distinct sets of integral vectors. We state bounds on n-1 ’i=1 lg2 Iil and give
a construction that meets the lower bound.

Key words, subset-sum, uniquely decodable, residual matrix, detecting matrix
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1. Introduction. Let K: _A_ (0, 1,..., k} for a given positive integer k and denote
by On the n-tuple of zeros. A collection (7)i,..., 7T} such that Pi C ]Cn and 7i NT)j
(On} for i j will be called a disjoint code in (]Cn, +) if the yI/T=I I:pil sums

(1.1)

are all distinct and each n-tuple 2i belongs to a different set 7)i. In (1.1), + stands
for a component-wise real-number addition. The rate Ri of a component 7) is defined
by IPI 2nR. The rate sum, denoted by Rn(T), is the sum of T component rates.

For a T component code we then have Rn(T) n-1 log2 I:Pl, where/) _A 7) ... PT
and denotes the Cartesian (direct) product of sets. Rate sum is a measure of the
size of a code often used in information and coding theory. Our aim is to establish
bounds on R(T).

The above object was studied in [2] for n 1. For k 1, a weak upper bound
on Rn(T) may be found in [4]. Note that n E :P is an additive zero and hence any
subcollection of {Pl,..., 7T} is a disjoint code. This is important in multiple-access
communications where no-transmission from user corresponds to 2i On in (1.1),
thus making a resulting signal from any number of at most T active users unique.

Call a set {1,2,... ,2m}, 2i ]n, sum distinct in (]Cn, +) if all the 2" possible
sums - ei2i, where ei {0, 1} and 2 ]C, are distinct n-tuples in {0, 1,..., mk}n.
Thus, a T component code generates yI{(l:p{I- 1) different sum-distinct sets of cardi-
nality T. It is, however, unlikely to have more than one such set if we insist that T is
maximum for given k and n.2 If Pi {On, 2{}, the collection {Pl,..., PT} is called a
disjoint signature code. Its rate-sum is n-IT, where T is the number of components
or the cardinality of

By the definition of a code, the set (1.2) must have the property that all of its 2T

subset-sums are distinct n-tuples in {0, 1,..., kT}n. This relates the signature code

Received by the editors March 30, 1994; accepted for publication October 21, 1994.
Computer Engineering Department, Santa Clara University, Santa Clara, California 95053.
The full name here would be "disjoint uniquely decodable code." We will use the term disjoint

code or just code.
2 This statement is based on a futile computer search conducted in [2] for n 1.
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to the coin-weighing problem, e.g., [1], [6], and [9], as well as to the superimposed
code, e.g., [3] and [5].

Upper and lower bounds on Rn(T) are established in 2 and 3, respectively. A
construction which meets the lower bound is shown in 4. Related remarks are given
in 5.

2. An upper bound. A matrix with entries from K: will be called a/C-matrix.
Let mi IPil and m- i mi. It is convenient to arrange the code {Pl, T’2,..., PT}
into an n by m/C-matrix C,

(2.1)

such that mi column-vectors of Pi form the ith n-by-mi submatrix (block) of C. De-
note by w(fi) the number of l’s in a binary vector fi and let/gi __A {2 e {0, 1}’ IT(2
1 } and b/-/gl x x b/T be the sets of binary vectors compatible with the format of
C. Then {Pl,..., PT} is a code if

(2.2)

has at most one solution in fi E b/for any integral n-tuple . A matrix (J for which
uniquely determines fi 5/will be called sum distinct.

If f (el,..., en)T, we can write (2.2) as

(2.3) ei ciu, i 1, 2,..., n,

where i is the ith row m-vector of C. The simplest upper bound on Rn(T) is obtained
by realizing that [P[ distinct points Cfi should lie inside an n-dimensional sphere of
radius kT (the radius follows from (2.3) and the format of fi). That is, [:Pl < Y(kT, n),
where Y(r,n) (rx/-)n/F(1 + ) is the volume of the sphere of radius r. Hence,

(2.4) Rn(T) <_ log2 kTv/-- n-l log2 r(l + ), r(z) __A j/c tz-le-tdt.

By (2.3), there are at most (1 + kT) distinct points C in {0, 1,..., kT}n. Fur-
thermore, the 2T sums (1.1) are all distinct. Hence, 2T < (1 + kT)n and, due to
T < (1 + k), it follows that T < (n2 + n) log2(1 + k). The substitution of this upper
bound into 2T < (1 -+-kT) yields

(2.5) T< n log2 k + n log2[1 + (n2 + n)log2(1 + k)].

Hence, for large n, the upper bound on n-iT is approximately log2 n2k log2(1 + k).
The above estimate could be further improved by a repeated substitution of the most
recent upper bound on T into 2T < (1 -+- kT).

Our final estimate of Rn(T) in this section comes from a random coding argument.
The intent is to improve the upper bound (2.4).

THEOREM 1. Rn(T) <_ c q- log2 kv, where c < log2 2x/-.
Proof. If gi is a random vector with uniform distribution on b/i, then

Efii E P{fii }
1 1

lrni,
U mi -U mi
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where im is the column m{-vector of l’s. Let R A= E(t{- Et{)(t{- Et{)T and let
P- (Pl,...,P,) such that pj E C for all j. Then,

and thus primpT < (1-m-1)k2 for any p E/C". Hence, ifR dg(Rl, R.,...,RT)
and i is a row vector of C, then

T

i:1

Denote by H(X) the entropy of a random variable X. The proof uses the estimate,

n
H(X) <_ - log 2re(a2a a2) 1/4,

2 E(Xi EXi)2 for 1 2 n. For the proof ofwhere 2- (Xl,... ,Xn) and a
(2.7) see, for example, [7].

If in (2.2) is a random variable, so is the subset-sum [. Let 7(C) {Cfilfi b/}
and set P{[ 2} 0 for 2 7(C). Then, P{ [o} P{[ C2,o}
and 20 5/is unique since C is sum distinct. Thus, H([) H(fi) for any distribution
of 5/. Set Xi ciu and by (2.7),

H(t) H(ClU, c2u,..., CnU)
n 1

n

-2
< log 2e + E log iR’T,

i=1

where R E(t-Et)(t-Et)T. We relate H(fi) to Rn(T) by taking the components
1, 2,...,T of fi to be independent random variables with uniform distributions on
5/1,5/2,... ,L/T, respectively. Then H(fi) y]{ H(fii) and H(fi{) log2 IP{I. By (2.6)
and the above inequality we then have

( )1 k2(2.8) Tt--1 lg2 I ’l < lg2 + lg2 k2T Em<
i=1

and thus the theorem is proved.
In what follows, we will establish R,(T) >_ log2 kx/. Since 4, by (2.5)

and Theorem 1, we see that R,(T) behaves as log2 kv/ for large n.

3. A lower bound. A lower bound on R(T) will be established by constructing
a set of residue-class-representing (RCR) vectors from a given nonsingular ]C-matrix.

If {21,..., 2,} is sum distinct in (K>, +), any arrangement of its rn column n-vectors
into an n-by-m matrix C has the property that Cfi uniquely determines fi

{0, 1 }’ for any E Zn. Hence, we will call C a sum-distinct matrix as well.
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Let B (bij) be a nonsingular/C-matrix of order n and let/g be a unimodular
matrix such that B/g B, where B is an n-by-n lower triangular matrix. We write

(3.1) B

/11 0 0

Since B is nonsingular, fi/i E Z- {0} and/3ji, j i,..., n, are in a complete set
of residues modulo /ii. If AB and A8 are the integral lattices generated by column-
vectors of B and B, respectively, then AB As. We will denote the column-vectors
of B by/1,/2,..., n and the corresponding fundamental parallelotope by IIs. The
representation Bb/- B (also called Hermite right equivalent form) is always possible,
see, for example, [S].

To each diagonal element/3ii from B we associate a sum-distinct integer set

(3.2) Fi- {.yi) i) ,(i) ,(i) ,(i) ii,lki lk }

such that I-"j < II1 for all j 1,..., k- 1 and all elements of F have the same

sign. To each Fi we then associate (i) =/i and the (ki 1) residual vectorski

(3.3) 0-a(.i) (i) (j) (J)a
"[j i q- "i+l,ii+l at- at- -n,i,n, j 1 ki 1

where gi is the ith column vector of In and I, is the identity matrix of order n. In
(3.3), (j) (J) r(j) and +, have the same"i+e,i are integers such that I’i+,il <- Ii+e,il and

sign. This is necessary to keep each O-(ji) inside II. Then the (E_lki)-element set

n.- U {O-(ji) j 1,...
i=1

is sum distinct. In other words, the 2k possible sums of the ith component

(a.4) 1i) q-2i)
nt-’’" -t- eki (i)

ki- -- ki i, i {0, 1},

are distinct and each of the sums (3.4) is incongruent (mod A) to any other sum from
a different component. Hence, if r(B) denotes the total number of residual vectors
induced by a/C-matrix B of order n, then

r(B) >_ - + IPll + Ir=l +’" + IPl.
By the above described construction, the vector-congruence problem in AB was

reduced to a componentwise vector-congruence problem in a geometrically equivalent
lattice A. Hence, if B is a K:-matrix of order n and det B > 1, we can augment
B with r(B) residual vectors so that (BIBR) is a sum-distinct n-by-rn K;-matrix. We
will call the n-by-(rn- n) -matrix BR a matrix of residual vectors.

For any positive integer ti < log.(1 + Iiil), the set {2,2,...,2e-,1iil} is
sum distinct. From (3.5) and IFil _> gi + 1, we then have r(B) > i[log2 I/iilJ.
A simple condition which implies r(B) > [log2 Idet BI] will be given in 5. Note
that r(B) $ [log2 det BIJ. The smallest counterexample is the set {3, 5, 6, 7}. (Take
n 1, B (7), and k 7.) As a side point, an upper bound on r(B) may be obtained
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from an upper bound on IFI, say, IFI _< [log2 Ifl]l + 1 + 1/2 log2(2 + 31g22 I-), which,
to the author’s knowledge, seems to be the best available.3

THEOREM 2. Let n 2r 1, where r E Z+. Then there exists a sequence (Bn)
of -matrices such that

n+l(3.6) r(Bn) >_ n[r(k)- 1] + 2
lg2(n + 1).

Proof. Define the sequence of integral matrices {Bn n 2 1, r e Z+}
recursively as B1 (k) and

( )Bn 0n Bn
(3.7) B2n+l= OT k T B=nT-Bnn

where n kn. Let L/n be a unimodular matrix such that Bnbln Bn, where Bn is
a lower triangular integral matrix of order n. Furthermore, let On be the zero matrix
of order n. It is shown by inspection that matrices B2n+l,

Un o-u= B, o o=
AC2n+ 0nT 1 -T-lnUn and 2n+l

satisfy B2n+l2n+l B2n+l. Let h be the largest element in a sum-distinct set
A’ C Z+ and let z G Z+ be an odd integer smaller than 2h. The set {z} U {2t t A’}
is sum distinct and has cardinality IA’I + 1, and its largest element is 2h. Hence,
r(B1) r(k) and

r(B2+l) r(Bn) + r(k) + r(2Bn)
>_ 2r(Bn) + n + r(k).

The theorem follows from the above inequality by using standard techniques in solving
linear recurrence equations.

From the fact that r(k) >_ [log2 kJ, inequality (3.6), and the definition of the rate
sum, it follows that

--1l+n(3.8) nn(T) >_ [log2 kJ + log2(1 + n), n=2-1, rZ+.

Note that the above bound is often conservative, since r(k) may be underestimated.
For example, [log2 7J 2 while r(7) 3 for the previously mentioned set {3, 5, 6, 7}.
It is thus better to write r(k) instead of [log2 kJ in (3.8).

4. Inverse mapping. Suppose we are given an n-by-m sum-distinct -matrix
D, and let be a given n-tuple obtained by summing up any number of column-vectors
from D. That is,

(4.1) = Dfi, fi e {0, 1}".

Call inverse mapping a procedure which recovers the column-vectors of D which are
in (i.e., a procedure which calculates fi). Clearly, (4.1) has a solution if (and only if)

3 A precise upper bound on the cardinality T of a sum-distinct set in (K, +) is an open problem.
It is suspected that T < c + log2 k where c E Z+ does not depend on k.
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is one of the 2m distinct n-tuples from 7(D). In that case, the jth column-vector
from D is in if uj 1. Since (4.1) represents n equations in m > n unknowns, the
additional (m- n) equations, which are specified by E (D), the sum-distinctness
of D, and f E {0, 1}", must be hidden in relationships involving coordinates of .4
Let B be a submatrix of D with det B > 1 and write D (BIBR), where BR is the
matrix of residual vectors of B. If fiT (f, f), we can rewrite (4.1) as

(4.2) - BfB + BRfR.

If fR is known, the system of n equations in n unknowns BfB - BRfR can be
solved for fB {0, 1}n by using standard techniques. This is a general idea in RCR
constructions. We now present a construction which is based on Theorem 2.

Let t log2 kJ and define 8 (2,21,..., 2-1) if g > 0 and 80 (0). Fur-
thermore, let Dn be an n-by-m ](:-matrix and define a (2n + 1)-by-(2m + g + n + 1)
-matrix D2n+l in terms of Dn and 8 as

-T -T -TkmD2n+l 0m k 8 On
Vn D On In

Dn,

where Opxq is a p-by-q zero matrix. Then, the following statements hold true.
(i) If D is sum distinct, so is D2n+l.
(ii) The sum-distinct set formed by column-vectors of D2,+1 is RCR; residual

vectors of D2n+l are the last (t + n) column-vectors.
(iii) Let m(n) denote the number of sum-distinct n-vectors in submatrix D. If
D has the same structure as D2+1 (i.e., if Dn is defined recursively), then

n + 1
log2(n + 1) n 2 1, r Z+(4.3) rn(n) ne + 2

We will prove (i) by showing that g D2n+lf, f {0, 1}2m+e+n+l, has a unique
solution in f if g -(D2n+l). To that end, let the binary column-vector f be
partitioned as fT (fT1, t, f, 2T, @T), where t E {0, 1}, 2 {0, 1}e, @ {0, 1}’,
and f {0, 1} for 1,2. Furthermore, let the (2n + 1)-vector g be partitioned
as gT (glT, s, g2T), where gl and g2 are column n-vectors with nonnegative integral
components and s is a nonnegative integer, Then g D2n+lf can be written as

(4.4a)

(4.4b) -T 82,S kt + kmu2 +

(4.4c) 2 Dntl q- tn q- (inTrn Dn)f2 q- @.

Note that (4.4b) can be written as 82 s- (w(f2)+ t)k and hence, due to 8}"2 < k
and the definition of St, the binary vector 2 is uniquely determined by

(4.5) 8}"2 s mod k.

4 A brute-force approach would be to choose 2 binary tuples (Ul,..., urn-n) and check (for
each such tuple) if n remaining components of fi satisfy (4.1). By (3.8), this approach is quite
expensive if kn is large.
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Premultiplying (4.4b) by in and replacing (tn + lnTmfi2) by n(8--t) in (4.4c)
yields the system

1 DI -- Dfi2 +2 Dtl Dt2 ln(t2) + @ + Sn,

which has 2n equations in 2m + n unknowns, 1, 2, and @. By adding the above
two equations, we have 2(DnI + Sn) + @ 1 + 2 + Sin and hence

(4.6) @ 1 + 2 + sln (mod 2).

Once and are known (that is, once residual vectors are extracted) we have

1
(4.7a) Dntl (1 -}- 2 @ 8n),

(4.7b)
1

Dnfi2 (1 g2 + + sn) (s mod

which, since Dn is sum distinct, determine 1 and 2 uniquely. Once 2 is known, we
calculate t e {0, 1} from (4.4b)as

(4.8) t-[J-w(fi2),
and thus the (2m + t + n + 1) binary vector is determined completely.

The claim in (ii) follows from (4.5), (4.6), and the definition of a residual vector.
We leave it to the reader to verify that In represents the residual vectors obtained from
-2Bn. To verify (iii), let rn(2n+l) denote the number of sum-distinct column (2n+l)-
vectors in D2n+l. By the construction of D2n+l, m(2n+ 1) 2m(n)+n+g+ 1, re(O)
0, where m(n) is the number of sum-distinct n-vectors in Dn. The substitutions
n + 1 2k and (k) m(2k 1) yield (k + 1) 2(k) + 2k + , from which (4.3)
follows by using standard techniques in solving linear recurrence equations.

If D, is defined recursively, there has to be a recursive inverse mapping for deter-
mining the subset vectors from a given subset-sum. The mapping is defined by (4.5),
the algorithm which recovers 2 from the known product "2, and (4.6)-(4.8). To stop
the recursive calls in (4.7a) and (4.7b), we may use D1 (k ). The inverse map-
ping requires storing matrix Dn only. Let Tn be its running time for the sum-distinct
matrix Dn. From (4.5)-(4.8), it follows that T2+1 2Tn + cn + c2 log2 k + c3, where
Cl, c2 and c3 are machine-dependent constants. By using standard techniques, we
obtain

n- 1 n + 1 n + 1
log2

n + 1
Tn T(C3--Cl --C2 log2 k)+ 2 T1 -Cl 2 , n+ 1 2r, r E Z+.

5. Remarks. If r(B) is the number of residual vectors induced by a square E-
matrix B, then 2r(B) det B I. This is so because det B is the volume of the
fundamental parallelotope formed by column-vectors of B and most of the sums (3.4)
are inside the parallelotope. If we write B in (3.1) as

(-)(5.1) B= T finn
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then from r(B) >_ -[log2 I/i,[] we see that r(B) >_ [log2 detBIJ is implied by
either Ifll 2t for all or L In-1 in (5.1). The first condition was used in the
sequence (Bnln 3, 7,...) given by (3.7); here we give a simple sufficient condition
for L= In-I.

REMARK 1. Let p be a permutation of column-vectors of a nonsingular ]C-matrix

B of order n such that

pB=
t

and gcd(] det A], ]det B) 1. Then r(B) [log2 [det BJ.
Proof. Let B in (5.1) be the lower triangular form of pB. rthermore, let

d gcd([ det A{, det B) and 2 (z,..., z_)T, z Z for i= 1,..., n, such that
TL-1A + finn2T T and TL- + nZn t. Then BH- pB becomes

T nn 2T Zn T t

Since N-1 h integral entries, ]det L-A e Z+ or detA Snn-]detpB],
where s e Z+. Dueto [detpB detB and]detB 1], wehavedn

n--1c= , where c +, nd thus the claim follows.
It is not difficult to show that if d 1, then det A and components of (adj A)

are mutuMly prime. rthermore, if ]nn] is to be mximum, due to nz t--T,
we have z 1. Thus, if dn 1 and ]n] is maximum, then

r 1 t

which can be used in the construction of matrix B.
In a, {a, g, 6, 7} was a counterexample to r(B) [log det lJ, and in 4, we

used the same set to claim r(k) > [log kJ. Let a and k 7 and consider he
-by-1 matrix

3567035673560)(5.3) D3= 0 0 0 0 7 7 7 7 7 3 5 6 0
3567742100001

Let fi (tl,... t13)T and (1, 2, if3)T" From

(1,-1, 1)D3 e e2 + 3
2(3u + 5u2 + 6u3 + 7u4) --u13,

we see that U13 is uniquely determined as

(5.4) U13 1 2 - 3 (mod 2).

Since {3, 5, 6, 7} is sum distinct, the same identity determines (Ul, U2, U3, U4) uniquely
as

1
(5.5) 3tl -- 5t2 - 6t3 + 77-t4 ((1 52 -- 3 t13)"

Furthermore, premultiplying D3 by (0, 1, 0) yields

3u10 -+- 5Ull -t-6u12 e2 mod 7.
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Even though {3, 5, 6} is sum distinct, the inverse mapping does not seem to be unique,
since (e2 mod 7) is zero when either (Ul0, u11, u12)T 3 or 3. Suppose that the
subset-sum is (14, 14,0)T and that (u10,ull,u12)T 3 is assumed in (5.6). Then
from (1, 0, 0)D3fi el, we have

1
3u6 + 5u7 + 6us + 7u9 (el + e2 3 + u3) 3uo 5u 6u12.

Hence, (u6, uT, us, ug) (1, 1, 1, 0) and the error goes undetected. If we are convinced
that D3 is sum distinct (say by displaying its 213 subset-sums), the inverse mapping
may be made unique by requiring that if (e2 mod 7) is zero, both solutions (3 and
3) of (5.6) are run, yielding () and (0), respectively. After comparing D3() and
D3(1) against the subset-sum , the correct one is taken.

Our final comment concerns a direction not pursued here. If Bb/= B and T
(BIBR), then there exists an m-by-m unimodular matrix/, such that Dblm T and
D (BIBR) is a sum-distinct -matrix. Hence,

where - is an m-vector from Zn. If T{ g has a unique solution in {, it is possible
to recover as mt uniquely. Such inverse mapping would clearly require a choice of
BR which guarantees this unique solution.
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AN APPROXIMATION ALGORITHM FOR PREEMPTIVE
SCHEDULING ON PARALLEL-TASK SYSTEMS*

RAMESH KRISHNAMURTI? AND BHAGIRATH NARAHARI$

Abstract. This paper addresses the problem of preemptive scheduling on parallel-task systems.
A parallel-task system consists of several independent tasks, each of which can be executed on
one or more processors. Du and Leung introduced the problem of minimizing the schedule length in
parallel-task systems and showed that it is strongly NP-hard for both nonpreemptive and preemptive
scheduling of independent tasks. This paper presents a polynomial-time approximation algorithm
for preemptive scheduling of a parallel-task system with n processors and w tasks. We derive a tight
worst-case performance bound of r for the approximation algorithm, where r is the maximum factor
by which we can increase the number of processors on which a task can be executed. For example,
r 2 in the model defined by Du and Leung for parallel-task systems in which a task can be executed
on any integral number of processors.

Key words, parallel-task system, preemptive scheduling, schedule length, polynomial time,
approximation algorithm

AMS subject classifications. 68M20, 90B35, 11Y16

1. Introduction. Parallel-task systems allow a task to be executed on one or
more processors, with execution times varying with the number of processors used
to execute the task. A number of parallel architectures [6], which fit the model of
parallel-task systems, have been designed in recent years. The problem of finding
a minimum-length preemptive schedule for a set of independent parallel tasks was
shown by Du and Leung [3] to be strongly NP-hard for an arbitrary number of pro-
cessors. For a fixed number of processors, the preemptive-scheduling problem is shown
to be NP-hard but solvable in pseudopolynomial time. In our model, we assume that
the efficiency of any task (efficiency is defined as the speedup divided by the num-
ber of processors) is nonincreasing with an increasing number of processors; i.e., the
processor-time product is a nondecreasing function of the number of processors allo-
cated for a task. We also assume that tasks can be preempted, but the number of
processors that execute the task at any point in time remains constant.

This paper presents a polynomial-time approximation algorithm for preemptive
scheduling of a set of independent tasks on parallel-task systems for an arbitrary
number of processors. We derive a tight worst-case performance bound of r for the
approximation algorithm, where r is the maximum factor by which we can increase
the number of processors on which a task can be executed. The parameter r depends
on the properties of the parallel-task system. For example, in the model discussed
in [3], it follows that r 2 (this occurs when the number of processors for a task
is increased from 1 to 2), and thus the algorithm generates a schedule with schedule
length at most twice that of the optimal schedule. Furthermore, for hypercube-based
systems [6], where tasks are executed on subcubes of size 2i, we again have r 2.

A number of studies have, under different problem models, dealt with the problem
of scheduling tasks on systems with multiple processors. Garey and Johnson [4],
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[5] study the multiprocessor scheduling problem with resource constraint (where the
resource could be processors) and show that this problem is NP-hard even for the
special case in which there is only one resource, with unit execution time for each task.
Multiprocessor-scheduling problems in which each task requires a specific number of
processors have received significant attention in the literature [1], [2]. It is shown in [1]
that nonpreemptive scheduling on these systems is NP-hard for arbitrary n, where n is
the number of processors. However, for each fixed n, an optimal preemptive schedule
can be found in polynomial time. Scheduling on multiprocessor-task systems that
models communication delays between tasks with precedence constraints has also
been addressed [9]. The reader is referred to [3] for a detailed exposition on different
scheduling models and their relation to the parallel-task system model. The parallel-
task system model adds a new dimension to past scheduling models in the sense that
the schedule must also determine the number of processors to be used for each task.
For parallel-task systems, [7] presents an approximation algorithm for nonpreemptive
scheduling of independent tasks on parallel-task systems, when the number of tasks
is at most equal to the number of processors. Apart from Du and Leung [3], the
problem of preemptive scheduling on parallel-task systems has not been addressed in
the literature.

The next section defines our notation and formulates the preemptive scheduling
problem. The approximation algorithm is presented in 3, and its performance is
analyzed in 4.

2. Notation and problem model. For a typical schedule, each task is assigned
a collection of a number of processors, to which we refer as the processor collection,
and its size is the number of processors in the collection. Let w denote the number
of tasks and n the number of processors. For any integer a, let [a] denote the set
{1,...,a}.

For each task E [w], the characteristics of task are abstracted into a tuple
(qi, Pi, ti) where

q, for q E Z+, denotes the number of choices of different processor collections
(number of processors) on which the task can be executed,
p is a function p’[qi] - In], which defines the number of processors for
each choice aj [q], and
the function ti [qi] --. Z+ defines the execution time of task for each choice
of processor collection.

Task j can be executed on any processor collection consisting of pj(aj) processors,
with processing time (execution time) tj(aj) for aj {1,..., qj}. We assume that the
processing time of a task decreases with an increasing number of processors and that
the processor-time product is a nondecreasing function of the number of processors
allocated to the task. These properties are defined as follows.

(i) p(1) 1, pi(k) < p(k + 1), and ti(k) > ti(k + 1) for all [w] and 1 _< k _<
q 1. This condition can be satisfied for all parallel-task systems by simply removing
all processor-collection choices that violate this property.

(ii) p(k)ti(k) <_ p(k + 1)t(k + 1) for all . [w] and 1 _< k _< q- 1. When the
number of processors is increased by a factor of t, its execution time is decreased by
a factor at most t.

Our problem is to find a preemptive schedule with minimum completion time for
all tasks. A preemptive schedule must determine the number of processors p(ai) for
each task i, and schedule them on the processors in the system; we-assume that a
task can be preempted but the number of processors assigned to it remains constant.
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This preemptive-scheduling problem is shown to be strongly NP-hard in [3].
The parameter r denotes the maximum factor by which we can increase the

number of processors used to execute a task, and r is defined as

max max

When q 1, i.e., a task can be executed only on one processor, we define r to
be 1, and thus r is always well defined. For the model in [3], it follows that r 2
(this occurs when the number of processors for a task is increased from 1 to 2, i.e.,
p(2)/p(1)--2).

For any preemptive schedule, a task is called a dominatin9 task if its execution
time in the schedule is equal to the completion time of the schedule. A task that is
assigned to one processor is called a uniprocessor task.

Given a set U of uniproeessor tasks (i.e., tasks running on a single processor) and
n processors, an optimal preemptive schedule can be generated using McNaughton’s
wraparound algorithm [8]. It is shown in [8] that the optimal preemptive schedule time
is given by max{Tg, Tm} where Tavg (l/n) -]u t(1) is the average execution
time of the tasks and Tm maxv t(1) is the maximum among all task execution
times. The above result implies that for any time T, where T _> max{Tm, Tg},
the minimum number of processors m required to preemptively schedule tasks in U
(using McNaughton’s algorithm) is given by m [y’ ti(1)/T]. This property is
exploited by our approximation algorithm.

3. An approximation algorithm. The approximation algorithm is based on a
local improvement strategy. It starts with an initial schedule, assigning one processor
to each task, and iteratively searches for improvements by assigning more processors
to the dominating task. The initial preemptive schedule is constructed by using Mc-
Naughton’s wraparound rule. The algorithm then attempts to allocate more proces-
sors to the dominating task (the task with the largest processing time). It terminates
if there are not enough unused (idle) processors or if the number of processors that
can be assigned to the task is equal to the maximum number allowed, i.e., if as q,
for dominating task E [w]. Tasks that are assigned more than one processor are
nonpreemptively scheduled on processors that are dedicated solely to them and are
executed concurrently from start to completion; we call this a parallel schedule. A
detailed description of the algorithm follows.

1. Let Tmax maxe[]{t(a)} tj(aj) be the maximum among all task execu-
tion times (with task j having this time), and let Tavg Eeu1 t(ai)/min(remain,
U1 I) denote the average time of uniprocessor tasks using all remaining processors
(processors not used by the parallel schedule). Initially, remain n and U1 con-
sists of all tasks. The current schedule time T8 is set to Ts max{Tmx, Tvg}. If
Tvg > Tmx then the algorithm terminates, sets rn remain, and goes to step 4,
else there is a dominating task, namely task j.

2. If dominating task j is in U1 then remove it from U1 and remove one processor
from remain, i.e., U1 U1- {j} and remain remain-1. Determine the minimum
number of processors, rn, needed to preemptively schedule U1 (using the wraparound
rule) within time T where rn [Eu1 t(a)/T].

3. Increase the number of processors assigned to the dominating task from
pj(aj) to pj(aj / 1) if there are enough unused, i.e., idle, processors available where
idle remain m. Update the number of remaining processors not used in the par-
allel schedule to remain remain- (pj(aj + 1) -pj(aj)) and goto Step 1 (continue
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FIG. 1. A schedule generated by the approximation algorithm.

Tmax

iterating). Terminate the algorithm if we cannot increase the number of processors
assigned to task j, i.e., if either idle < pj(aj + 1) -pj(aj) or if aj qy, and goto Step
4.

4. For each task j, where j U1, schedule j on pj(aj) processors from time 0
to tj(ay). Using McNaughton’s algorithm, preemptively schedule tasks in U1 on m
processors.

Figure 1 shows an example of a typical schedule derived by the algorithm; the
figure also illustrates the various parameters (remain, idle, m). Note that the unipro-
cessor tasks are preemptively scheduled using McNaughton’s wraparound rule.

In the approximation algorithm, the number of iterations is clearly no more than
n. Furthermore, once the number of processors used for a task is increased, it is
never decreased. Thus, the number of iterations is no more than the total num-
ber of processor-collection choices for all tasks--given by ie[] qi. Therefore the
number of iterations is at most rain{n, ie[] qi}. At each iteration, the maximum
among the execution times ti(ai), for all i E [w], can be found in O(logw) time
if these are stored in a priority queue. Finally, the preemptive scheduling of the
tasks in U1 takes time O(w). Therefore, the approximation algorithm has complexity
O(min{n,[] q} log w). Further, since at most n tasks are preemptively sched-
uled, the number of preemptions are bound by n 1. From the construction of the
algorithm, only uniprocessor tasks are preempted. Since preempting a task running
on k > 1 processors is more expensive than preempting a task running on a single
processor, the algorithm achieves the desirable side effect of keeping the preemption
overhead small.
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4. Performance analysis of the approximation algorithm. We now show
that our scheduling algorithm derives a schedule whose completion time is within r
of the completion time of an optimal schedule. The proof utilizes the property that
the processor-time product is nondecreasing for all tasks. It is shown that an optimal
schedule must use at least as many processors for each task as the number assigned by
our algorithm, and for a dominating task it must assign more processors. However,
increasing the number of processors to the next allowable processor-collection size
can only decrease the time by a factor of at most r. Also, increasing the number
of processors for a task cannot decrease the processor-time product (area) in the
schedule.

Notation.
S,, Ta is the schedule produced by the approximation algorithm and its com-
pletion time.
So, To is some optimal schedule and its completion time.

Sf, Tf is some feasible schedule and its completion time.

ai is the processor-collection choice for task in Sa.
oi is the processor-collection choice for task in So.
fi is the processor-collection choice for task i in SI.

Recall that m denotes the number of processors on which tasks in the set U1
(assigned to run on a single processor) are preemptively scheduled.

Given any feasible schedule SI, Lemma 4.1, whose proof follows from definitions,
gives a lower bound on the completion time T in terms of the number of processors
pi(ai) assigned to each task and the corresponding execution times of the tasks
in Sf. Lemma 4.2 proves that at least m- 1 processors are fully utilized in the
preemptive schedule. This follows directly from the properties of the wraparound
rule in McNaughton’s preemptive scheduling algorithm [8]. Finally, from Property
(i), we have Proposition 4.3, which states that if a dominating task in Sa has been
allocated the maximum possible number of processors (i.e., p(q)), then Sa is optimal.

LEMMA 4.1. For all feasible schedules Sf, TI >_ -= p(f)t(f)/n.
LEMMA 4.2. For a schedule Sa derived by the algorithm, eu t(1) > (m-1)T.

In addition, if the algorithm terminates because Tvg >_ Tmx, then -]eu t(1) mT.
PROPOSITION 4.3. Assume that in the schedule S, there exists some k [w]

such that task k is a dominating task and a qk. Then S is optimal.
We now prove that the approximation algorithm produces a sequence of feasible

schedules with nonincreasing completion times T (schedule times).
LEMMA 4.4. The sequence of completion times T of schedules produced by the

approximation algorithm is nonincreasing.

Proof. The completion time T at any iteration is given by T max{Tg, Tmx}.
To show that the sequence T is nonincreasing, we need only show that Tmx and Tg
at any iteration are not larger than the value of T at the previous iteration. Consider
Tg at any iteration. The number of processors available to preemptively schedule
tasks in U, i.e., the value of remain at the start of this iteration (in step 1) is no
smaller than the value of rn (computed at step 2) at the end of the previous iteration,
where rn [Eeu t(1)/Ts and the set U1 is the same as that used to compute rn
in step 2 of the previous iteration. Thus, Tg is no greater than the value of T at
the previous iteration. Tmx is the maximum among all task times and the number
of processors assigned to a task never decreases between iterations. Thus, it follows
from Property (i) that Tm is nonincreasing. Since Tvg nd Tmx are nonincreasing,
Ts is nonincreasing.
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For all tasks i E [w], for any schedule Sa produced by our algorithm we define the
to bevariable a a a + 1 if task is a dominating task in Sa and a a otherwise.

indicates the smallest choice of processor collection, i.e., p(a) isThe variable a
the minimum number of processors that must be assigned to each task to further
decrease the schedule time from Ta. From Proposition 4.3, if S is not optimal, then
for all dominating tasks k in S, we have ak < qk, and thus a is a valid choice for
task k. The next lemma states that for any feasible schedule with a lower completion
time than our algorithm, the number of processors assigned to each task in Sf must
be at least as large as the number assigned by our approximation algorithm. Further,
all dominating tasks (in S) must be assigned more processors. In other words, for
any such feasible schedule Sf with T < T, for each task E [w], we have f >_ a
(and therefore p(f) >_ p(a)).

LEMMA 4.5. Assume that there exists some feasible schedule SI such that TI <
tfi.Ta. Then for all [w], a

Proof. The completion time of a schedule is no smaller than the execution time
of any of its tasks. Thus, in the schedule S,, for all i [w], t(f) <_ Tf; further, since

T < Ta from the assumption of the lemma, We have the relation t(f) <_ T] < Ta.
We next analyze the number of processors allocated to the tasks in the schedule S.
Let be an arbitrary task in [w]. There are two cases.

Case 1. Task i is a dominating task in S with Ta t(a). Thus, we have the
relation t(f) <_ T < T t(a), implying that f _> a + 1 from Property (i). From

< fi.the definition of a, a a + 1 and therefore a
Case 2. Task is not a dominating task in Sa. If a 1, since p(1) is the smallest

processor-collection size for task i, we have f >_ a. If a > 1, the approximation
algorithm has increased the number of processors for task i in some iteration from
p(a- 1) to p(a), implying that task was a dominating task in the schedule
produced by the approximation algorithm at that iteration with completion time
t(a- 1). From Lemma 4.4, we have T <_ t(a- 1), and this results in the relation
t(f) <_ T < Ta

_
t(a- 1). Therefore, from Property (i), we have f > a- 1 and

f >a.
From Cases 1 and 2, it follows that for all [w], f _> a.
For the case in which S is not optimal, Theorem 4.6 derives a lower bound on

the completion time of an optimal schedule in terms of p(a) and t(a) for all i e [w].
THEOREM 4.6. Assume that Sa i8 not optimal. Then To >_ iW_l pi(a)ti(a)/n.
Proof. Since an optimal schedule is also a feasible schedule, from Lemma 4.5,

Thus from Property (ii) we have for all E [w]we have for all [w],o _> a.
p(o)t(o) >_ p(a)t(a); and therefore, -=lP()t() >_ =1 p(a)t(a). Since
To >_ %lP()t()/n from Lemma 4.1, the theorem follows. D

For the case in which S is not optimal and there is a dominating task in T,
Lemma 4.7 derives an upper bound on the ratio of Ta to To. The proof follows from
Theorem 4.6.

LEMMA 4.7. Let k [w] such that task k is a dominating task in Ta. Assume
that Sa is not optimal. Then T/To <_ n tk(a)/ -=1 p(a)t(a).

In the next theorem, we derive an upper bound of r on the ratio T/To, by ex-
ploiting the fact that the processor-time product for each task in the optimal schedule
is no less than the processor-time product for each task in the schedule derived by
our algorithm.

THEOREM 4.8. The approximation algorithm derives a schedule Sa with Ta/To

_
r.
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Proof. If Sa is optimal, the theorem trivially follows, since r _> 1. Assume
therefore that Sa is not optimal. In the final schedule derived by the approximation
algorithm, we have two possible cases: (1) the schedule Sa has a dominating task
and thus T Tmax _> Tavg; or (2) the schedule S has no dominating task and thus
T Tvg > Tmx. Based on the schedule Sa generated by the algorithm (when it
terminates), we can partition the set of all tasks into three sets U1, B1, and B2.

U1 consists of all nondominating tasks assigned to a single processor (as de-
fined before); U1 {ilai 1,t(a) < Ta};
B1 contains all nondominating tasks that are assigned more than one proces-
sor: B1 {i[i E [w], ti(ai) < T, and ai > 1};
B2 {i[i e [w], ti(ai) Ta}, which contains all the dominating tasks in S.

Let m denote the total number of processors allocated to tasks in U and b denote
the total number of processors allocated to tasks in B.

Thus, we have

(1) E E p(a)t(a)+ E p(a)t(a)+ E p(a)t(a).
i--1 iU iB1 iB.

First consider the term -eB1 p(a)t(a), which denotes the processor-time prod-
uct of nondominating tasks running on more than one processor. From the definition

for all B we haveof air, for all B we have ai hi. From Property (ii),
pi(ai)ti(ai) >_ pi(ai- 1)ti(ai- 1); and, from Lemma 4.4 and as shown in the proof of
Case 2 of Lemma 4.5, we have ti(ai 1) _> Ta. Further, since pi(ai 1)/pi(ai) >_ 1/r
from the definition of r, we have t(a) >_ p(a 1)t(a- 1)/p(a) >_ t(a 1)/r >_
T/r from Property (ii). Therefore,

E p(a)t(a)= E p(a)t(a) >_ Ta E p(a)= Tab.
iB iB iB

We now derive bounds on Ee[w]p(a)t(a) for each of the two terminating
conditions below.

Case 1. T Tmx _> Tvg, and for some dominating task k G B2 we have
for all i G U1 we have a a 1 and fromT tk(ak). From the definition of a,

Lemma 4.2, we have Eeu1 p(a)t(a) > (m- 1)tk(ak). Therefore, since r _> 1, we
have

(3) E p(a)t(a) E p(a)t(a) > (m- 1)Ta >_ (m- 1)T/r.
iU1 iU

For all i e B2, we have a’ a+l and t(a) tk(ak) Ta. From Property (ii), we
thave t(a)p(a) >_ t(a)p(a) and therefore (a) _> tk(ak)/r Ta/r. Consequently,

we have

E t(a)p(a)>_ T E p(a).
r

iB2 iB2

Furthermore, we must have Eeu2p(a) > (n-m-b)>_ (n-m-b+1); otherwise,
there would have been enough processors for the algorithm to increase the number of
processors assigned to each dominating task to its next allowable size (which is p(a),
for all B2).
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(4)

Therefore, we now have

"a’ "a’ tk(ak) 1).E ti( i)pi( ) >_ (n-m-b+
iEB2

r

From equations (1)-(4), we have

Epi(a)ti(a) >_ nTa for r _> I,
i=I

wfrom which we have (nTa)/(-: p(a)t(a)) <_ r, and from Lemma 4.7, we have

To <_ r.

Case 2. T Tavg > Tmax and there is no dominating task in the schedule. For
this case, the sets U1 and B1 comprise the set of all tasks since B2 is empty (and U
is not empty). In this schedule, there are no idle processors (since all processors in
remain are used to schedule tasks in U) and so we have rn + b n.

and since the algorithm terminates becauseFor all E U, we have a a 1,
Tvg _> Tmx, from Lemma 4.2 we have -Evl p(a)t(a) rnT. Therefore,

E p(a)t(a) E t(1) rnT (n b)Ta >_ (n b)Ta/r.
iU iU

From equations (1), (2), and (5), we have

Ep(a)t(a >_ nTa
r

i--1

From Theorem 4.6 we have To >_ EiW=l p(a)t(a)/n. Substituting into the above
equation, it follows that T/To <_ r.

To show that the upper bound is asymptotically tight, we construct a problem
instance in which w 2, and r an integer such that n/r is an integer. Both tasks have
perfect speedup and can be assigned at most n processors. In addition, for task 2, there
are two successive processor-collection choices of sizes n/r and n. Task i has very small
execution times compared to task 2. Thus, p (1) 1, t (1) (e << 1), pl (ql) n,
and tl(ql) e/n. For task 2, q2 _> 4; p2(1) 1, t2(1) 1, P2(/) n/r, t2(/) r/n,
P2(q2) n, and t2(q2) 1In. The algorithm generates a parallel schedule where task
1 is allocated one processor, and task 2 is allocated a collection of n/r processors,
and the completion time Ta is r/n. An optimal schedule is a schedule in which both
tasks are allocated n processors and executed in sequence with a completion time of
To (e + 1)In, which is less than r/n. Thus, Ta/To (r/n)/(( + 1)/n) which for
n -- ec, << 1 gives T/To --* r.

5. Conclusion. This paper presented an r-approximation algorithm for preemp-
tively scheduling a set of w independent tasks on a parMlel-task system consisting of
n processors, where r is the maximum factor by which we can increase the number
of processors used to execute a task. Future efforts must focus on approximation
algorithms for the problems of preemptive and nonpreemptive scheduling of a set of
tasks with precedence constraints, which have been shown to be strongly NP-hard [3].
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Abstract. We show that a minimal nonpolytopal matroid polytope, the unique oriented matroid
/[, characterized by requiring its LaB Vergnas face lattice to be isomorphic to Altshuler’s 3-sphere
M9963, has no polar 24A, i.e., there is no oriented matroid /[A such that its LaB Vergnas lattice

9Vlv(A/[ A) equals the opposite (antiisomorphic or order-dual) lattice ’lv(J)p. This provides the
minimal rank in which polarity for oriented matroids, i.e., ’lv(AAA) ’lv(jA)p, fails to hold,
thus answering a problem posed by Billera.

Key words, oriented matroid, matroid polytope, polarity

AMS subject classifications. 52C07, 52B40

1. Introduction. During the last twenty years, it has been proved that the
theory of convex polytopes has benefited very much from the concepts developed
within the theory of oriented matroids. We often study convex polytopes within this
more general framework. Many theorems and concepts that are fundamental in the
theory of convex polytopes have been carried over, and they have been shown to
hold in the more general case of matroid polytopes, i.e., oriented matroids with only
extreme points. Moreover, very often they simplify the insight in the combinatorial
structure. See [4] and [5].

On the other hand, the concept of polarity for convex polytopes does not carry
over to matroid polytopes in its full generality. The convex hull of the vertices of a

polytope and the intersection of the supporting half-spaces of a polytope have differ-
ent generalizations in oriented matroid theory. Billera and Munson have proved the
following theorem, see [3] and [4, Cor. 9.3.10].

THEOREM i.I (Billera and Munson, 1984). There exist rank-12 matroid polytopes
with 16 vertices that do not have polars.

Within their proof, Billera and Munson used the Lawrence construction, which
turns out to be inapplicable in cases of lower rank. Billera has asked whether a
corresponding result can be obtained in cases of lower rank. We find this also as an
open problem in [4, Exercise 9.12"]:

PROBLEM 1.2. What is the smallest rank of a matroid polytope without a polar?
In this article, we are going to solve this problem. The decisive example will

be a matroid polytope A/[ that has as its LaB Vergnas lattice 9Vlv(J4) Altshuler’s
sphere M9963, see [1]. We have defined this example in the next section, and we have
listed several facts which are relevant in oriented matroid theory. Finally, in 3, we
formulate our main result as Theorem 3.1. A nonpolytopal matroid polytope is an
oriented matroid A/[ with only extreme points such that there is no realizable polytope
with face lattice isomorphic to the LaB Vergnas face lattice 9Vlv(A/[) of

2. The smallest uniform nonpolytopal matroid polytope .
2.1. Description of the matroid polytope 24. We start by listing the facets

of the 3-sphere denoted in Altshuler’s list by M9963, compare [1].
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1994.
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1235 2137 1256 1268 2179 1289 3156 3168 1378 7189 3245 2347 2456
2467 6279 2689 4359 3478 3489 5369 6389 4567 4579 4789 5679

The sphere has 9 vertices {1, 2,..., 9} and 25 simplicial facets. It has the sym-
metry group E defined by (1,5)(4,8)(2,6)(7,9)(3). We relabel the vertices in the
above order to obtain the symmetry in the form (1,2)(3, 4)(5, 6)(7,8)(9). We denote
the (oriented) facets of the sphere, ordered according to the symmetry, by letters
a, b,..., y as follows:

a +1256
b= -1259 c= +1269
d= -1579 e= -2689
f= -1456 g= +2356
h- -1469 i- -2359

j= -1478 k= +2378
l= +1479 m= +2389
n= +1458 o= +2367
p= +1578 q= -2678
r +3478

s= -3479 t= +3489
u= +3567 v= -4568
w= +3579 x= +4689
y +5678.

Now we assume that there exists an oriented matroid A/I of rank 5, our ma-
troid polytope A/I, such that its Las Vergnas lattice ]v(A/[) coincides with the above
Altshuler sphere. We are going to determine signs of bases of A/I derived from the
face-lattice structure. The sphere turned out to be a rigid one when the corresponding
chirotope was determined in the investigation of the first author in 1978. The argu-
ment of Sturmfels for proving the rigidity of this matroid polytope in [4, p. 405] is
false. The result of Shemer, carried over to the oriented matroid setting by Sturmfels,
cannot be applied because the sphere is not neighborly (it has two missing edges 1,3
and 2,4).

We list all (consistently oriented) partial hyperline sequences defined by subfacets
in Table 1, below; compare for this notation [5]. See also the later geometric expla-
nation.

TABLE

subfacet hyperline sequence subfacet hyperline sequence
aAcaAb (+1,2,5

bAc (+1,2,9
n (-,a, 5
fAh (+1,4,6
jA1 (-1,4,7
nNj (--1,4,8
hal (+1,4,9
aA f (+1,5,6
pfd (+1,5,7
nAp (+1,5,8
bad (-1,5,9
cNh (+1,6,9
j (-1,7,8
lNd (+1,7,9
rns (+3,4,7
sat (+3,4,9
gAu (-3,5,6
uAw (-3,5,7
iNw (+3,5,9
oNu (--3,6,7
kNr (--3,7,8
saw (--3,7,9
mAt (--3,8,9
uNy (--5,6,7
pay (--5,7,8
dAw (+579

{6},..., {9})
{5},..., {6})
{6},..., {8}) gAo (--2,3,6
{5},...,{9}) gNi (+2,3,5
{8},..., {9}) knm (-2,3,8
{5},..., {7}) oak (-2,3,7
{6},..., {7}) iAm (+2,3,9
{2},...,{4}) any (-2,5,6
{8},..., {9}) qAe (+2,6,8
{4},..., {7}) oAq (+2,6,7
{2},..., {7}) c71e (-2,6,9
{2},..., {4}) bC)i (+2,5,9
{a},...,{5}) q (+, 7, 8
{4},..., {5}) rune (+2,8,9
{8},..., {9}) rt (--3,4,8
{7},...,{s})
{2},..., {7}) fNv (+4,5,6
{6},..., {9}) v N x (--4, 6,8
{2},..., {7}) hAx (+4,6,9
{2},..., {5}) nNv (-4,5,8
{2},..., {4}) jfr (+4,7,8
{4},..., {5}) tNx (-4,8,9
{2},..., {a}) lNs (-4,7,9
{3},...,{s}) , (+5,6,8
{1},..., {6}) qNy (+6,7,8
{1},..., {3}) eAx (+6,8,9

(-1,2,6 {5},...,{9})

{5},...,{z})
{6},...,{9})
{7},...,{9})
{6},...,{8})
{5},...,{s})
{1},...,{3})
{7},...,{9})
{3},...,{s})
{1},...,{8})
{},...,{})
{3},...,{6})
{3},...,{6})
{7},...,{9})

{1},...,{8})
{5},...,{9})
{1},...,{8})
{1},...,{6})
{},...,{})
{3},...,{6})
{1},...,{3})
{4},...,(7})
{},...,{5})
{2},...,{4})
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The following signs of bases of the chirotope are determined directly from the
above hyperlines (we have used the alternating rules for brackets).

12356
12359 12469
12367 / 12458
12369 + 12459
12378
12389 / 12479
12567
12569
12578 12678
12579 + 12689
12589 + 12679
13456 / 23456
13458 23467
13469 + 23459

13478 + 23478
13479 23489
13489 + 23479
13567 + 24568
13578 24678
13579 + 24689
14567 23568
14568 23567
14569 23569
14578 23678
14579 + 23689
14589 + 23679
14678 23578
14679 + 23589

14689 + 23579
14789 23789
15678 + 25678
15679 25689
15789 + 26789
34567 34568
34578 + 34678
34579 34689
34589 + 34679
34789 +
35678 + 45678
35679 + 45689
35789 46789
56789 +

For the remaining signs we look at rank-2 contractions of this potential partial
chirotope of A/t, and we try to determine other signs of oriented bases by using the chi-
rotope axioms. The following sequence of chirotope axioms determines all remaining
signs of bases of the chirotope 24 (and its symmetric images).

{57812634} = [24578] := +, ([13678] :--)
{25814%6} = [23458] := +, ([13467] :=-)
{35812469} [35689] := +, ([45679] :=-)
{58913627} = [25789] :--, ([16789] := +)
{TSglea} [aSg] :=-, ([4S9] := +)
{Sga71:} [laSg] :=-, ([49] :=-)
{a91S:7} [la9] :=-, ([4S9] :=-)
{91a4} [49] :=-, ([aSg] :=-)
{94} [e79] := +, ([Sg] := -)
{79a4} [47] :=-, ([laS] := +)
{41a} [14] :=-, ([l:aS] := +)
{aVas} [1:a4] :=-, ([eaas] :=-)

{aalvsg} [eaag] := +
{13712469} [12379] := +, ([12489] :=-)
{37911248} = [13789] := +, ([24789] :=-)
{Sgllae} [7s9] := +
{1287946} [12468] :=-, ([12357] := +)
{14812635} [13468] :=-, ([23457] := +)
{13416857} [13457] := -, ([23468] := +)
{4571326} [12457] :=-, ([12368] := +)
{2451736} [12345] :=-, ([12346] :=-)
{3451289} [13459] := +, ([23469] :=-)
{4591367} [34569] := +
{46913512} [24569] := +, ([13569] :=-)

We still have to show that the chirotope axioms are fulfilled for the set of signed
bases. Starting with these signs, we determine and complete all hyperline sequences of
J4. In order to explain once more the idea of these hyperline sequences, which become
abstract in the oriented matroid case, we assume the realizable case, and we assume
all 9 points to lie in general position. Any 3 ordered points affinely span an oriented
2-flat. We consider the sequence of oriented hyperplanes containing this oriented
2-flat with outer normal vector rotating in the corresponding (oriented) orthogonal
complement of the oriented 2-flat. This induces a cyclic order of the remaining 6
points. As an oriented hyperline sequence, we write down the oriented 2-flat together
with the induced cyclic order of the remaining points. The induced cyclic order of the
points must be compatible with the facet structure. It has turned out in our case that
there is only one chirotope compatible with the boundary structure, i.e., the sphere
is rigid.
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We now present the chirotope as a complete list of all (consistent) oriented hy-
perline sequences of

4 -5 9 -6 -7 -8)
3 9 -6 -4 -8 -7)
3 -8 -4 5 -9 6)
3 7 8 4 6 -5)- -s - -)
2 6 4 8 -9 7)
2 9 -5 4 8 7)
2 8 4 -5 9 -6)
2 -7 9 4 -5 -6)
2 -7 5 -4 -8 -6)
e 6 -8 -7 - -9)
e 9 - -8 -7 -)
e 6 8 -9 -)
e 6 -7 - -9)
e 8 7 -6)

e 9 -8 -4 -6)
e 9 7 -4 -6)

-7 - -8 -4 -)
e -8 -4 -9)
e 7 -4 -9)

7 8 4)
2 3 9 4 -5 -6)
e -4 -8 -6)
e -4 7 -6)
1 -6 -2 7 -9 8)
1 9 -8 -2 -6 -5)
1 5 6 2 8 -7)
1 9 2 -7 -8 -4)
1 4 8 2 6 -9)
1 4 9 -7 2 6)
1 7 -2 -6 -8 -4)
1 9 4 8 2 -5)
1 4 9 -7 2 -5)
1 5 -8 -4 -7 2)
1 5 6 2 -4 -9)
1 6 2 8 4 -5)
1 5 6 2 -4 -7)
1 9 2 3 -8 -4)
1 -3 -7 -8 -4 2)
1 -6 -2 -3 -9 -4)
1 4 8 6 2 3)
1 4 -3 -7 6 2)
1 5 6 2 -4 3

1,2,3
1,2,5
1,2,7
1,2,9
1,3,4

(1,3,5
(1,3,6
1,3,7
,,8
1,3,9

(1,4,5
(1,4,6
1,4,7
1,4,8

(1,4,9
(1,5,6
1,5,7

(1,5,8
(1,5,9
(1,6,7
1,6,8

(1,6,9
1,7,8
1,7,9
1,8,9

(3,4,5
3,4,7
3,4,9

(3,5,6
3,5,7
3,,8
3,5,9
3,6,7
3,6,8
3,6,9
3,7,8
3,7,9

(3,8,9
(5,6,7
(5,6,9
5,7,8
5,7,9

(5,8,9
(7,8,9

(1,2,413 7 8 5 -9 6)
(1,2,613 5 -9 -4 -8 -7)
(1,2,813 7 -4 5 -9 6)

2,3,4 1
(2,4,6 1
2,4,5 1

(2,4,8 1
(2,4,7 1
2,4,9 1

(2,3,6 1
(2,3,5 1
2,3,8 1

(2,3,7 1
2,3,9 1

(2,5,6 1
(2,6,8 1
(2,6,7 1
(2,6,9 1
(2,5,8 1
(2,5,7 1
(2,5,9 1
(2,7,8 1
2,8,9 1
2,7,9 1
3,4,6 1
3,4,8 1

4,5,6 1
(4,6,8 1
4,6,7 1
4,6,9 1

(4,5,8 1
(4,5,7 1
4,5,9 1

(4,7,8 1
(4,8,9 1
(4,7,9 1
(5,6,8 1

5 6 7 -9 8)
5 3 7 -9 8)
9 -6 3 7 8
7 3 -6 9 -5
-8 9 3 -6 -5
-8 6 -3 -7 -5)
5 -7 -8 -4 -9)
9 -6 -7 -8 -4)
5 6 7 -9 -4)
5 6 -8 -4 -9)
6 7 4 8 -5)
-3 -7 -8 -4 -9)
4 9 -7 -3 -5)
9 4 8 -3 -5)
-8 -4 -7 -3 -5)
4 -7 -3 6 -9)
4 8 -3 6 -9)
6 4 8 7 3)
5 6 -3 -9 -4)
4 6 -3 -7 -5)

-a a S -)- 7 -9 S)
-9 - - -)

9 z 7 8)
5 -9 -2 -3 -7)
5 -2 -3 -9 8)
5 7 : 8)
-6 -2 -9 -3 -7)
-6 -2 -3 -9 8)
-2 -6 7 3 8
5 6 2 9 3)
7 3 -6 -2 -5)
-3 -8 -2 -6 -5)
9 2 3 7 -4)

(6,7,811 5 -2 -3 -9 -4)
(6,8,9 1 4 -2 -3 -7 -5)
(6,7,911 -2 -3 4 8 -5)

By checking that the sign of each basis (= bracket) derived from different hyperline
sequences is always the same, we have verified the chirotope axioms for j. We do
this for one example ([12569]) out of all () 126 brackets, sign[i,2,5,9,-6]
sign[l, 2, 6, 5,-9] sign[l, 2, 9, 6,-5] sign[5, 9, 6, 1, 2].

The fact that the boldface pairs are always adjacent with respect to its cyclic order
tells us that we have considered a mutation. For other aspects in oriented matroid
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FIG. 1. Schlegel diagrams of the facets of the decisive tope in the Folkman-Lawrence
representation of
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theory, we list all 8 mutations of A/l: [12569]; [13579]; [14568]; [14578]; [23567]; [23678];
[24689]; and [34789]. The fact that we have only 8 mutations allows us to replace the
short proof for nonrealizability, using the general method of providing a biquadratic
final polynomial (as given in [1]), with the more complicated proof of [8] as mentioned
in [7].

2.2. Properties of j4. Our sphere M363 is rigid. This was shown in the last
section. The matroid polytope AA is symmetric because all signs of the bases are
determined by the sphere, and the sphere itself is symmetric. The fact that A/[ is not
polytopal was shown in [1].

This oriented matroid [ has a topological representation (its Folkman-Lawrence
representation), and we consider therein the maximal tope (topological 4-ball bounded
by 9 topological 2-spheres forming the facets of this tope) with the face lattice opposite
to the face lattice of Altshuler’s sphere.

Figure 1 depicts the 9 Schlegel diagrams of these facets of this tope in the
Folkman-Lawrence representation of A/I, which also defines once more Altshuler’s
sphere M9963 by order duality. These Schlegel diagrams will be used later in Theorem
3.1.

Starting with this example of a matroid polytope, one can construct an infinite
family of nonpolytopal matroid polytopes by applying duality and successive lexico-
graphic extensions; see Proposition 9.5.5 in [4].

The matroid polytope A/I is a minimal nonpolytopal one with respect to the rank.
It is also minimal with respect to the number of vertices among all uniform matroid
polytopes. This result was checked in 1981 by the first author (unpublished) but it
has been documented in [2], a source which was not cited in [4].

The oriented matroid of rank 4 with 8 elements derived from our matroid polytope
A/tby contracting point 9, or AB(9)/3 when using the original Altshuler labeling, has
interesting properties. It defines the only reorientation class of oriented matroids
with 7 mutations among all reorientation classes of oriented matroids of rank 4 with
8 points [6]. For a symmetric Folkman-Lawrence representation of this example, see
also the Bielefeld model as described in [5]. See also [4] for additional applications.

We deal with an additional decisive property in the next section.

3. The matroid polytope 2/[ has no polar. We are going to show that the
minimal nonpolytopal matroid polytope from the last section, the unique oriented
matroid j4 characterized by requiring its Las Vergnas face lattice to be isomorphic
to Altshuler’s 3-sphere M9963, has no polar A/t/x; i.e., there is no oriented matroid
jA such that its Las Vergnas lattice 9Vlv(A/IA) equals the opposite (antiisomorphic
or order-dual) lattice .’lv(./)p.

This provides the minimal rank in which polarity for oriented matroids, i.e.,
lv(A/A) lv(A/)p, fails to hold, thus answering a problem posed by Billera.

THEOREM 3.1. The smallest rank of a matroid polytope without a polar is 5.

Proof. In principle, one can proceed as we did in the case of A/. But now we have
25 vertices, and the complexity of the algorithms involved has grown tremendously.
In this case, our oriented matroid (we call it AAA) would be no longer uniform. Simple
calculations show that the problem of using all chirotope axioms in this case is far
beyond what can easily be computed in reasonable time. Nevertheless, the attempt
was made to proceed in a fashion similar to the case of AA, by using more sophisticated
implementations. Fortunately, it turned out that, in our final proof, everything can
easily be checked without using a computer.
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The proof uses only chirotope axioms, i.e., sign conditions derived from Grass-
mann-Pliicker relations. AdA denotes our matroid polytope, which we assume to
exist. We consider the rank-2 minors of AAA with respect to the following subfacets:
(1 N 5); (1 C 9); (2 C 6); (3 C 7); (4 C 7); (4 C 8); and (6 7).

We use the notation for hyperline sequences as before (now adjusted to the nonuni-
form case); see Table 2 below.

TABLE 2

subfacet hyperline left mid right
1 C 5 (+a,b,d,p,n,f
1 r’l 9 +b,c,h,l,d
2 n 6 (+a,c,e,q,o,g
3 N 7 (+k,r,s,w,u,o
4N7 +j,l,s,r
4 gl 8 +j,r,t,x,v,n
67 +o,u,y,q

{c,h,j,1}, ekmoqrstx..., {g,i,u,v,w,y}
{a,f,j,n,p}, gkoqruvy {e,i,m,s,t,w,x}
{b,i,k,m}, djlnprstw..., {f,h,u,v,x,y}
{g,i,m,t}, abcefhnvx..., {d,j,l,p,q,y}

{f,h,n,t,v,x}, abcegim {d,k,o,p,q,u,w,y})
{f,h,l,s}, abcdgiouw {e,k,m,p,q,y}

{a,c,e,f,g,h,v,x}, bimnt {d,j,k,l,p,r,s,w}

The 7 hyperlines are connected (or consistently oriented), which can be checked
by testing the signs of the following brackets in corresponding different lines above:
sign[bdace] -; sign[bdlsr] -; sign[bauoq] -; and sign[njskr]

We use the contraction ]MA/{b, d} of our assumed chirotope 3A A, and we use the
chirotope axioms to determine more signs of brackets as follows. We have indicated
on top of each bracket why we know its sign from earlier observations. The sign itself
is given below.

1CI5 use 48 and [bdjnr],by 15 15 47 lg)5

{jlasxr} [jas] [jxr] [jax [jsr] + [jar]. [jsx]

+ =+

lcl9 9 lg)9 {jlarsx}

{ lcjxq} [ cj] [ xq] [ jq] + [ jx]

=+ 0 ?

lcl5 6CW lC’15 lf15 3A7

{ulasoq} [uas] [uoq] [uao] [usq] + [uaq] [uso]
+ + - +

1CI2 6r’17 lC15 2C16 2N6

{q]acuo} [qac] [quo] [qau] [qco] + [qao] [qcu]

lr’15 26 26 6N7 2C16

{qlaueo} [qau] [qeo]- [qae]. [quo] + [qao] [que]
+ o+

{qlacou} {slcjqx} 19 19 {ulaoqs}

{qlcusx} [qcu] [qsx] -[qcs]. [quxl + [qcx] [qus]
+ + o- +
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1N5 2N6 26 6N7 26

{qlayeo} [qay] [qeo] [qae] [qyo] + [qao] [qye]
+ o+

After plugging in the sign of the bracket [bdqye] in A4h or in the contraction
J4h/(b}, we find a contradiction. In other words, AdA does not exist.

236 638 {bdqlaeoy} 236 {bdqlceux} 26

{beqldayx} [beqda] [beqyx] [beqdy] [beqax] + [beqdx] [beqay]
+ 0 +

Our given matroid polytope j has no polar A/[ h. The rank of AA is minimal because
of Steinitz’s theorem. El

3.1. Remark. There is no matroid polytope with 8 vertices in rank 5 without
a polar. A matroid polytope A4 with 8 vertices in rank 5 has a dual oriented matroid
Ad* in rank 3 with 8 elements which is realizable. Therefore, A/[ is realizable as
well, and its face lattice must be polytopal. This shows that all 3-spheres (including
the Barnette sphere and the Briickner sphere) do not lead to nonpolytopal matroid
polytopes.

The minimal number of vertices for a nonpolytopal matroid polytope must be 9.
Because our A/[ is the only uniform nonpolytopal matroid polytope with 9 vertices,
compare 2.3, we can speak of Ad as the minimal (with respect to both the rank and
the number of vertices) uniform matroid polytope without a polar.
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discussions.
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EQUIDISTRIBUTION IN ALL DIMENSIONS OF WORST-CASE
POINT SETS FOR THE TRAVELING SALESMAN PROBLEM*

TIMOTHY LAW SNYDER AND J. MICHAEL STEELE:

Abstract. Given a set S of n points in the unit square [0,1] d, an optimal traveling salesman
tour of S is a tour of S that is of minimum length. A worst-case point set for the traveling salesman
problem in the unit square is a point set S(n) whose optimal traveling salesman tour achieves the
maximum possible length among all point sets S C [0, 1] d, where IS n. An open problem is
to determine the structure of S(n). We show that for any rectangular parallelepiped R contained
in [0, 1] d, the number of points in S(n) N R is asymptotic to n times the volume of R. Analogous
results are proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner
minimum tree. These equidistribution theorems are the first results concerning the structure of
worst-case point sets like S(n).

Key words, equidistribution, worst-case, nonlinear growth, traveling salesman, rectilinear
Steiner tree, minimum spanning tree, minimum-weight matching

AMS subject classifications. 68R10, 05C45, 90C35, 68U05

1. Introduction. In this note we show that for many problems of Euclidean
combinatorial optimization, the maximal value of the objective function is attained
by point sets that are asymptotically equidistributed. To facilitate exposition, we
focus at .first on the traveling salesman problem (TSP) for a finite set S of points in
the d-dimensional unit cube [0, 1] d. Let T(S) denote the set of tours that span S. The
optimal TSPcost of S is the value given by

(1.1) TSP(S) min lel,
TET(S)

where lel denotes the Euclidean length of the edge e.
For each dimension d _> 2, there are constants Cd such that

(1.2) TSP(S) _< Cdll(d-1)/d,

where ISI denotes the cardinality of S. Considerable effort has been devoted to de-
termining good bounds on Cd; the earliest bounds are due to Few [2], and the current
records are held by Karloff [5] and Goddyn [3]. Simply by considering the rectangular
lattice, one can see there are also constants c > 0 such that, for all n >_ 2,

(1.3) max TSP(S) _> Cdn(d-1)/d.
sc[0,1]
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If we let pTsp(n) max{ TSP(S) S c [0, 1] d, ISI n }, then the usual considerations
of continuity and compactness show that there are n-sets S for which TSP(S)
pTsp(n) (cf. [7], p. 115); these are the worst-case point sets referred to in our title. We
suppress pse’S dependence on d to keep notation simple.

The main result obtained here is that worst-case point sets are asymptotically
equidistributed in the sense made explicit in the following theorem.

THEOREM 1. If {S(n) 2 <_ n < o} is a sequence of worst-case TSP point sets
with S(n) c [0, 1] d, d _> 2, and IS(n)l n, then for any rectangular parallelepiped
R C [0, 1] d, we have

(1.4) lim lls(n)e R vold(R).
n--o Tt

While Theorem 1 is certainly intuitive, the proofwe provide requires more than first
principles; it relies essentially on the result of Steele and Snyder [10] that there exist
constants d > 0 such that

(1.5) lim (d-1)/d d.
n n

The exact asymptotic result (1.5) was motivated by the clsicl result of Beardwood,
Halton, and Hammersley [1] for the case of random point sets, nd it seems to provide
just the refinement of bounds like (1.2) and (1.3) that is needed to obtain equidistri-
bution limit theorems.

We note that a proof of Theorem 1 in dimension two using techniques different
from the ones we use here is given in [9]. We also note that Theorem 1 hs a close
connection to some results and a conjecture of Supowit, Reingold, nd Plaisted [11].
This connection will be explained more fully in 4, after we have developed some
notation.

In the next section, we prove Theorem 1; 3 deals with problems other than the
TSP.

2. Proof of Theorem 1. For any fixed integer m 2, we partition [0, 1] d into
md subcubes Q, where 1 md, each of side length 1/m. For any rectangle
R and any e > 0, there is an m and sets A and B such that AQi C R C sQi
and VOld(eB-AQ) evold(R); hence, to prove Theorem 1, it suffices to consider
equidistribution with respect to the Q. Specifically, it suffices to show that for each
m > 2 and 1 < < md we have

(2.1) lim
[Q S()[ 1

n d

Our proof of (2.1) depends on the equality case of Hhlder’s inequality,
which tells us that for 1 < p < and u,v 0, we have uv
(=lu)l/P(=lV/(p-))(p-)/p. Setting v 1 for 1 k, we have

1/(-))(-)/E,:I 1 (E =I (E =I
The fact that is important for us is that one can have equality in this bound if nd
only if Ul u2 u ([4], pp. 21-26).

Let s(n,i) ]Q S(n); i.e., s(n,i) is the number of points of a worst-cse
point set S() that appear in the the ith subcube. We first establish a limit result
concerning the s(n, i) that meures their ggregte size in a way that works usefully
with Hhlder’s inequality.
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LEMMA 1. For all m >_ 2, we have

(2.2) lim i s(n, i)(d-1)/d
n--.cx n(d-1)/d

m.

Proof. First, write (1.5) as

(2.3) pTsp(n) =/dn(d-1)/d + r(n), where r(n) o(n(d-)/d).

Let W denote a closed walk on S() {Xl,X2,... ,x}; i.e, W is a sequence of edges
(x,, x. ), (x2, xi3 ), , (xik_l, xk ), (xi, x, that visits each point of S(n) at least once
and begins and ends at the same point. Even if W visits some points more than once
and traverses some edges more than once, W is feasible for the traveling salesman
problem on S(n), so TSP(S(n)) <_ ew lel

We now construct a particular W on S() in the tradition of [6] and [11]. In each
subcube Qi for which S(n) N Qi , construct an optimal traveling salesman tour
Ti of S(n) N Qi. This creates a set of at most md within-subsquare tours. We then
select a point x from each Ti and let T* be an optimal traveling salesman tour of
{x, x,..., X*md }. The closed walk W is then formed by visiting subsquares in the
order specified by T*, visiting all members of subsquare Qi by traversing Ti whenever
T* reaches xi.

To assess the length of W, we first note that T* is a TSP tour of md points, so
by (1.2), -eeT* lel <-- cdmd-l" This gives

pTsp(n) TSP(S(n))

eEW

md

(2.4) E TSP(S() Q) + E lel
i--1 eET*

md

_< +
i--1

We now use (2.3) in (2.4) along with the fact that TSP(S(n) N Qi) is at most
pvse(s(n, i)) scaled by the subcube size 1/m to get

pse(n) dn(d-)/d + r(n)
md

<- E pse(s(n, i))
m

i--1 -- cdmd-1md md

<- E ds(n, i)(d-)/d + E r(s(n, i)) + Cd?’td-l,
m m

i-1 i--1

where, for all 1 <_ <_ md, the value Ir(s(n, i)) <_ maxk<n{r(k)} o(n(d-)/d). Since
m is fixed, we cancel d in (2.5) to find

(2.6)
md

>_ +
i--1
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where h(n) o(n(d-1)/d). Dividing by n(d-)/d and letting n oo thus proves half of
the lemma. To obtain the other half, just apply Hhlder’s inequality with p d/(d- 1)

md md md

to = s(n,i)(d-)/d and use -= s(n,i) n to find that = s(n,i)(d-)/d
mn(d-1)/d. [’]

We are now in position to prove Theorem 1. First, we recall the subsequence
convergence principle which says that if (ak) is any sequence of real numbers with the
property that for any integers n < n2 < < nk < there is a further subsequence
n < n < < n < such that a --+ c as k --+ oo, then in fact one must have
ak -+ o as k oo. One easy way to see the validity of this principle is to note that
if ak does not converge to a, then there is some a’ a, -oo _< a _< oc, and some
subsequence of (ak) that converges to

Now let (nk) be a given increasing sequence of integers. Since 0 < s(n, i)/n <_ 1
for all n and i, we can find a subsequence (n) of the (n) and md constants 0 _< c _< 1
such that, for all 1 <_ <_ md, we have

(2.7) lim s(nk i)/n- .-m s(n, i)= n, we have from (2.7) thatNow, since i=1

md

i= I.
i=i

Similarly, by (2.2) and (2.7), we have

(2.9)
md

(d-1)/dEO m.
i=1

(d-1)/d and pNow, equation (2.9) and Hhlder’s inequality applied with ui ai
d/(d- 1) give us

md md md

E (d-1)/d (E)(d-1)/d(E
i=1 i=1 i=1

But, by (2.8), we see that equality holds in (2.10), and thus (d-)/d old-1)/d
a-)/d, so applying (2.8) again, we see that a 1/md for all i. By the

subsequence convergence principle noted after Lemma 1, we therefore have for all
1 <_ i <_ md that s(n, i)/n 1/md as n --. oc, and the proof is complete.

3. Equidistribution in related problems. The method just used for the TSP
can be applied to the minimum spanning tree, the minimum-length matching, and the
rectilinear minimum Steiner tree. If L L(S) denotes the optimal cost associated
with any of these, then we can define p,.(n) sup sc[0,] L(S) and let S() be such

that L(S(’)) p,(n). To show that S(n) is asymptotically equidistributed boils down
to checking that L satisfies two conditions:

1. pL(n) L.n(d-1)/d + o(n(d-1)/d), where/. > 0 is constant; and
d

2 p(n) < m-1 p(s(n, i)) + o(n(d-1)/d) where s(n, i) ]Sn) Qii=1
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Condition 1 has been proved for the minimum spanning tree, minimum-length match-
ing, and rectilinear Steiner tree problems (cf., [10] and [8]), and condition 2 can be
verified for these problems by the method used in the proof of Lemma 1.

For example, if L(S) MST(S) denotes the total length of a minimum spanning
tree of S, we first form a minimum spanning tree MST(S(n) A Qi) on each S(n) A QiMST MST

These trees can then be interconnected at total cost o(rt(d-1)/d) by adding md 1
edges, each costing no more than c/m, where c is constant. This forms a heuristic

.,(n)tree on S(n)MsT. Since the lengths MST.MST Q) are no greater than the worst-case
(within-subcube) lengths pMs(SMs(n, i))/m, condition 2 follows.

Checking these conditions for each of the problems yields the following theorem.
THEOREM 2. /f { qL(n) 1 _< n < c } is a sequence of worst-case point sets for

the function L, where L is the minimum spanning tree, the minimum-length matching,
or the rectilinear minimum Steiner tree, then, for any rectangular parallelepiped R C

lim
1 Is(n f R[ Vold(R).

n--,cx n

4. Concluding remarks. The asymptotic equidistribution of worst-case point
sets for the problems we have considered offers some support to the conjecture of [11]
that worst-case point sets are approximated by lattices as n c. It is still a major
open problem to resolve this conjecture.

Theorem 1 has a rather subtle relationship to some results of Supowit, Reingold,
and Plaisted [11]; we explain here how these results relate to ours. In addition to
improving current bounds on the constants c2 and c in (1.2) and (1.3), their analysis of
the worst-case TSP in 2 decomposed [0, 1] 2 into m2 labeled subsquares of side length
l/m, then constructed a heuristic algorithm similar to that of [6]. Supowit, Reingold,
and Plaisted noted that the worst-case performance of the heuristic is attained on
point sets that are equidistributed, and they used this observation to prove that the
leading constant of the worst-case length of their heuristic tour is identical to the worst-
case TSP constant 32 in (1.5). This observation does not produce an equidistribution
result for worst-case point sets, but it is suggestive of a result like Theorem 1. Still, a
rigorous proof of asymptotic equidistribution of a worst-case TSP point set required
a much different path.

There are other open problems that are motivated by our results. For the Eu-
clidean Steiner problem, the limit result for condition 1 in 3 has yet to be established.
We believe such a result holds, and it would imply that a worst-case point set for the
Euclidean Steiner problem is asymptotically equidistributed. It is also likely that
the Steiner points in the Euclidean and rectilinear cases are asymptotically equidis-
tributed.

Another problem concerns the greedy matching. Though condition 1 in 3 holds
for this problem, the methods we use to verify condition 2 do not work, since they
require a minimality condition. Hence, since the greedy matching is not a minimum-
length matching, showing equidistribution for a worst-case point set for the greedy
matching problem remains an open problem.
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